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Abstract

Current commercial CAD systems allow constraint-based profile sketch-
ing. Algebraic constructive solvers are among the fastest algorithms for
solving the resulting systems of geometric constraints. Such solvers de-
compose the system of nonlinear equations describing the constraints into
small subsystems that correspond to simple construction steps.

The repertoire of geometric elements supported by algebraic solvers is
usually restricted to points, lines and circles. Consequently, when blending
two line segments, only circular arcs can be used. This fact imposes serious
restrictions on the relative position of the two segments. To overcome this
limitation, general conic arcs should be allowed because they can blend any
two line segments. Moreover, such arcs have an additional shape parameter
that can be used to satisfy one more geometric constraint.

We explain how to construct conic arcs from constraints, using a uni-
fied rational parametric representation that combines the separate cases of
blending parallel and nonparallel edges. Our representation can be con-
verted easily into a two-piece rational B-spline with positive weights, and
is therefore compatible with internal representations used by most solid
modeling systems. We show how to determine arcs that must have a given
distance from a line, a point, or a circle, or else intersect a circle or a line at
a prescribed angle. Finally, we discuss an implementation that integrates
our techniques with our algebraic constraint solver.

*Work supported in part by ONR contract N00014-90-J-1599, by NSF Grant CDA 92-23502,
and by NSF Grant ECD 88-03017.

tSupported by a Purdue Research Foundation Fellowship.
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1 Introduction

Blending two line segments in a sketch is an important operation in CAD/CAM
systems and their user interfaces. The majority of CAD/CAM systems provide
circular arcs for this purpose. When connecting two given line segments at their
end points, four degrees of freedom are needed. Circular arcs, however, have
only three degrees of freedom, and therefore can be used only when the two line
segments are in special position — when the end points to be connected by the
arc are equidistant from the intersection of the extended line segments. General
conic arcs, on the other hand, offer five degrees of freedom. Consequently, they
can be used to blend any two line segments with one additional degree of freedom
available as shape parameter.

In CAD/CAM systems, the segments to be blended are often parallel or
nearly so. Therefore, it is highly desirable to use representations and con-
structions that are capable of handling both parallel and intersecting segments
uniformly. Such representations, moreover, can be expected to increase the
robustness of the system.

These considerations motivate the following technical contributions our pa-
per makes:

e We develop a uniform representation, based on the rational quadratic
Bézier form, that describes a conic arc that is tangent to two segments
and passes through a third point. Our representation applies whether the
segments to be blended are parallel or not.

e We present a geometric construction for finding a blending arc that has
been specified to be tangent to a line or at a certain distance from a line.
The construction is valid for parallel and nonparallel segments.

e We give an algebraic procedure that determines a conic blending arc that
is tangent to a circle, has a specified distance from a point, or intersects a
given line or circle at a specified angle. Again, the computations are valid
for both parallel and nonparallel segments.

e This work has been be integrated into a constructive constraint solver
that supports points, lines and circles [2, 5, 6], thus increasing the design
vocabulary available to CAD users. Our representation is converted easily
into a two-piece rational quadratic B-spline with positive weights, and
is therefore compatible with internal representations used by most solid
modeling systems.

In prior work, an explicit parametric form for a conic arc that blends two
segments and passes through a third point has been studied by Liming [9] and
Faux [4], but the cases of parallel and nonparallel segments must be handled



separately. A rational quadratic Bézier formula for the nonparallel case is pre-
sented in [3]. In [11], Piegl proposes “infinite” control points which he uses to
to handle parallel end tangents [12]. In [3], Farin derives a solution for finding
a conic arc that blends two given segments and is tangent to a third line. He
assumes nonparallel segments. A unified representation for circular arcs using
B-splines is presented in [13, 14]. In [15], a sufficient condition for the weights of
a rational cubic Bézier curve is derived so that it represents a conic arc. In the
same work they prove that one convex control polygon can define only one such
conic arc. Finally, in [1], regular rational Bézier curves are used for representing
conic arcs and other free form edges. In this work, the degree of the rational
Bézier curve and the appropriate parametrization are specified on a case by case
basis.

