A Representation of Approximate Self-Overlapping Word and Its Application

Wojciech Szpankowski
Purdue University, spa@cs.purdue.edu

Report Number:
94-053
A REPRESENTATION OF APPROXIMATE SELF-OVERLAPPING WORD AND ITS APPLICATIONS
(Extended Abstract)

Wojciech Szpankowski

Computer Sciences Department
Purdue University
West Lafayette, IN 47907

CSD TR-94-053
August 1994
A Representation of Approximate Self-Overlapping Word and Its Applications

(EXTENDED ABSTRACT)

Wojciech Szpankowski\(^1\)
Department of Computer Science
Purdue University
W. Lafayette, IN 47907
spa@cs.purdue.edu

1. Problem Formulation and Notations

Informally speaking, we are interested in the structure of a word \(w_k \) of length \(k \) such that when shifted by, say \(s \), the shifted word is within a given distance from the original (un-shifted word). In this note we concentrate on Hamming distance. Later, we deal with the edit distance, too.

We start with some definitions. A word of length, say \(k \), we write as \(w_k \), or more precisely \(w_1^k = w_k \). The set of all words of length \(k \) is denoted as \(W_k \). Furthermore, a prefix of length \(q \leq k \) of \(w_k \) is denoted as \(\bar{w}_k(q) \) or simply \(\bar{w}_k \) if there is no confusion.

The distance between words is understood as the relative Hamming distance, that is,

\[
d_n(x_1^n, \bar{x}_1^n) = \frac{1}{n} \sum_{i=1}^{n} d_1(x_i, \bar{x}_i) \text{ where } d_1(x, \bar{x}) = 0 \text{ for } x = \bar{x} \text{ and } 1 \text{ otherwise } (x, \bar{x} \in A).
\]

We also write \(M(x_1^n, \bar{x}_1^n) = nd_n(x_1^n, \bar{x}_1^n) \) for number of mismatches between \(x_1^n \) and \(\bar{x}_1^n \).

Let us now fix \(D > 0 \). Consider a word \(w_{k+s} = w_1^{k+s} \) of length \(k + s \), and shift it by \(s \). The shifted word of length \(k \) is \(w_s^{k+s} \). We would like to identify a set \(W_{k,s}(D) \) of all words \(w_{k+s} \) such that

\[
d(w_1^k, w_s^{k+s}) \leq D.
\]

This problem is well understood for "faithful" (lossless) overlapping, that is, when \(D = 0 \). In this case, we have for \(m = \lfloor k/s \rfloor \) (cf. \cite{6, 11, 12})

\[
W_{k,s}(0) = \{ w_s \in W_s : w_{k+s} = w_s^{(m+1)} \bar{w}_s \}
\]

\[
= \bigcup_{w_s \in W_s} \{ w_s^{(m+1)} \bar{w}_s \}
\]

(2)

where \(\bar{w}_s \) is a prefix of length \(q = k - m \cdot s \), and \(w_s^{(m)} \) is a concatenation of \(m \) words \(w_s \).

Our goal is to extend (2) to the approximate case, that is, for \(D > 0 \).

\(^1\)This research was supported by NSF Grants NCR-9206315 and CCR-9201078, and in part by NATO Grant 0057/89.
There is plenty of applications of this problem, most notably to approximate pattern matching (cf. [1, 2, 3, 8, 13]) and lossy data compression (cf. [7, 9, 11, 12]). In the former case, Myers [8] observed that to find all approximate pattern matchings of a word w_k (which usually represents a small fraction of the pattern) in a larger text string T, it is enough to generate all words within given distance from w_k and then perform exact pattern matching of every word in such a set and the text string T. We can refine this by considering not only a D-neighborhood of w_k but also a neighborhood of the shifted word, that is, the set $W_{k,s}(D)$. This refinement is based on a premise that in text T there are regions with approximately repeated structures (e.g., DNA). In order to assess the quality of such an approach, one must estimate the cardinality of $W_{k,s}(D)$. This is discussed in Section 3.

