
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Modeling with Collaborating PDE Solvers - Theory and Practice Modeling with Collaborating PDE Solvers - Theory and Practice

Mo Mu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
94-056

Mu, Mo and Rice, John R., "Modeling with Collaborating PDE Solvers - Theory and Practice" (1994).
Department of Computer Science Technical Reports. Paper 1156.
https://docs.lib.purdue.edu/cstech/1156

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

MODELING WITH COLLABORATING PDE SOLVERS
-THEORY AND PRACTICE

MoMu
John R. Rice

CSD·TR-94-056
August 1994

MODELING WITH COLLABORATING PDE SOLVERS
-THEORY AND PRACTICE

MO MU· AND JOHN R. RICEt

Abstract. We consider the problem of modeling very complex physical systems by a network of
collaborating PDE solvers. Various aspects of this problem are examined from the points of view of
real applications, modern computer science technologies, and their impact on numerical methods. The
related methodologies include network 0/ collaborating software modules, object-oriented programming
and domain decomposition. We present an approach which combines independent PDE solvers for
simple domains which collaborate using interface relaxation to solve complex problems. The mathe­
matical properties and application examples are discussed. A software system RELAX is described
which is implemented as a platform to test various relaxers and to solve complex problems using this
approach. Both theory and practice show that this is a promising approach for efficiently solving
complicated problems on modern computer environments.

Key words. domain decomposition, iterative methods, relaxation, partial differential equations,
parallel computation, networks, object-oriented-methods

AMS(MOS) subject classifications. 65N55, 65FIO, 65Y05, 65c20

1. Introduction. Modeling physical phenomena with scientific computing is an
interdisciplinary effort involving engineers, mathematicians and computer scientists.
Practical physical systems are often mathematically modeled by complicated partial
differential equations (PDEs). The computer simulation of these systems requires very
large software systems. The numerical solution relies on large-scale computation using
high performance computers and efficient algorithms. Therefore, the design of numer­
ical PDE algorithms must balance these factors. In practical applications, one should
be able to handle the complexity and generality of PDE problems. The numerical
methods used must be fast and accurate. Among the major concerns for software
development are software productivity, complexity, reusability, maintenance, porta­
bility, and other quality issues. High-performance computers are parallel which leads
to issues such as parallel algorithms, communication cost, and scalability. Obviously,
many of these objectives conflict with each other. The principal trade off is software
development effort versus execution time efficiency. We examine various aspects of
the simulation problem from the practical point of view. These considerations lead
to the domain decomposition approach which we call collaborating PDE solvers. It
aims to solve complex physical problems using modern computer science technologies
combined with a classical relaxation idea of iteratively solving local problems and ad­
justing interface conditions. A software system RELAX has been implemented as a
platform to support this approach. One can use this system to model complex physical
objects, specify mathematical problems and test various interface relaxation schemes.
It is shown that this approach is promising in both theory and practice. A shorter
version of this paper has been published earlier [7].

• Department of Mathematics, The Hong Kong University of Science & Technology, Clear Water
Bay, Kowloon, Hong Kong, mamu@uxmail.ust.hk

t Computer Sciences Department, Purdue University, West Lafayette, IN 47907 U.S.A.,
rice@cs.purdue.edu. Work supported in part by the Air Force Office of Scientific Research grants, 88­
0243, F49620-92-J-0069, Strategic Defense Initiative through Army Research Office contract DAAL03­
86-K-OI06, and the Advanced Research Projects Agency through Army Research Office contract
DAAH04-94-G-00IO.

1

2. Collaborating PDE solvers. A physical system in the real world normally
consists of a large number of components which have different shapes, obey different
physical laws, and interact with each other through interface conditions. Mathemat~

ically, it corresponds to a very complicated PDE problem with various formulations
for the geometry, PDE, and interface/boundary conditions in many different regions.
As a typical example an automobile engine system is shown in Fig. 2.1. Many other
applications are given in [9] where different types of PDE's on different domains are
coupled with suitable interface conditions, typically the velocity continuity and flux
balance. One can imagine the great difficulty in creating a software system to model
accurately such a complicated real problem. Therefore, one needs an effective soft­
ware development mechanism which first, is applicable to a wide variety of practical
problems, second, allows for the use of advanced software technologies in order to
achieve high productivity and quality, and finally, is suitable for some reasonably fast
numerical methods.

