A Representation of Approximate Self-Overlapping Word and Its Application

Wojciech Szpankowski
Purdue University, spa@cs.purdue.edu

Report Number:
94-053
A REPRESENTATION OF APPROXIMATE SELF-OVERLAPPING WORD AND ITS APPLICATIONS
(Extended Abstract)

Wojciech Szpankowski

Computer Sciences Department
Purdue University
West Lafayette, IN 47907

CSD TR-94-053
August 1994
A Representation of Approximate Self-Overlapping Word and Its Applications

(EXTENDED ABSTRACT)

Wojciech Szpankowski1
Department of Computer Science
Purdue University
W. Lafayette, IN 47907
spa@cs.purdue.edu

1. Problem Formulation and Notations

Informally speaking, we are interested in the structure of a word \(w_k \) of length \(k \) such that when shifted by, say \(s \), the shifted word is within a given distance from the original (un-shifted word). In this note we concentrate on Hamming distance. Later, we deal with the edit distance, too.

We start with some definitions. A word of length, say \(k \), we write as \(w_k \), or more precisely \(w^k_1 = w_k \). The set of all words of length \(k \) is denoted as \(W_k \). Furthermore, a prefix of length \(q \leq k \) of \(w_k \) is denoted as \(\overline{w}_k(q) \) or simple \(\overline{w}_k \) if there is no confusion.

The distance between words is understood as the relative Hamming distance, that is,
\[
d_n(x^v, x^u) = \frac{1}{n} \sum_{i=1}^{n} d_1(x_i, x'_i)
\]
where \(d_1(x, x) = 0 \) for \(x = x \) and 1 otherwise \((x, x \in A)\).

We also write \(M(x^v, x^u) = nd_n(x^v, x^u) \) for number of mismatches between \(x^n_1 \) and \(x^n_1 \).

Let us now fix \(D > 0 \). Consider a word \(w_{k+s} = w^{k+s}_1 \) of length \(k + s \), and shift it by \(s \leq k \). The shifted word of length \(k \) is \(w^{k+s}_s \). We would like to identify a set \(W_{k,s}(D) \) of all words \(w_{k+s} \) such that
\[
d(w^k,w^{k+s}) \leq D. \tag{1}
\]

This problem is well understood for "faithful" (lossless) overlapping, that is, when \(D = 0 \). In this case, we have for \(m = \lfloor k/s \rfloor \) (cf. [6, 11, 12])
\[
W_{k,s}(0) = \{ w_s \in W_s : w_{k+s} = w^{(m+1)s}_s \overline{w}_s \}
= \bigcup_{w_s \in W_s} \{ w^{(m+1)s}_s \overline{w}_s \} \tag{2}
\]
where \(\overline{w}_s \) is a prefix of length \(q = k - m \cdot s \), and \(w^{(m)}_s \) is a concatenation of \(m \) words \(w_s \).

Our goal is to extend (2) to the approximate case, that is, for \(D > 0 \).

1 This research was supported by NSF Grants NCR-9206315 and CCR-9201078, and in part by NATO Grant 0057/89.
There is plenty of applications of this problem, most notably to approximate pattern matching (cf. [1, 2, 3, 8, 13]) and lossy data compression (cf. [7, 9, 11, 12]). In the former case, Myers [8] observed that to find all approximate pattern matchings of a word \(w_k \) (which usually represents a small fraction of the pattern) in a larger text string \(T \), it is enough to generate all words within given distance from \(w_k \) and then perform exact pattern matching of every word in such a set and the text string \(T \). We can refine this by considering not only a \(D \)-neighborhood of \(w_k \) but also a neighborhood of the shifted word, that is, the set \(W_{k,s}(D) \). This refinement is based on a premise that in text \(T \) there are regions with approximately repeated structures (e.g., DNA). In order to assess the quality of such an approach, one must estimate the cardinality of \(W_{k,s}(D) \). This is discussed in Section 3.

In a lossy data compression [7] as well as in an approximate pattern matching [2, 3], one is interested in the typical behavior of the longest substring that approximately occurs twice in a given (training or database) sequence. Our representation of the set \(W_{k,s}(D) \) is crucial to establish an upper bound for such a substring. This is discussed in Section 4.