Dimensional geometric constraint solvers usually restrict the shape vocabu-
lary to line segments and circular arcs. There seems to be little published work
that addresses the incorporation of more general geometric shape primitives.
Malraison [10] develops a technique for constraining a control net of a rational
quadratic Bézier curve to be always an elliptical arc. No constraints may be
imposed on the elliptical arc itself except at the end points. In [1], a number
of constraints are allowed between an edge, which is described by a classical
rational Bézier curve of arbitrary degree, and other geometries. The constraints
are then translated into equations by making use of the implicit equation for
the Bézier curve, and the final system of equations is solved using an iterative
method. The authors mention that the solution derived by this method is sen-
sitive to the initial positioning of geometric objects, making the problem of root
selection hard to solve (see [6] for a discussion of the problem of root selection in
geometric constraint solving). [7] considers the problem of conics that have C?
contact with a plane curve, that is, tangency and curvature of the two curves
agree at the contact point. A representation for conics of contact is derived us-
ing rational quadratic Bézier curves. Finally in [8], Hoffmann and Peters discuss
how to construct a class of cubic Bézier curves from geometric constraints.

The remainder of this paper is structured as follows. In Section 2, we spec-
ify our representation for a conic arc that is tangent to two given segments and
passes through a given point. In Section 2.4, we describe how our basic repre-
sentation can be converted to a two-piece rational quadratic B-spline curve with
positive weights. In Section 3, we give algebraic algorithms for constructing a
blending arc which is constrained to a given line, point or circle by a distance,
tangency or angle constraint. Finally, in Section 4, we discuss how our method
has been integrated with our graph-constructive, variational constraint solver

[2].



2 A Uniform Representation for Conics

We develop a uniform rational Bézier representation for a conic arc that blends
two segments at the end points and interpolates a third point. We first review
the nonparallel [3] and the parallel [11] cases separately. Then we construct a
unified representation that we use in both cases.

Our representation may have negative weights, but most commercial solid
modeling software restricts to positive weights. The negative weights occur
in cases where the conic arc subtends an angle of more than 180°. In the
implementation, therefore, we translate our representation, used internally, to
a B-spline representation when interfacing to the solid modeler. The B-spline
breaks such arcs into two adjacent pieces, each subtending an angle smaller
than 180°. By doing so, we also benefit from a large repertoire of algorithms
for handing rational B-splines with positive weights; e.g., [13]. We sketch the
method at the end of this section.

It is well-known that a rational quadratic Bézier curve is a conic arc. How-
ever, when the denominator of the coordinate functions vanishes in the interval
[0,1], the arc will contain points at infinity. Below, we will exclude those arcs
because they are unsuitable for applications.

2.1 Nonparallel Tangents
A rational quadratic Bézier curve with nonparallel end tangents has the form:

wo(1 — 1)2C + 2w;t(1 — t)E + wyt’D

R tel0,1
wo(1 — 1)? + 2wy t(1 — 1) 4 wat? 0,1]

c(t) =

Where C, and D are the end points of the arc and E is the intersection of
the end tangents. Let P = (P, P,) be the point we wish to interpolate, and
let (79,71, 72) be the barycentric coordinates of P with respect to the triangle
A C,E,D. The lines of the triangle partition the plane into several regions.
Figure 1 (left) shows the signs of the barycentric coordinates when P lies in
each region. We write P = ¢(tp) = 70C+ m E+mD. By comparing coefficients
(see [3]), we derive the implicit formula r2wowz = 4w?7or2. When 7o and 3 are
positive and 7 /(2y/7072) > —1, an acceptable solution is obtained. In all other
cases, the conic arc will pass through infinity or degenerate into a pair of line
segments. The unique solution is given by

- _7
1= 21/7'07'2 (1)
(1 —1)’C + 2w;t(1 — t)E + *D
t) = , telol
. o(t) (1 =) + 2uqt(1 — t) + 2 € [0,1]



Figure 1: Left: the sign of the barycentric coordinates. Right: A conic arc
blending two segments and interpolating the origin.

2.2 Parallel Tangents

Let C = (Cy,Cy), D = (Dg, Dy) be two endpoints and let ¥V = (vg,v,) be a
tangent vector of the two parallel segments. Then the rational Bézier form of
the blending conic can be written

wo(1 — 1)2C + 2wqt(1 — 1)V + wet*D
wo(]_ — t)2 + ’U)gt2

ct) = ,  te0,1] (2)
In [12], ¥ has been called a control point at infinity.

Let d(S,T,R) be the unnormalized distance of the point S from the line
through R with direction ¥; that is, d(S,¥,R) = (Sy — Ry)re — (S5 — Rz)ry. By
Area(C,P,D) we denote the signed area of the triangle A C, P, D.