FIG. 2.1. An automobile engine system consisting of many different parts.

Most physical systems in practical applications can be modeled as a mathemat­
ical network. Here a network is a directed graph consisting of a set of nodes and
edges. If we represent each physical component in a system by a node, then a pair of
neighboring components are linked by an edge in the graph, with the edge directions
used to indicate the transmission of interface information. Each node in the network
contains a mathematical model for the local physical law for the corresponding com­
ponent. For numerical relaxation one may also assign certain weights to each edge in
order to provide detailed control for the interface adjustments, such as for boundary
values and their jumps across the interfaces. Fig. 2.2 illustrates a four-node network
corresponding to a heat flow problem.

2

A network or collaborating solvers

Insulated

A·

Heat Smk
T=O

A physical phenomenon

Ir:
T =SO

Radialion and

COndiction

Insulated

Iron Water:
Conduction

Brass
and

Convection

InsulatedI

Heat
Source
T= 100

FIG. 2.2. A four-node network corresponding to a heat flow problem.

Usually, individual components are simple enough so that each node corresponds
to a simple PDE problem with a single PDE defined on a regular geometry. There
exist many standard, reliable PDE solvers that can be applied to these local node
problems. To solve the global problem, we let these local solvers collaborate with
each other to relax the interface conditions. An interface controller collects boundary
values from neighboring subdomains and adjusts interface conditions according to
the network specifications. Therefore, the network abstraction of a physical system
allows us to build a software system which is a network of collaborating PDE solvers.
These networks can be very big for major applications. There are normally about 5
interfaces per subdomain. For a highly accurate weather prediction, for example, one
needs 3 billion variables in a simulation with continuous input at 50 million places.
This assumes a 3-D adaptive grid, otherwise the computation is much larger. Very
optimistically, if one needs a new forecast every 2-3 hours, the answer is 100 gigabytes
in size and requires 80 mega-giga FLOPs to compute. An "answer" is a data set
that allows one to display an accurate approximate solution at any point. It is much
smaller than the computed numerical solution. Such a network roughly consists of
3,000 subdomains and 15,000 interfaces. Another example to consider is a realistie
vehicle simulation, where there are perhaps 100 million variables and many different
time scales. This problem has very complex geometry and is very non-homogeneous.
The answer is 20 gigabytes in size and requires about 10 tera FLOPs to compute. The
network has 10,000 subdomains and 35,000 interfaces.

A software network of this type is a natural mapping of a physical system. It sim­
ulates how the real world evolves and thus normally produces a reasonable solution.
It allows various advanced software technologies to be applied to create a high quality
system in a very productive way. For instance, one can apply the networking technol~

ogy to efficiently integrate a collection of software components into an entire system
and to implement a neat and flexible system architecture for the model and its interface
connections. This allows the use of the software parts technology (object-oriented pro­
gramming) that is the natural evolution of the software library idea with the addition

3

of software standards. It allows software reuse for easy software update and evolution
which are extremely important in practice. The real world is so complicated and di­
verse that we believe it is impractical to build monolithic, universal solvers for such
problems. Without software reuse, it is impractical for anyone to create on his own
a large software system for a reasonably complicated application. For example, auc
tomobile manufacturers frequently change automobile models. Each change normally
results in a new software system. Recreating such a system could easily take several
months or years. In contrast, the execution time to perform the required computation
might only be a few hours. Notice that such a physical change usually corresponds
to replacing, adding, or deleting a few nodes in the network with a corresponding
change in interface conditions. These are simple manipulations on a network without
affecting the rest part of the entire system and can thus be easily done. This approach
can and should be implemented using the object-oriented programming methodology.
In this application each physical component can be viewed both as a physical object
and as a software object. Actions and interactions of objects are clearly defined by the
network. Two basic principles of object-oriented programming are data structure ab­
straction and information hiding for each object. These principles are expressed here
by the local solvers and the interface conditions. In addition, this network approach
is naturally suitable for parallel computing as it exploits the potential parallelism
in physical systems. One can easily handle issues like data partition, assignment,
and load balancing on the physics level by the structure of a given physical system~

Synchronization and communication are controlled by the network specification and
restricted to interfaces of subdomains, which results in a coarse-grained computational
problem. This is especially suitable for today's advanced parallel supercomputer ar­
chitectures. The network approach also allows high scalability. Finally, this network
approach naturally fits into the mathematical domain-decomposition framework with
the overall geometry being viewed as automatically partitioned into a collection of
subdomains and interfaces which simply correspond to the network nodes and edges,
respectively.