2. Structure of the Word

We construct now all words \(w_{k+s} \) that belongs to \(W_{k,s}(D) \). First, let us define an integer \(\ell \) such that \(\ell/k \leq D < (\ell + 1)/k \). Also, we write \(k = s \cdot m + q \) where \(0 \leq q < s \).

Take now \(0 \leq l \leq \ell \), and partition the integer \(l \) into \(m + 1 \) integer terms as follows:

\[
l = a_1 + a_2 + \cdots + a_m + \bar{a}_{m+1} \quad 0 \leq a_i \leq s \quad \text{for} \quad 1 \leq i \leq m
\]

and \(0 \leq \bar{a}_{m+1} \leq q \). Clearly, there are many ways of partitioning the integer \(l \) into terms as prescribed in (3) (cf. [4]). Let the set of all such partitions be denoted as \(\mathcal{P}_{k,s}(l) \).

We now define recursively \(m \) sets \(W_s(a_i) \) for \(i \leq m \). We set \(W_s(a_0) := W_s \) where \(a_0 = 0 \). Then,

\[
W_s(a_k) = \left\{ v_s \in W_s : M(w_s, v_s) = a_k \quad \text{for} \quad w_s \in W_s(a_{k-1}) \right\},
\]

and

\[
\overline{W}_q(\bar{a}_{m+1}) = \left\{ v_q \in W_q : M(\overline{w}_q(q), v_q) = \bar{a}_{m+1} \quad \text{for} \quad w_s \in W_s(a_m) \right\}.
\]

Now, we can present our main result which follows directly from the above discussion.

Theorem 1. Let \(w_{k+s} \) be a word such that (1) holds for some \(D > 0 \). With the notation as above,

\[
W_{k,s}(D) = \bigcup_{l=0}^{l} \{ W_{k,s}(l) \}
\]
such that

\[W_{k,s}(l) = \bigcup_{w^0_s \in W_s} P_{s,k}(l) \bigcup_{w^1_s \in W_s(e_1)} \ldots \bigcup_{w^{m+1}_s \in W_s(a_{m+1})} w^0_s w^1_s \ldots w^m_s \bar{w}^m_{s+1} \] \hspace{1cm} (6)

where \(w^0_s w^1_s \ldots w^m_s \bar{w}^m_{s+1} \) means concatenation of words \(w^0_s \) and \(w^1_s \ldots \) and \(\bar{w}^m_{s+1} \).

3. Enumeration

As mentioned in the introduction, to assess complexity of some algorithms dealing with approximate pattern matching one needs to know the cardinality of \(W_{k,s}(D) \). From our Theorem 1 one can easily estimate the cardinality of \(W_{k,s}(l) \) once we know the cardinality the set \(P_{s,k}(l) \).

A. CARDINALITY OF THE PARTITION \(P_{s,k}(l) \)

The enumeration of \(P_{s,k}(l) \) is not that difficult but rather troublesome. Let \(G(z) \) be the generating function of the cardinality \(|P_{s,k}(l)| \) of \(P_{s,k}(l) \). Having in mind the notation as in (3), we immediately obtain the following (cf. [4])

\[G(z) = (1 + z + z^2 + \cdots + z^s)^m (1 + z + z^2 + \cdots + z^q) \] \hspace{1cm} (7)

\[= \frac{(1 - z^{s+1})^m (1 - z^{q+1})}{(1 - z)^{m+1}}, \] \hspace{1cm} (8)

where \(m = \lfloor k/s \rfloor \) and \(q = k - ms \).

Let \(e_l = |P_{s,k}(l)| \), that is, \(e_l = \left[G(z) \right]_l \) (coefficient of \(G(z) \) at \(z^l \)). Following Comtet [4] (cf. Ex. 16 page 77) we introduce polynomial coefficients \((\tbinom{n}{k})\) as

\[G(x) = (1 + x + \cdots + x^{q-1})^n = \sum_{k=0}^{\infty} \left(\begin{array}{c} n \cr k \end{array} \right) x^k. \] \hspace{1cm} (9)

Note that \(\binom{n}{k} \) is \(\binom{n}{k} = \binom{n}{k} \).

Using this and standard generating function arguments we obtain the next lemma.