When the two intersecting tangent lines become parallel, their intersection
E moves to infinity; i.e., E = lim,_,, 7V. By taking the barycentric coordinates
in the limit, we get

P= C(tp) = ToC + Tl\—; + TzD

where

_dP,%D) . _dP¥C) , _24re(C,P,D)
°T4c,v,D) ! 4m,%,0) ' d(C,¥ D)

(3)

By comparing the coefficients we obtain the implicit equation:

T12’w()w2 = 4w%T0T2
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Figure 2: Left: the sign of the coefficients for the case of parallel tangents.
Right: A conic arc blending two parallel segments and passing through (1,1).

The signs of the coordinates (Tp, T, T,) of P are shown in Figure 2 (left). An
acceptable solution will require that Tp > 0 and 7% > 0. Here, P is in the strip
defined by the two parallel lines. The unique solution is the elliptic arc

_ Iy
NP
(1-8)*C+wit(1 —)¥ + ¢’D
c(t) = ) 2 ’
4+ (1-1)

(4)

tel0,1]

Note that the solution is not affected by changing the sign of ¥ or the order
of the points C and D. An example is shown in Figure 2 (right) for C = (-1, 0),
D =(1,0),v=(1,1),and P = (1,1).

2.3 A Unified Representation

Let ¥, 1 be the two tangent vectors of the conic arc at the end points. Let C
and D be the two endpoints of the conic arc, and let P be the third point we
wish to interpolate. Furthermore, let U = (v, My — uz My, vy My — vy M7), where
My = Cpvy — Cyvy and My = Dyuy — Dyu,. We will prove that the solution
c(t), if it exists, is given by:

(1-t)*C +2t(1 - )W +¢’D
(1 -1 +2wt(1 —t) + 2

c(t) = ,  tefo,1] (5)



where
Area(C,P,D)U

\/d(D,¥,C) d(P,¥,C) d(C, i, D) d(P, i, D) )

Area(C,P,D)(V X 1) (6)
/d(D,¥,C) d(P,¥,C) d(C, i, D) d(P, §,D)
and that the formula is valid whether the vectors i and V are linearly dependent
or not. We assume that P is not on any of the three lines, through C with
direction u, through D with direction Vv, and through C and D. Moreover, the
three lines are assumed distinct, so that the denominators of W and w do not
vanish.

Scale and Sign Invariance

We observe the following;:
1. d(-, AV,-) = Ad(-, ¥, ).
2. Let U = U(u, V), where U is defined by the expression for U above. Then
U(Aid, V) = AU(d, V). and U(d, AV) = AU(4, V).
3. (AW x 1) = AV x i) and (¥ x Ai) = A(V X d).

Consequently, if we replace W with Ad and V with pv in (5), the same arc is
obtained. When the sign of the square root in the denominator is chosen equal
to the sign of d(D, V¥, C)d(C, i, D), the representation becomes independent of
sign and magnitude of the end tangent vectors.

Correctness for Nonparallel Tangents

Using the well-known interpretation of barycentric coordinates as area ratios in
the subdivision of A C,D,E by P, we can rewrite w; from (1) as

Area(C,P,D)
1 =
2\/Area(P, E,D)Area(C,E,P)

w

But
Area(P,E,D) = L|ED|d(P,(E,D)E)= AL.%D)ID,¥C)
2 2(V x 1) )
1 S d(P,¥,C)d(C, §,D)
— - C — b bl bl 9
Area(C,E,P) = Z|[EC||d(P,(E,C),C) e

so that wy in (1) is equal to w in (6). Now the intersection E must satisfy the
system:
(By — Dy)ue — (Ez — Do)uy =

(Ey - Cy)v:c - (Ea,; — C'_,L.)vy = (8)



By algebra, E = % Therefore, (5) is equivalent to (1) for the case of

nonparallel tangents.
Correctness for Parallel Tangents

We set i = Vv because of scale and sign invariance. Then w = 0 and U =
(M3 — M1)V = d(C,V,D)v. From (3), and (6) we obtain

AT

—V
2V 1T,

from which we derive that W = w,V. Hence the formula is valid for parallel
tangents.

Area(C,P,D)

W =
\/d(D,¥,C)d(P, ¥,C)d(C,¥,D)d(D,¥,C)

d(C,¥,D)¥ =

Acceptable Solutions

Observing the formal correspondences of (1) and (2) with (5), an acceptable
solution exists if, and only if,

d(D,¥ C)d(P,¥C)>0, d(C,i,D)d(P,i,D)>0, w> -1

For instance, we obtain the arc of Figure 1 (right) if weset C = (1,2),D = (2, 1),
V=(-2,-3),i=(-3,-2) and P = (0,0), in (5). Similarly we obtain the arc
of Figure 2 (right) if we set C = (-1,0), D = (1,0), v = (1,1), @ = (1,1) and
P=(1,1).