Many types of domain decomposition methods have been proposed over the past
decade, see [1, 3, 4, 12] for general references. However, not all of them are suit­
able for, or directly applicable to, this network framework. First, many methods use
artificial subdomain overlapping for mathematical convergence purposes and this ob­
viously violates the basic principles of object-orientation. Each software object should
correspond to a natural physical component without knowing part of the local data
structures of neighboring objects. Second, it is not practical to apply the algebraic
type of domain decomposition methods that first discretize a PDE problem on an
entire domain and then partition the discrete system according to the geometric de­
composition. In fact, the network framework implies that the problem partition is
made on the continuous problem level so that PDE solution techniques in different
regions may be totally independent depending on local properties. One may use finite
differences for one subdomain, and finite elements or even an analytic solution for
another. In addition, the subdomain PDE operators are not necessarily extensible to
interfaces so that global discretization is not always applicable. More importantly,
the efficiency of most of these methods relies on finding a good preconditioner for
the interface Schur complement matrix, which is very difficult to do in practice for
a complicated physical system. Another well-known class of methods are motivated
by observing that in many physical applications the global solution U on an entire

4

domain satisfies certain continuity or flux balance conditions on interfaces involving
U and aU/an. A method which tries to match the continuity for both U and aU/an
is as follows. One starts with an initial guess for U and au/ an on interfaces and
then takes them as boundary data to solve a Dirichlet or Neumann boundary value
problem on all the subdomains. These solutions are then used to update the interface
vaue for U and aU/an and one iterates until convergence. This is referred to as the
subdomain-iteration approach in the literature. There are two common alternatives,
called alternating Dirichlet-Neumann in space and in time, respectively. The former
imposes Dirichlet boundary condition on one side of an interface and Neumann con­
dition on the other side. The latter imposes the same type of boundary condition
on both sides of an interface in one iteration, but then alternates the Dirichlet and
Neumann types in the next iteration step. These are non-overlapping methods. In
certain cases, it can be shown [10] that the Dirichlet-Neumann approach corresponds
to a preconditioned Richardson scheme applied to the reduced interface problem. In
general, it is difficult to analyze the convergence, especially when cross points are
present on interfaces. The choice of the convergence parameter in this approach is
also not easy. In addition, interface conditions in practical applications are usually
more complicated. Nevertheless, this subdomain-iteration based approach best fits
into the network of collaborating PDE solvers framework and is thus most promising
from the practical point of view. The challenge is then to extend it to general interface
conditions and to guarantee its fast convergence.

3. Interface Relaxation. We now present a general mathematical formulation
of the problem and define a general subdomain-iteration approach based on the clas­
sical relaxation idea.

Let rij be a typical interface, that is, the common boundary piece of two neigh­
boring subdomains ni and nj, Le., rij = aninanj. Each subdomain obeys a physical
law locally. Namely, there is a PDE L/ and function U/ defined in each n/ so that

(3.1) L/U/ = f/ in n/ for 1= i,j.

(3.2)

There is an interface condition on rij which can usually be specified in the form

aUi aUj
9ij(Ui, Uj, an ' an) = O.

In some applications, the left-hand side of (3.2) may also involve higher order deriva­
tives but we only consider first order derivatives here. For example, for the continuity
conditions of the solution and its normal derivative discussed earlier, (3.2) takes the
form

(3.3)

Note how satisfying two conditions can be formulated in the form (3.2). For some
physical phenomena we might have different conditions to be satisfied on opposite
sides of the interface so that the interface conditions need not be symmetric, Le., we
can have 9ij =f:. 9ji· Denote by BV(Ui,Uj) == {Ui, Uj, ~, .?£i}lrij the data set of

5

boundary and derivative values of local solutions Ui and Uj on rij. Equation (3.2)
can then be viewed as a constraint on BV(Ui, Uj). The general PDE problem to be
solved is thus