In a lossy data compression [7] as well as in an approximate pattern matching [2, 3], one is interested in the typical behavior of the longest substring that approximately occurs twice in a given (training or database) sequence. Our representation of the set $W_{k,s}(D)$ is crucial to establish an upper bound for such a substring. This is discussed in Section 4.

2. Structure of the Word

We construct now all words w_{k+s} that belongs to $W_{k,s}(D)$. First, let us define an integer ℓ such that $\ell/k \leq D < (\ell + 1)/k$. Also, we write $k = s \cdot m + q$ where $0 \leq q < s$.

Take now $0 \leq l \leq \ell$, and partition the integer l into $m + 1$ integer terms as follows:

$$l = a_1 + a_2 + \cdots + a_m + \bar{a}_{m+1} \quad 0 \leq a_i \leq s \quad \text{for} \quad 1 \leq i \leq m \quad (3)$$

and $0 \leq \bar{a}_{m+1} \leq q$. Clearly, there are many ways of partitioning the integer l into terms as prescribed in (3) (cf. [4]). Let the set of all such partitions be denoted as $P_{k,s}(l)$.

We now define recursively m sets $W_s(a_i)$ for $i \leq m$. We set $W_s(a_0) := W_s$ where $a_0 = 0$. Then,

$$W_s(a_k) = \{v_s \in W_s : M(w_s, v_s) = a_k \quad \text{for} \quad w_s \in W_s(a_{k-1})\} , \quad (4)$$

and

$$\bar{W}_q(\bar{a}_{m+1}) = \{v_q \in W_q : M(\bar{w}_q(q), v_q) = \bar{a}_{m+1} \quad \text{for} \quad w_s \in W_s(a_m)\} . \quad (5)$$

Now, we can present our main result which follows directly from the above discussion.

Theorem 1. Let w_{k+s} be a word such that (1) holds for some $D > 0$. With the notation as above,

$$W_{k,s}(D) = \bigcup_{l=0}^{l=1} \{W_{k,s}(l)\}$$
such that

\[W_{k,s}(l) = \bigcup_{w^0_s \in W_s} \bigcup_{P_{s,k}(l) \in W_s(a_1)} \cdots \bigcup_{w^{m-1}_s \in W_s(a_{m-1})} w^0_sw^1_s \cdots w^m_s w^{m+1}_s \] (6)

where \(w^0_sw^1_s \cdots w^m_s w^{m+1}_s \) means concatenation of words \(w^0_s \) and ... and \(w^{m+1}_s \).

3. Enumeration

As mentioned in the introduction, to assess complexity of some algorithms dealing with approximate pattern matching one needs to know the cardinality of \(W_{k,s}(D) \). From our Theorem 1 one can easily estimate the cardinality of \(W_{k,s}(l) \) once we know the cardinality the set \(P_{s,k}(l) \).

A. CARDINALITY OF THE PARTITION \(P_{s,k}(l) \)

The enumeration of \(P_{s,k}(l) \) is not that difficult but rather troublesome. Let \(G(z) \) be the generating function of the cardinality \(|P_{s,k}(l)| \) of \(P_{s,k}(l) \). Having in mind the notation as in (3), we immediately obtain the following (cf. [4])

\[G(z) = \frac{(1 + z + z^2 + \cdots + z^q)^m(1 + z + z^2 + \cdots + z^q)}{(1 - x)^{m+1}} \] (7)

where \(m = \lfloor k/s \rfloor \) and \(q = k - ms \).

Let \(e_l = |P_{s,k}(l)| \), that is, \(e_l = [G(z)]_l \) (coefficient of \(G(z) \) at \(z^l \)). Following Comtet [4] (cf. Ex. 16 page 77) we introduce polynomial coefficients \(\binom{n}{k} \) as

\[G(z) = (1 + z + \cdots + z^{q-1})^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k . \] (8)

Note that \(\binom{n}{k} = \binom{n}{k} \).

Using this and standard generating function arguments we obtain the next lemma.

Lemma 2. The cardinality \(e_l \) of \(P_{s,k}(l) \) is given by

\[e_l = |P_{s,k}(l)| = \sum_{j=0}^{q} \binom{m+s+1}{l-j} \] (9)

where \(m = \lfloor k/s \rfloor \) and \(q = k - ms \).
Proof. Formula (10) follows directly from (7) and definition of polynomial coefficients (9). The second enumeration formula (11) is a simple consequence of (8).