2.4 Converting to a Rational B-spline

No class of rational Bézier curves of any fixed degree is capable of representing
all acceptable solutions defined by (5) with positive weights alone. Since, CAD
systems often disallow negative weights, we use a two-piece rational quadratic
B-spline with positive weights. By choosing the segmentation appropriately, we
can represent all acceptable solutions with positive weights.

We subdivide our conic arc defined by (5) at ¢ = 1/2 such that the two
resulting conic arcs are the two pieces of a C'-continuous rational B-spline.
C?-continuity of the quadratic B-spline is then implied. Since the tangent at
t = 1/2 is parallel to CD, it must intersect both end tangents. Let A and B be
the intersection points (see Figure 3).

It is well-known that a rational parametric curve can be considered to be
the projection of a parametric space curve to a plane; e.g., [3]. Specifically, we
take the Bézier space curve defined by [C, 1], [W,w] and [D, 1], where w and
W are as in (5). Its projection to the plane w = 1 is the original rational curve.
Using this formulation a routine computation shows that the following rational



Figure 3: Subdividing a conic arc at t = 1/2. The tangent at that point is
parallel to CD.

B-spline represents the original conic arc exactly:
rational quadratic B-spline (see e.g. chapter 7 of [3]) with:

C+W D+W

Control Points: [C, , , D]
14w " 14w

Knot Vector: [0, 0, %, 1, 1]

Weights: 1, l%, HTw, 1]

3 Constructions

We present geometric and algebraic methods for constructing a blending arc that
satisfies an additional geometric constraint with another geometric object. All
computations are valid independently of the relative position of the geometric
objects involved.

3.1 Tangency to or Distance from a Line

In this section we discuss a geometric construction for constructing a conic arc
that blends two segments and is tangent to a line. The case of requiring that
the arc have a given distance from a line directly reduces to this case. The
construction is in terms of the uniform representation explained before.

Let A be the line which is to be tangent to the conic arc. We will determine
the point P where the conic touches the line A, thereby reducing the problem to
the interpolation problem solved in the previous section. First, we will describe
a geometric construction that derives P and then we shall prove its soundness.

The construction for intersecting tangents is from [3], and is shown in Figure
4 (left). For parallel tangents, the construction is illustrated in Figure 4 (right).
Let I; be the line that passes through C and is parallel to V, and l; be the line
that passes through D and is parallel to ii. We assume that A intersects both I3
and /5 at two points A, B other than C, D, and the intersection, if any, of {; and



Figure 4: Left: finding the point of tangency P between the conic arc and the
line in the case of nonparallel tangents. Right: finding the point of tangency P
between the conic arc and the line in the case of parallel tangents.

l;. We then find the intersection point Q of AD and BC. Then the intersection
P of line A with the line / through Q with direction ¥ = U — (¥ X u)Q will be
shown to be the point of tangency. Here U is as before in (6).

(i) Nonparallel tangents: The correctness of the construction uses Pascal’s

theorem; [3, 9]. Since QE = %
(V x i)
consistent with the definition of r.

¥, the geometric construction is

(ii) Parallel tangents: The correctness of the geometric construction is clear
from the projective interpretation of Pascal’s theorem; (¥ X @) = 0, so the
geometric construction is consistent with the definition of r.

The construction of Q assumes that A intersects both /; and l5. However, it is
possible that A is parallel to [; or I3, yet we are still able to find a blending arc
that is tangent to A. We include this case by determining Q from a computation
similar to the one used to compute P: We intersect the line through C with
direction ¥; = Uy — (il - V) C, and the line though D with direction ¥y =
U, — (i - i) D. Here 1 is the normal vector of A and Uy and U, are defined as
in Section 3.2.

For this problem, there is only one solution. Figure 5 shows two examples,
one with intersecting, the other with parallel tangents.

10



Figure 5: Blending two segments by a conic arc that is tangent to a given line

3.2 Tangency to a Circle or Distance from a Point

We seek blending arcs that are tangent to a given circle. The case is equivalent
to requiring that the arc have nonzero distance from a given point. To solve this
problem, we will determine the point P at which the arc must touch the circle.