(3.4)
(au. au.)9ij Ui, Uj, a;t,~ = 0 on rij for all i, j

We now describe a general subdomain-iteration procedure as follows. Suppose
that we have an initial guess for BV, denoted by Bvold , which satisfies the constraint
(3.2) for all interfaces. For each subdomain, we solve the boundary value problems
with the corresponding PDEs in (3.1) and by using part of Bvold as the boundary data.
With the newly computed local solutions, denoted by Urew for nl, we then evaluate
their boundary values to get BV(Urw, uyeW) for all r ij, which is denoted by BV' for
brevity. In general, BV' does not satisfy the constraint (3.2) although part of Bvold

may be preserved in BV' as the boundary data used in the local solve. The relaxation
idea is to further change, i.e., to relax, certain components in BV' to obtain a new data
set Bvnew that (better) satisfies the constraint (3.2). This leads to solving equation
(3.2) for the corresponding boundary components as the unknowns. The above two­
phase procedure, consisting of local PDE solve and constraint relaxation, defines a
mapping from Bvold to Bvnew . Iterating this procedure until convergence, we then
obtain the global solution that satisfies both the local PDEs and interface constraints.

It is easy to have an object-oriented implementation of this relaxation procedure.
The actions defined on a subdomain object are (a) solving a PDE boundary value
problem with the provided boundary data in BV from interfaces and (b) evaluating
boundary values of the resulting local solution. The actions defined on an interface
object are (a) collecting boundary values from neighboring subdomains, (b) checking
for convergence by examining the interface constraints, (c) relaxing the constraint to
update BV, and (d) invoking local solvers for neighboring subdomains.

There are various choices possible for the relaxation, depending on the boundary
condition type for each subdomain solve and the way of relaxing the interface con­
straint. The alternating Dirichlet-Neumann approaches described in Section 2 can be
viewed as two examples. An interesting alternative is to apply a relaxing or smoothing
procedure along an interface, which blends the neighboring solutions to better satisfy
the interface constraints along the interface. This alternative is more general but it
converges more slowly on model problems where additional properties can be exploited.
It is also possible to apply least squares to perform an overdetermined interface con~

straint relaxation rather than an exact relaxation. As usual in iterative methods, one
may use a multi-step type of relaxer using certain relaxation parameters and taking a
weighted average of previous and updated iterates. In addition, preconditioning and
other acceleration techniques may also be combined with relaxation.

We consider the following class of relaxers which has been found effective in exper­
iments. First, we consider only stationary relaxers, those that use the same relaxation
and PDE solution techniques at every iteration. There are non-stationary relaxers of
serious interest, such as those that alternate between satisfying Neumann and Dirich~

let conditions. Second, we consider only relaxers that use values and derivatives of
PDE solutions along interfaces. That is, at each iteration a PDE is solved for UI in

6

I
I
····

°1 °2 • •• ••• iOk -I Ok
•••

j

•••

FIG. 3.1. A "one dimensional" composite domain n.

nl and the boundary values of Ul and its derivatives are the input to the relaxers.
Discrete versions of the relaxers may involve differences or combinations of Ul values
on or near interfaces instead of derivatives of Ul.

We define this class of relaxers precisely as follows. Let 1(1) be the indices of those
subdomains that are neighbors of subdomain 1. Let the PDE problem that is solved
on nl be

(3.5) on flj for j E 1(1),

Urew satisfies the global boundary conditions on an,
where Blj is a usual boundary condition operator and blj is defined as part of the

- 8U~d
relaxer as follows. Let X l1d be the vector of values (Utld ,~) which approximate

the solution and its derivative on flj for j E 1(1). The length of the vector X would
be longer than 2 if the interface conditions involved higher derivatives. Then a relaxer
is a procedure that maps Utld , Xfild for j E 1(1), XJfd for j E 1(1) into blj.

Note that this definition of relaxers makes them domain-based and not interface­
based. That is, it is possible that bij =I- bji even if fij and fji geometrically represent
the same interface segment. It is more complicated at a cross point where several
interfaces meet.

To be more specific and for the sake of simplicity, let us assume that n is as in
Fig. 3.1 and denote fi,iH simply by fi. Furthermore, without loss of generality, we
assume that the global solution vanishes on an, and the interior interface condition is
(3.3). Suppose that we impose Dirichlet conditions on each flj for j E 1(1) in (3.5). In
this simplified example, the solutions on both sides of any interface f i have the same
boundary values on fi, denoted by Xi, at each iteration. Thus we have Ui - Ui+l = 0
and Equation (3.3) is then reduced to

7

..•.••.•.~---~ .
• •• •

0 3 : as : a
· · 8• •

,........-e ••-----.~.--.--.-~-----------.....