The next interesting question is how to get some asymptotics for e_i. This depends on establishing some asymptotics on the polynomial coefficients. We discuss it in sequel.

We prove the following result. Let $g(z) = (\frac{1}{q} + \frac{x}{q} + \cdots + \frac{x^{a-1}}{q})$ be a probability generating function so that the generating function $G(z)$ of polynomial coefficients is $G(z) = q^n g(z)^n$. Clearly, from the Cauchy formula we have

$$\binom{n}{k} = \frac{q^n}{2\pi i} \int g(z)^n \frac{dz}{z^{k+1}}$$

(12)

where the path of integration encloses the origin. Judging from the binomial coefficients (i.e., $q = 2$) we should expect different asymptotics for various values of k (e.g., bounded k, k around the mean $n\mu = n(q - 1)/2$, and $k = \alpha n$ where $\alpha \neq (q - 1)/2$). This is confirmed by the result below.

Lemma 3. For any q and large n the following holds.

(i) If $k = n(q - 1)/2 + r$ where $r = o(\sqrt{n})$, then

$$\binom{n}{k} \sim \frac{q^n}{\sigma \sqrt{2\pi n}} \exp \left(-\frac{r^2}{2n\sigma^2} \right)$$

(13)

where $\sigma^2 = (q^2 - 1)/12$. In particular (cf. Comtet [4] [Ex. 16, p.77]),

$$\sup_k \binom{n}{k} = \binom{n}{n(q - 1)/2} \sim q^n \sqrt{\frac{6}{(q^2 - 1)n}}$$

(14)

(ii) If $k = \alpha n$ where $\alpha \neq (q - 1)/2$, then

$$\binom{n}{k} \sim \frac{g(\beta)^n}{\beta^{\alpha n}} \frac{1}{\sigma^2 \alpha \sqrt{2\pi n}}$$

(15)

where β is a solution of $\beta g'(\beta) = \alpha g(\beta)$ and $\sigma^2 = \beta^2 g''(\beta)/g(\beta) + \alpha - \sigma^2$.

(iii) If $k = O(1)$, then

$$\binom{n}{k} \sim \frac{n^k}{k!}$$

(16)

Proof. Part (i) is direct consequence of applying the saddle point method to the Cauchy integral. Details can be found in Greene and Knuth [5] (page 70-76). Formula (14) comes from the previous one after substitution $r = 0$. Comtet [4] suggests also another derivation.
of it. Namely, note that after substitution \(z = e^{ix} \) and easy algebra the Cauchy formula becomes

\[
\binom{n}{k} = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \left(\frac{\sin(qx)}{\sin(x)} \right)^n \cos(x(n(q - 1) - 2k)) \, dx. \tag{17}
\]

Observe that for \(k = n(q - 1)/2 \) the cosine function is equal to one, hence maximum, and then by a simple application of Laplace's method we get again (14).

Part (ii) follows from (i) and the "method of mean shift" as in Greene and Knuth [5] (page 75). That is, we use part (i) applied to the following

\[
[z^{an}](g(z))^n = \frac{g(\beta)^n}{\beta^a} \left(\frac{g(\beta z)}{g(\beta)} \right)^n
\]

where \(\beta \) is a solution of \(\beta g_1(\beta) = \alpha g_1(\beta) \).

Part (iii) can be proved as follows. From the Cauchy integral we have after substituting \(z/n = w \)

\[
\binom{n}{k} = \frac{1}{2\pi i} \oint \frac{G(z)^n}{z^{k+1}} \, dz
\]

\[
= \frac{1}{2\pi i} \oint \frac{(1 + w/n + \cdots (w/n)^{q-1})^n}{w^{k+1}} n^k \, dw \rightarrow n^k \oint \frac{e^w}{w^{k+1}} = \frac{n^k}{k!}.
\]

This completes the proof. \(\blacksquare \)

Finally, we can formulate our next result that enumerates \(W_{s,k}(l) \).