Without loss of generality, we assume that the circle R is centered at the
origin and has radius d > 0. Let P be the point of tangency with the conic
arc c(t), and let A be the common tangent through P. Let fi = (nz,ny) be
the unit normal of A. If we determine i, then we have reduced the problem
to interpolating the point P = (dng,dn,). Our strategy is to use an approach
similar to that of Section 3.1.

Let A = (Az, Ay) be the intersection point of A and I, B = (B, By) be
the intersection of A and /3, and Q = (Qz, Q) be the intersection point of AD
and BC. If A is parallel to /1, then A is at infinity. This means that Q can
be found by intersecting BC and the line that passes through D and is parallel
to A. Similarly, if A is parallel to I, we intersect AD and the line that passes
through D and is parallel to A. All cases can be expressed uniformly by the
following system of equations:

fIXC—Q =0

F,xDQ = 0 )

where ¥} = Uy —(ii-V) C and ¥, = Uy —(#i-u) D. Finally Uy and U are defined
as follows, Uy = (nyLy — uzd, —nzLy — uyd), Uz = (nyLg — ugd, —ngyLy — uyd),
where Iy = v,C; — v;Cy, Ly = uy Dy — uzD,.

11
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Figure 6: Four solutions for a conic arc that blends two segments and is tangent
to a circle

Since A is tangent to the curve ¢ at P, P is on the line [ that passes through
Q in the direction ¥ = (r4,7ry) = U ~ (¥ X @)Q. Therefore

—ry(dng — Qz)+ 7x(dny — Q) = 0 (10)

By solving (9) we determine @, @y in terms of nz,n,. Substitution of @, Q,
in (10) yields

(Ui — (¥ x d)d)(ao + a1ny + azny + aznl + a4n? + asngny) = 0 (11)

where the a; are constant expressions.

The first term of (11) corresponds to the case where the line A passes through
the intersection point E of I; and I, (this point is at infinity for parallel tangents).
This case does not yield a solution, so it suffices to solve

2
ao + a1ng + azny + azn? + agn? + asngn, =
2 2 _
ny+ny =

(12)

A routine Grobner basis computation produces an equivalent system in
which n, is determined from a univariate polynomial and n, from a linear one:

C4n; + cgng + cznfj +ecny+c = 0

13
eonz+e; = 0 (13)

12



Figure 7: Four solutions for a conic arc that blends two parallel segments and
is tangent to a circle

Next, we determine P = (dng,dn,) and use (5) to derive the arc c(t).

As indicated by the system (13), up to four distinct solutions are possible.
Figure 6 shows an example with C = (1/5,2), D = (5/2,1/2), v = (6/5,3),
i = (7/2,3/2), and d = 0.45. Solutions (a), (b) and (c) are hyperbolic arcs,
while solution (d) is an elliptic arc. The tangents are not parallel. Figure 7
shows an example with C = (0,1.8), D = (3/2,0), V= (-1,-1), ¥ = (-1, -1),
and d = 1. In this case the segments we blend are parallel, so all solutions are
elliptical arcs.

3.3 Angle with a Line

Let Ag be a line and o be the specified signed angle which we impose between
Ao and the conic arc c¢. Let P be the intersection of the conic and the line, and
let A be the tangent to the conic arc at P = (P, Py). From the unit normal
fip = (nog, Noy) of Ap and a we determine the normal 1i of A:

il = (nog COS & — Mgy SIN @, Ny €COS & + N, Si @)

See [5, 6] for the definition of a signed angle between oriented lines. The sign
of A depends only on Ag and o, and is not related to the sign of the derivative
of c. To simplify the calculations, we do a rigid motion so that C = (0,0) and
ii = (0,1). That is, the tangent through P is parallel to the z-axis.

13



Let r be the signed distance of the origin from Ag, and let d be the signed
distance of the origin from A. We will compute d from a necessary condition,
and then apply the inverse motion to find the actual position of P.

We express Q as a function of d, as in Section 3.2. Then we compute the
coordinates of P as a function of d, by intersecting A with the line [ that is
through Q in the direction ¥ = (r5,7y) = U — (V x @i)Q

—1y(Pr — Qo) +7:(Py—Qy) = 0

P - (14)

Since P is on Ag we obtain:
Pynog + Pyngy = r (15)

Substituting P, and P, from (14) into (15), we obtain for d a quadratic equation.
The equation can have up to two real solutions, so we can have two distinct conic
arcs that form the specified angle with the given line. In Figure 8 (a),(b) we see
two solutions for a conic arc that blends two intersecting segments and forms a
45° angle with a line Ao, and in Figure 8 (c),(d) we see the two solutions for a
conic arc that blends two parallel segments and forms a 45° angle with a line
Ao.