I at : 0
4

i a i a : a
· i 6 i 9: 10--_ _-_ _--: .

FIG. 3.2. A general "two dimensional" composite domain with interior cross points (marked by
"circles").

(3.6) for i = 1,2, ... ,k-1.

The PDE solvers must handle derivatives discretely in some way, so we know
that the derivatives in (3.6) at the interface point Xk are replaced by a difference
approximation of some type, Le.,

(3.7)
aOXr-:W(Xk) + L:amUttew(Xm)

m

f3o X [fW(Xk) +L:f3nUI+f(xn)
n

The points X m and X n are somewhere in the two domains. In (3.7) the coefficients
ao, aI, ... and f3o, /31, ... depend on the geometry of the subdomain, the meshes and
discretizations used in each subdomain, and the choice of difference approximation.
The discrete forms of equations (3.6) are thus

(3.8)

or

(3.9)

X new - xnew = xnew
i- - i+ - i

a X!1'ew + '" a UTtew = f3 X!1'ew + '" f3 UTtewo ~- L.J m ~ 0 ~+ L.J n ~+1

Note that ao and f30 will have opposite signs since the difference approximations
in (3.7) are on opposite sides of the interface. As in general relaxation methods,
one can further introduce some relaxation paramters or make use of other Urw and

8

Ul+1 values or use previous values Xfld, Ufld, etc., in order to accelerate the overall
convergence. For example, one can define Xrw by

(3.10)

where X;emp is the value obtained in (3.9) and w is a relaxation parameter. Recall
that Xfld = Urwlr. = Uf+llr. in this example. In general, we see that a linear relaxer
can be expressed as

(3.11) for i = 1,2, ... , k - 1,

where 'Pi is a linear combination of Urew or Ul+1 restricted to grid lines near to the
interface r i with certain weights. The choice of 'Pi depends on the interface condition
(3.2), the approximation accuracy of the finite differences to the normal derivatives,
the relaxation techniques, and so on. If preconditioning is used, 'Pi is defined by solving
a linear system of equations.

We may combine solving (3.5) for {Uiew }7=l with (3.11) to obtain the matrix
representation of {XrW

} in terms of {Xfld}. The convergence analysis of the relaxc

ation process is then reduced to the standard spectral analysis of the corresponding
iteration matrix. We show in [8] that this iteration converges for the class of relaxers
as described above and for general elliptic PDE problems and the domain decompo­
sition with cross interface points as shown in Fig. 3.2. Furthermore, under certain
model problem assumptions for a rectangular domain as decomposed in Fig. 3.1, an
explicit expression is obtained for the spectrum of the iteration matrix so that the
convergence mechanism is fully understood. In addition, the optimal relaxation pa­
rameters are also determined. Extensive numerical experiments are reported in [8] to
support the theoretical convergence analysis and to demonstrate the practicality of
the method.

4. RELAX problem solving environment. In this section, we describe the
problem solving environment RELAX [5] that is implemented as a platform to sup­
port the collaborating PDE solvers approach. RELAX provides both a computational
and user interface environment. The computational environment coordinates teams of
single-domain PDE solvers, which collaboratively solve composite PDE systems like
(3.4) that model complex physical systems. The user interface environment coordi­
nates multiple interactive user interface components, called editors, which display or
alter any feature of a composite PDE problem. Editors may be both text-oriented
(e.g., equation editors) and graphics-oriented (e.g., solution plotters).

RELAX is implemented using the object-oriented programming technology. The
system architecture is based upon a set of inter-communication software components.
Editors and single-domain PDE solvers are examples of RELAX components - these
particular ones are externally supplied (perhaps from libraries or other software sys"
tems). RELAX provides a message passing mechanism for supporting the inter­
component communication. Is is capable of integrating existing scientific software
for PDEs into a broader problem solving environment. It also has the capability
of using pre-existing display and interaction components to form a flexible, dynamic
user interface. Fig. 4.1 illustrates the arrangement of the components of the RELAX
architecture.