Theorem 4. Cardinality of the set \(W_{k,s}(l) \) as defined in (6) is equal to

\[
|W_{k,s}(l)| = 2^s \sum_{a_1+a_2+\cdots+a_m+a_{m+1}=l} \binom{s}{a_1} \cdots \binom{s}{a_m} \binom{q}{a_{m+1}} = 2^s \binom{k}{l}. \tag{18}
\]

Proof. The above follows directly from Theorem 1, and the following identity (that we express in generating function terms): \((1 + x)^s(1 + x)^s \cdots (1 + x)^s(1 + x)^q = (1 + x)^{ms+q} = (1 + x)^k \) (cf. [4]). \(\blacksquare \)

Remark. One can verify our enumeration in Theorem 4. Indeed, we know that summing over all \(|W_{k,s}(l)| \) for \(1 \leq l \leq k \) should give \(2^{s+k} \), as (18) implies.

4. Typical Behavior of Repeated Patterns

We consider a typical behavior of repeated patterns in an approximate pattern matching (cf. see [7] for applications a lossy data compression, and [2, 3] for applications to approximate pattern matching and DNA sequencing). In particular, we investigate the so called
height (cf. also [2, 3, 7, 11, 12]). We study the typical behavior of the height in the so called mixing probabilistic model as defined in [10, 11, 12] which includes Bernoulli and Markovian models.

More precisely, to define a stationary, ergodic mixing model we consider a sequence \(\{X_k\}_{k=-\infty}^{\infty} \) that is stationary and ergodic. In addition, it is mixing in strong sense, that is, (informally speaking) for two events \(A \) and \(B \) defined respectively with \(\sigma \)-algebras of \(\{X_k\}_{k=-\infty}^{m} \) and \(\{X_k\}_{k=m+b}^{\infty} \) for some integer \(b \), the following holds

\[
(1 - \alpha(b))\Pr\{A\}\Pr\{B\} \leq \Pr\{A \cap B\} \leq (1 + \alpha(b))\Pr\{A\}\Pr\{B\}
\]

for some some \(\alpha(b) \) such that \(\lim_{b \to \infty} \alpha(b) = 0 \).

Let now \(H_n \) be the height, that is, the largest \(K \) for which there exist \(i, j \leq n \) such that \(d(X_i^{i+K-1}, X_j^{j+K-1}) \leq D \) where \(X_i^n \) is the so called training sequence or "database" sequence that is used in a compression scheme. To express the height in a simple form, we introduce approximate self-overlap \(C_s \) as the longest (approximate) prefix of \(X_1 \) and \(X_{1+s} \) (i.e., a word and its \(s \)-shift). More precisely, \(C_s \) is the largest \(K \) such that \(d(X^K_1, X^{K+s}_{1+s}) \leq D \). Observe that \(C_s \) is defined with respect to only two substrings while \(H_n \) with respect to \(O(n^2) \) substrings.

In order to estimate the height, we use the following

\[
\Pr\{H_n \geq k\} \leq n \left(\sum_{s=1}^{k-1} \Pr\{C_s \geq k\} + \sum_{s=k}^{n} \Pr\{C_s \geq k\} \right).
\]

(19)

The second sum is easy to estimate. Indeed,

\[
\sum_{s=k}^{n} \Pr\{C_s \geq k\} \leq n \sum_{w_k \in W_k} P(B_D(w_k))P(w_k) \leq nEP(B_D(w_k)) \text{,} \]

(20)

where \(B_D(w_k) \) is the so called \(D \)-ball that contains all words of length \(k \) within distance \(D \) from the center \(w_k \), that is, \(B_D(w_k) = \{x_k : d(x_k, w_k) \leq D\} \). By \(P(B_D(w_k)) \) we denote the probability of the \(D \)-ball.