3.4 Angle with a Circle

In this section, we extend the method of Section 3.2 to computing a conic arc
that blends two segments and forms a specified angle with a given circle R which
we consider (without loss of generality) to be centered at the origin and have
radius d.

Let P be an intersection point of the circle and the conic arc, such that the
tangent A’ to the circle at P and the tangent A to the conic at the same point
form a signed angle c.. Also let ii = (n4,n,) be the unit normal vector of A, and
i’ = (nf,n) be the unit normal vector of A’. In this setting P = (dny,dny).

As in Section 3.2 we derive an expression for Q involving ng, ny. Then we
substitute n; and n, from:

fi = (ny, cos a — ny, sin @, ny cos a + ng sin «)
Since P = (dnf, d n;), (10) becomes:

_Ty(d Ny — Qz) + 72(d n; - Qy) =0 (16)

Substitution of §, and @, in (16) and elimination of the factors that do not
yield a solution gives:

b() + bln; + bzn; + b3nfv2 + b4n;2 + b5n;n; =

12 12 _
(R -I—ny =

(17)

14



Figure 8: (a),(b): Two solutions for a conic arc that blends two segments and
forms a 45° angle with a line. (c),(d): Two solutions for a conic arc that blends
two parallel segments and forms a 45° angle with a line.

Figure 9: Four solutions for a conic arc that blends two segments and forms a
7 /7 angle with a circle.

15



where b; are constants. We then proceed by solving (17) as in Section 3.2.

In Figure 9 we see the four solutions for a conic arc that blends two segments
and intersects a circle centered at the origin with radius d = 0.45 under an angle
a = m /7. Solution (a) is a hyperbolic arcs, while solutions (b)-(d) are elliptical
arcs.

4 Integration into a Geometric Constraint Solver

We have incorporated conic arcs into our geometric constraint solver [2]. The
constraint solving algorithm algorithm works in two phases:

(i) A constraint graph is analyzed by a reduction process that produces a
sequence in which geometric elements must be constructed.

(ii) The actual construction of the geometric elements is carried out, in the
order determined by Phase 1, by solving certain standard sets of algebraic
equations.

In general, a conic arc can be determined from five constraints, but we
require that four of them make the construction a Hermite problem. That is,
there must be two end points and two end tangents to the conic arc.

Phase 2 of the solver has been extended to provide for the constructions
described in Section 3. After the arc has been determined, geometric constraints
involving the conic may be used to construct other points and lines. For example,
we can constrain a line to go through a fixed point and be tangent to the conic.

The combination of these requirements entails special rules for analyzing the
constraint problem in Phase 1 of our constraint solving algorithm, and we now
explain them. Note that constraints between two conic arcs are not permitted.
The constraint graph initially has vertices corresponding to all geometric ele-
ments, including the conic arc itself. Phase 1 proceeds as in [2] except that conic
arc nodes and the constraints on them are ignored. Whenever a cluster (i.e. a
rigid set of geometries which is formally defined in [5]) is formed that contains
geometric elements with five constraints to a conic arc ¢(t), the construction
of c(t) is attempted. For Phase 1 of our solver this means simply adding the
node corresponding to c(t) to the cluster, and considering in the subsequent
processing all constraint edges incident to c(t).

Adding the node for ¢(?) is restricted to correspond to a Hermite problem.
We require that the user designate in the sketch input which points are to be
end points and end tangents. Four of the five constraints must then be the
incidence and tangency conditions thereby implied.

Tt is possible to avoid having to designate the end conditions explicitly, but
this is not necessarily desirable. For an example, consider Figure 10 where
the user designates tangency conditions at A, B, D and to the line HF. The
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Figure 10: Arc extension implied

solver would construct first the line C'B and the incident points F and F. The
lines FFH and EG can be constructed next, although the positions of H and
G cannot yet be determined. Then, point D can be constructed, whereupon
the conic arc between D and B can be found using the computations explained
before. Now the line C'A can be constructed, as tangent to the conic from C,
thereby determining G and H, by intersection, and A by tangency. This requires
extending the conic arc to A as shown. However, if the arc obtained before is
hyperbolic, it is entirely possible that the tangent to A lies on a different branch
of the hyperbola. Since the conic arc ¢(t) from D to B had to be extended,
testing for this undesirable situation is more complicated than verifying that
the parameter value corresponding to A is in the interval [0, 1].
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