Lemma 2. The cardinality \(e_l \) of \(P_{s,k}(l) \) is given by

\[e_l = |P_{s,k}(l)| = \sum_{j=0}^{q} \binom{m, s+1}{l-j} \] \hspace{1cm} (10)

\[= \sum_{j=0}^{q} \sum_{i+l=j} (-1)^i \binom{m}{i} \binom{m+t}{m} \] \hspace{1cm} (11)

where \(m = \lfloor k/s \rfloor \) and \(q = k - ms \).
Proof. Formula (10) follows directly from (7) and definition of polynomial coefficients (9). The second enumeration formula (11) is a simple consequence of (8).

The next interesting question is how to get some asymptotics for \(e_i^l\). This depends on establishing some asymptotics on the polynomial coefficients. We discuss it in sequel.

We prove the following result. Let \(g(z) = (\frac{1}{q} + \frac{z}{q} + \cdots + \frac{z^{n-1}}{q})\) be a probability generating function so that the generating function \(G(z)\) of polynomial coefficients is \(G(z) = q^n g(z)^n\). Clearly, from the Cauchy formula we have

\[
\binom{n}{k} = \frac{q^n}{2\pi i} \oint \frac{g(z)^n}{z^{k+1}} dz
\]

where the path of integration encloses the origin. Judging from the binomial coefficients (i.e., \(q = 2\)) we should expect different asymptotics for various values of \(k\) (e.g., bounded \(k\), \(k\) around the mean \(n\mu = n(q - 1)/2\), and \(k = \alpha n\) where \(\alpha \neq (q - 1)/2\)). This is confirmed by the result below.

Lemma 3. For any \(q\) and large \(n\) the following holds.

(i) If \(k = n(q - 1)/2 + r\) where \(r = o(\sqrt{n})\), then

\[
\binom{n}{k} \sim \frac{q^n}{\sigma \sqrt{2\pi n}} \exp \left(-\frac{r^2}{2n\sigma^2} \right)
\]

where \(\sigma^2 = (q^2 - 1)/12\). In particular (cf. Comtet [4] [Ex. 16, p.77]),

\[
\sup_k \binom{n}{k} = \left(\frac{n, q}{n(q - 1)/2} \right) \sim q^n \sqrt{\frac{6}{(q^2 - 1)\pi n}}
\]

(ii) If \(k = \alpha n\) where \(\alpha \neq (q - 1)/2\), then

\[
\binom{n}{k} \sim \frac{g(\beta)^n}{\beta^{\alpha n}} \frac{1}{\sigma \alpha \sqrt{2\pi n}}
\]

where \(\beta\) is a solution of \(\beta g'(\beta) = \alpha g(\beta)\) and \(\sigma^2 = \beta^2 g''(\beta)/g(\beta) + \alpha - \alpha^2\).

(iii) If \(k = O(1)\), then

\[
\binom{n}{k} \sim \frac{n^k}{k!}
\]

Proof. Part (i) is direct consequence of applying the saddle point method to the Cauchy integral. Details can be found in Greene and Knuth [5] (page 70-76). Formula (14) comes from the previous one after substitution \(r = 0\). Comtet [4] suggests also another derivation
of it. Namely, note that after substitution $z = e^{ix}$ and easy algebra the Cauchy formula becomes

$$\left(\begin{array}{c} n, q \\ k \end{array}\right) = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \left(\frac{\sin(qx)}{\sin(x)}\right)^n \cos(x(nq - 1 - 2k))dx.$$ \hfill (17)

Observe that for $k = n(q - 1)/2$ the cosine function is equal to one, hence maximum, and then by a simple application of Laplace’s method we get again (14).

Part (ii) follows from (i) and the “method of mean shift” as in Greene and Knuth [5] (page 75). That is, we use part (i) applied to the following

$$[z^{an}](g(z))^n = \frac{g(\beta)^n}{\beta^{an}} \left(\frac{g(\beta z)}{g(\beta)}\right)^n$$

where β is a solution of $\beta g_1(\beta) = \alpha g_1(\beta)$.

Part (iii) can be proved as follows. From the Cauchy integral we have after substituting $z/n = w$

$$\left(\begin{array}{c} n, q \\ k \end{array}\right) = \frac{1}{2\pi i} \oint \frac{G(z)^n}{z^{k+1}} dz$$

$$= \frac{1}{2\pi i} \oint \frac{(1 + w/n + \cdots (w/n)^{q-1})^n}{w^{k+1}} n^k dw \rightarrow n^k \oint \frac{e^{w}}{w^{k+1}} = \frac{n^k}{k!}.$$

This completes the proof. \hfill \blacksquare

Finally, we can formulate our next result that enumerates $W_{s,k}(l)$.