9

FIG. 4.1. Architectural arrangement of RELAX. The elliptic shapes represent components which
are supplied externally. The rectangular shapes represent system components.

We briefly outline the function of each type of components and refer to [5, 6] for
more details:

• Primitive Objects: These are externally supplied components which model
and solve primitive PDE problems. Primitive objects are responsible for all
aspects of solving a single-domain PDE problem, including the generation of
numerical meshes, discretization ofthe PDE, and solving systems of equations.

• Editors: These are externally supplied components which provide an interface
between the user and some feature of the system. The editor component is
responsible for the complete presentation of the user interface, including all
communication with the window system and/or graphics package.

• Message Dispatcher: This is a system supplied component which handles all
transmission of messages within the system. The message dispatcher also
registers RELAX objects and can assist editors in locating them.

• Composite Problem Platform: This is a system component which maintains
the data structures defining a composite PDE problem. For example, the com­
posite problem platform stores topological information about which primitive
objects share geometric interfaces, as well as equations defining the interface
conditions along those interfaces. Additionally, the composite problem plat­
form maintains data structures defining a global solution iteration, and is
capable of executing such iterations. Finally, the composite problem platform
is capable of defining composite PDE problems hierarchically.

• Object Support Platform: This is a system component responsible for integrat­
ing primitive objects into the system. The object support platform provides

10

the attachment point for primitive objects (external components) that are
dynamically attached to the running system. The object support platform
relays messages between primitive objects and the message dispatcher.

• Editor Support Platform: This is a system component which provides an at­
tachment point and communication interface for editors. The editor support
platform relays messages to and from editors, and is also capable of parameter­
izing and controlling the message flow, for example, by copying and buffering
messages.

With this environment, one can easily describe primitive PDE problems and in­
terface conditions to compose a complex mathematical system, specify local solvers
and relaxers to define an iterative procedure, and display the computed solution in
various ways. Fig. 4.2 is a typical RELAX screen showing the user interface of some of
the editors built to test and use the prototype system. Fig. 4.3 shows the user inter­
face of an editor modifying the parameters of joining up two primitive objects called
boxl (a rectangular region) and joint2 (a curved region). As an application example,
we solve a physical heat flow problem as shown in Fig. 4.4 by the RELAX system.
The complex object consists of seven simple subdomains with nine interfaces. The
radiation conditions allow heat to leave on the left and bottom while the temperature
U is zero on all the other boundaries. The mounting regions have heat dissipated~

The interface conditions are continuity of temperature U and its derivative. Fig. 4.5
shows the solution computed after 15 iterations, where the initial guess is zero and
the relaxer used is as described in Section 3 with the relaxation parameter w = O.

5. Interface Conditions for Composite PDE Problems. One tool needed
for this approach is an interface condition handler. The mathematical formulation
(3.4) of the problem is rather simple but, once the problem is discretized, the discrete
formulations usually becomes quite messy. That is, the coefficients in (3.7) are routine
but very tedious to derive. It is, of course, true that any PDE solver method must be
able to develop information about the PDE solution and its first derivatives at any
point. However, this capability may be buried inside the PDE solver implementation

and difficult to locate. In [11] it is shown how programs to provide values for ~~ at ar­

bitrary points can be derived from many PDE solver codes. In [2] the tools are further
developed for any PDE solver that can provide a "nearest points" procedure. That is,
given (x, y) coordinates and an integer k, this procedure returns the k points nearest
to (x, y) where an approxiamte solution to U is generated. This tool greatly eases
the work in generating derivative values along interfaces and simplifies the relaxation
implementation.

6. Conclusions. We examine in this paper various aspects of the real world
simulation of complex PDE based applications with the emphasis on software produc­
tivity. Application of modern software technologies and the impact on numerical PDE
methods are considered. We present a general approach for modeling complex phys­
ical systems by a network of collaborating PDE solvers. The related methodologies
include networks of collaborating software modules, object-oriented programming and.
domain decomposition which lead to a subdomain-iteration procedure with interface
relaxation. Various types of relaxers are discussed. A software system RELAX is
described which is implemented as a platform to test various relaxers and to solve
complex problems using the network of collaborating PDE solvers approach. Both

11

theory and practice show that this is a very promising approach for efficiently solving
complicated problems on modern computer environments.

Acknowledgement. The RELAX environment is implemented by Dr. Scott
McFaddin. We would like to thank him very much for providing the implementation
details.