The difficulties arise with the first sum of (19). For this we need a representation of an approximate self-overlapping of a word, which is discussed in sequel (and is of its own interest). In this note we study only an upper bound on \(H_n \) (which is a harder part of the analysis). Clearly, \(\sum_{s=1}^{k-1} \Pr\{C_s \geq k\} \leq k\Pr\{C_s \geq k\} \) so we need only \(\Pr\{C_s \geq k\} \) for \(s \leq k \). In this case we have

\[
\Pr\{C_s \geq k\} \leq \sum_{w_k \in W_k, s(D)} P(w_k) = \sum_{w_s \in W_s} P(w_s \tilde{W}_{k,s}(D)) \text{.}
\]

(21)
where we split the set $W_{k,s}(D)$ found in our Theorem as $W_{k,s}(D) = W_s \cup \tilde{W}_{k,s}(D)$.

Now, we proceed as follows

$$\Pr\{C_s \geq k\} \leq \sum_{w_s \in W_s} P(w_s \tilde{W}_{k,s}(D)) \leq \sum_{w_s \in W_s} P(\tilde{W}_{k,s}(D)) P(w_s)$$

$$\leq \sum_{w_s \in W_s} P^2(\tilde{W}_{k,s}(D)) P(w_s) \leq \sum_{w_s \in W_s} P(\tilde{W}_{k,s}(D)) P(w_s)$$

$$= c \sqrt{\sum_{w_s \in W_s} P(\tilde{W}_{k,s}(D)) P(w_s)}$$

where the inequality (A) is due to the mixing condition, inequality (B) is a consequence of the inequality on means, and the last inequality (C) follows from $\tilde{W}_{k,s}(D) \subset B_D(w_k)$ and hence $EP(\tilde{W}_{k,s}(D)) \leq EP(B_D(w_k))$ (in the latter we treat w_s and w_k as random sequences with probability $P(\cdot)$ inherited from the sequence $\{X_k\}$). In the above, the constant c may change from line to line.

In passing, we note that the above estimate can be obtained in a different manner, too. For curiosity, we shall work it out. We start with the second line of the above display to obtain

$$\Pr\{C_s \geq k\} \leq c \sqrt{\sum_{w_s \in W_s} P^2(\tilde{W}_{k,s}(D)) P(w_s)} \leq c \sqrt{\sum_{w_s \in W_s} P(\tilde{W}_{k,s}(D)) P(w_s \tilde{W}_{k,s}(D))}$$

$$\leq c \sqrt{\sum_{w_k \in W_k} P(B_D(w_k)) P(w_k)} = c \sqrt{EP(B_D(w_k))}$$

where the inequality (F) follows as before from $W_s \subset W_k$, $\tilde{W}_{k,s}(D) \subset B_D(w_k)$, and the fact that $w_k = w_s \tilde{W}_{k,s}$ for $w_k \in W_{k,s} \subset W_k$.

Putting everything together, from the above and (19)-(20), we have

$$\Pr\{H_n \geq k\} \leq n k \sqrt{EP(B_D(w_k))} + n^2 EP(B_D(w_k))$$

Therefore, we finally prove that

$$\Pr\{H_n \geq (1 + \varepsilon) \frac{2}{r_1(D)} \log n\} \leq \frac{c \log n}{n^x}$$

where, in general, for any integer $b \neq 0$ we have

$$r_b(D) = \lim_{k \to \infty} -\log \left(\sum_{w_k \in W_k} P^b(B_D(w_k)) P(w_k)\right) = \lim_{k \to \infty} -\log EP^b(B_D(w_k))$$

The above limit exists due to mixing condition and submultiplicativity of $P(B_D(w_k))$. For $b = 0$ we have from the above by taking $b \to 0$

$$r_0(D) = \lim_{k \to \infty} -\log \frac{P(w_k) \log P(B_D(w_k))}{k} = \lim_{k \to \infty} -\frac{E \log P(B_D(w_k))}{k}$$

7
We can summarize our finding in the following which extends the result of [2] to mixing model.

Theorem 5. Let X^n_r be a sequence of length n generated according to the mixing probabilistic model. Then, $H_n/\log n \leq 2/r_1(D)$ (pr.) where $r_1(D)$ is defined above. In fact, we can proved that $H_n/\log n \rightarrow 2/r_1(D)$ (pr.) as $n \rightarrow \infty$, and actually the latter limit holds also in almost sure sense. ■

References