Theorem 4. Cardinality of the set $W_{k,s}(l)$ as defined in (6) is equal to

$$|W_{k,s}(l)| = 2^s \sum_{a_1 + a_2 + \cdots + a_m + a_{m+1} = l} \left(\begin{array}{c} s \\ a_1 \end{array}\right) \cdots \left(\begin{array}{c} s \\ a_m \end{array}\right) \left(\begin{array}{c} q \\ a_{m+1} \end{array}\right) = 2^s \left(\begin{array}{c} k \\ l \end{array}\right).$$ \hfill (18)

Proof. The above follows directly from Theorem 1, and the following identity (that we express in generating function terms): $(1 + x)^s(1 + x)^q \cdots (1 + x)^q = (1 + x)^{ms+q} = (1 + x)^k$ (cf. [4]). \hfill \blacksquare

Remark. One can verify our enumeration in Theorem 4. Indeed, we know that summing over all $|W_{k,s}(l)|$ for $1 \leq l \leq k$ should give 2^{s+k}, as (18) implies.

4. Typical Behavior of Repeated Patterns

We consider a typical behavior of repeated patterns in an approximate pattern matching (cf. see [7] for applications a lossy data compression, and [2, 3] for applications to approximate pattern matching and DNA sequencing). In particular, we investigate the so called
height (cf. also [2, 3, 7, 11, 12]). We study the typical behavior of the height in the so called mixing probabilistic model as defined in [10, 11, 12] which includes Bernoulli and Markovian models.

More precisely, to define a stationary, ergodic mixing model we consider a sequence \(\{X_k\}_{k=-\infty}^{\infty} \) that is stationary and ergodic. In addition, it is mixing in strong sense, that is, (informally speaking) for two events \(A \) and \(B \) defined respectively with \(\sigma \)-algebras of \(\{X_k\}_{-\infty}^{m} \) and \(\{X_k\}_{m+b}^{\infty} \) for some integer \(b \), the following holds

\[
(1 - \alpha(b)) \Pr\{A\} \Pr\{B\} \leq \Pr\{A \cap B\} \leq (1 + \alpha(b)) \Pr\{A\} \Pr\{B\}
\]

for some some \(\alpha(b) \) such that \(\lim_{b \to \infty} \alpha(b) = 0 \).

Let now \(H_n \) be the height, that is, the largest \(K \) for which there exist \(i, j \leq n \) such that \(d(X_i^{i+K-1}, X_j^{j+K-1}) \leq D \) where \(X_i^n \) is the so called training sequence or “database” sequence that is used in a compression scheme. To express the height in a simple form, we introduce approximate self-overlap \(C_s \) as the longest (approximate) prefix of \(X_1 \) and \(X_{1+s} \) (i.e., a word and its \(s \)-shift). More precisely, \(C_s \) is the largest \(K \) such that \(d(X_1^K, X_{1+s}^{1+s}) \leq D \). Observe that \(C_s \) is defined with respect to only two substrings while \(H_n \) with respect to \(O(n^2) \) substrings.

In order to estimate the height, we use the following

\[
\Pr\{H_n \geq k\} \leq n \left(\sum_{s=1}^{k-1} \Pr\{C_s \geq k\} + \sum_{s=k}^{n} \Pr\{C_s \geq k\} \right). \tag{19}
\]

The second sum is easy to estimate. Indeed,

\[
\sum_{s=k}^{n} \Pr\{C_s \geq k\} \leq n \sum_{w_k \in W_k} P(B_D(w_k)) P(w_k) \leq n EP(B_D(w_k)) \tag{20},
\]

where \(B_D(w_k) \) is the so called \(D \)-ball that contains all words of length \(k \) within distance \(D \) from the center \(w_k \), that is, \(B_D(w_k) = \{x_k : d(x_k, w_k) \leq D\} \). By \(P(B_D(w_k)) \) we denote the probability of the \(D \)-ball.