REFERENCES

[1] T.F. Chan, R. Glowinski, J. Periaux and D. Widlund, Proceedings of the Third International
Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM
Pubs., Philadelphia, PA. (1990).

[2] Tzvetan Drashansky and John R. Rice, Processing PDE interface conditions II, Tech. Rpt.
CSD-TR-94-0XX, Dept. Computer Science, Purdue University, (August 1994).

[3] R. Glowinski, G. Golub, G. Meurant and J. Periaux, First Inti. Symposium on Domain Decom­
position Methods for Partial Differential Equations, SIAM Pubs., Philadelphia, PA (1988).

[4] D.E. Keyes, T.F. Chan, G. Meurant, J.S. Scroggs, and K.G. Voigt, Fifth International Sympo­
sium on Domain Decomposition Methods for Partial Differential Equations, SIAM Pubs.,
Philadelphia, PA (1992).

[5] Scott McFaddin and John R. Rice, RELAX: A platform for software relaxation, in Expert Sys­
tems for Scientific Computing (Houstis, Rice and Vichnevetsky, eds.) North-Holland, Ams­
terdam (1992), pp. 125-194.

[6] Scott McFaddin and John R. Rice, Collaborating PDE solvers, Applied Numerical Mathematics,
10 (1992), pp. 279-295.

[7] Mo Mu and John R. Rice, Modeling with collaborating PDE solvers: Theory and practice, AMS
Contemporary Mathematics, (1994).

[8] Mo Mu and John R. Rice, Collaborating PDE solvers with interface relaxation, to appear.
[9] A. Quarteroni, F. Pasquarelli, and A. Valli, Heterogeneous domain decomposition: Principles,

algorithms, applications, Fifth International Symposium on Domain Decomposition Methods
for Partial Differential Equartions, D. Keyes et. al., eds, SIAM Pubs., Philadelphia, PA
(1992) pp. 129-150.

[10] A. Quanteroni and A. Valli, Theory and application of Steklov-Poicare operators for boundary
value problems: The heterogeneous operator case, Fourth International Symposium on Do­
main Decomposition Methods for Partial Differential Equations, R. Glowinski, et. al., eds.,
SIAM, Philadelphia, 1991, pp. 58-81.

[11] John R. Rice, Processing PDE interface conditions, Tech. Rpt. CSD-TR-94-041, Dept. Computer
Science, Purdue University, (June 1994).

[12] Jinchao Xu, Iteration methods by space decomposition and subspace correction, SIAM Review
34 (1992), pp. 581-613.

12

•
~

. At· I RELAX screen showing the user
FIG. 4.2. The RELAX multi-editor environment. yplcainterface of some of the editors built to test and use the prototype system.

13

~ Intet1acl! Fdlhlr B

_Inter/au Editor I~:;I
U: solution of HEATon box1
V: solution of HEATon joint2

Interface Condldons:

[+ Un - - Vn . . _..__._._.._ _ _ _J
Symbolic Discn:th:ation Mt"J.hod:

, .' ~~ , :.

-:,~\'" '.~~ ... ::'..:.: ..:.~~ ... ".

Smoothing funcdoDI for lta'adoD Process:

Set U, Un by: IU + O.5Un II: V- O.Wn

Set V, Vn by: IV- O.5Vn - U + O.5Un

""":::""/=::\,
"b::;;;;

LJ .
LJ

!~I------ - ~ ----------------------:-j

FIG. 4.3. The user interface of an editor modifying the parameters of an adjacency. The adjacency
is assigned to the intersection of geometric interfaces of primitive objects called boxl (a rectangular
region) and joint2 (a curved region).

14

II Heat Radallon RegIon

• Mounting Region

o Heat Procllclng RegIon
Un. Uyy I: -1.0

Un. Uyy z -1.0

Un. Uyy. yUx:O

Uu • Uyy • xUy =0

f
J

o
•=:J

FIG. 4.4. A physical heat flow problem for a complex domain along with the physical and mathe­
matical descriptions.

FIG. 4.5. The contour plot of the solution computed after 15 iterations for the problem in Fig. 4.4.

15

	Modeling with Collaborating PDE Solvers - Theory and Practice
	Report Number:
	

	tmp.1307986960.pdf.Z9EBB