The difficulties arise with the first sum of (19). For this we need a representation of an approximate self-overlapping of a word, which is discussed in sequel (and is of its own interest). In this note we study only an upper bound on \(H_n \) (which is a harder part of the analysis). Clearly, \(\sum_{s=1}^{k-1} \Pr\{C_s \geq k\} \leq k \Pr\{C_s \geq k\} \) so we need only \(\Pr\{C_s \geq k\} \) for \(s \leq k \). In this case we have

\[
\Pr\{C_s \geq k\} \leq \sum_{w_k \in W_{k,s}(D)} P(w_k) = \sum_{w_s \in W_s} P(w_s \tilde{W}_{k,s}(D)) \tag{21}
\]
where we split the set $W_{k,s}(D)$ found in our Theorem as $W_{k,s}(D) = W_s \cup \tilde{W}_{k,s}(D)$.

Now, we proceed as follows

$$\Pr\{C_s \geq k\} \leq \sum_{w_s \in W_s} P(w_s \tilde{W}_{k,s}(D)) \leq (A) c \sum_{w_s \in W_s} P(\tilde{W}_{k,s}(D)) P(w_s)$$

$$\leq (B) c \sqrt{\sum_{w_s \in W_s} P^2(\tilde{W}_{k,s}(D)) P(w_s)} \leq c \sqrt{\sum_{w_s \in W_s} P(\tilde{W}_{k,s}(D)) P(w_s)}$$

$$= c \sqrt{EP(\tilde{W}_{k,s}(D))} \leq (C) c \sqrt{EP(B_D(w_k))},$$

where the inequality (A) is due to the mixing condition, inequality (B) is a consequence of the inequality on means, and the last inequality (C) follows from $\tilde{W}_{k,s}(D) \subset B_D(w_k)$ and hence $EP(\tilde{W}_{k,s}(D)) \leq EP(B_D(w_k))$ (in the latter we treat w_s and w_k as random sequences with probability $P(\cdot \cdot \cdot)$ inherited from the sequence $\{X_k\}$). In the above, the constant c may change from line to line.

In passing, we note that the above estimate can be obtained in a different manner, too. For curiosity, we shall work it out. We start with the second line of the above display to obtain

$$\Pr\{C_s \geq k\} \leq c \sqrt{\sum_{w_s \in W_s} P^2(\tilde{W}_{k,s}(D)) P(w_s)} \leq c \sqrt{\sum_{w_s \in W_s} P(\tilde{W}_{k,s}(D)) P(w_s \tilde{W}_{k,s}(D))}$$

$$\leq (F) c \sqrt{EP(B_D(w_k)) P(w_k) = c \sqrt{EP(B_D(w_k))}}$$

where the inequality (F) follows as before from $W_s \subset W_k$, $\tilde{W}_{k,s}(D) \subset B_D(w_k)$, and the fact that $w_k = w_s \tilde{W}_{k,s}$ for $w_k \in W_{k,s} \subset W_k$.

Putting everything together, from the above and (19)-(20), we have

$$\Pr\{H_n \geq k\} \leq nk \sqrt{EP(B_D(w_k)) + n^2 EP(B_D(w_k))}.$$

Therefore, we finally prove that

$$\Pr\{H_n \geq (1 + \epsilon) \frac{2}{r_1(D)} \log n\} \leq \frac{c \log n}{n^\varepsilon}$$

where, in general, for any integer $b \neq 0$ we have

$$r_b(D) = \lim_{k \to \infty} - \log \left(\sum_{w_k \in W_k} P^b(B_D(w_k)) P(w_k) \right) = \lim_{k \to \infty} - \log EP^b(B_D(w_k)) \frac{b}{bk}.$$

(23)

The above limit exists due to mixing condition and submultiplicativity of $P(B_D(w_k))$. For $b = 0$ we have from the above by taking $b \to 0$

$$r_0(D) = \lim_{k \to \infty} - \sum_{w_k \in W_k} P(w_k) \log P(B_D(w_k)) = \lim_{k \to \infty} -E \log P(B_D(w_k)) \frac{1}{k}.$$
We can summarize our finding in the following which extends the result of [2] to mixing model.

Theorem 5. Let \(X^n \) be a sequence of length \(n \) generated according to the mixing probabilistic model. Then, \(H_n / \log n \leq 2 / r_1(D) \) (pr.) where \(r_1(D) \) is defined above. In fact, we can proved that \(H_n / \log n \rightarrow 2 / r_1(D) \) (pr.) as \(n \rightarrow \infty \), and actually the latter limit holds also in almost sure sense.

References

