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Abstract
We present efficient algorithms to model a collection of scattered function data defined

on a given smooth domain surface D in three dimensional real space (lR3 ), by a C1 cubic or
a C2 quintic piecewise trivariate polynomial approximation F (a mapping from D into lR4

).

The smooth polynomial pieces or finite elements of F are defined on a three dimensional
triangulation called the simplicial hull and defined over the domain surface D. Our smooth
polynomial approximations allows one to additionally control the local geometry of the
modeled function F. We also present two different techniques for visualizing the graph of
the function F.

1 Introduction

In this paper, we consider the following problem: Given an arbitrary collection of points
P = {(Xi, Yi, Zi, Fi)t:R4}~1 with (Xi, Yi, zi)t:R3 on a given smooth surface D, called the do-

*Supported in part by NSF grants CCR 92-22467, DMS 91-01424, AFOSR grants F49620-93-10138, F49620
94-1-0080, ONR grant N00014-94-1-0370 and NASA grant NAG-93-1-1473.
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main surface, construct a C I IC2 ( "I" stands for "or") piecewise smooth function F, known as
the funetion-on-surface, such that F(Xi, Yi, Zi) = Fi, i = 1,' " ,M. Also visualize the graph of
the function-on-surface F.

The problem of modeling and visualizing functions sampled on physical objects arises in sev
eral application areas: characterizing the rain fall on the earth, the pressure on the wing of an
airplane and the temperature on a human body. A number of methods have been developed for
dealing with this problem (for surveys see [3], [7]). Currently known approaches for 9-pproximat
ing function-on-surface data however possess restrictions either on the domain surfaces or the
function-on-surfaces. The domain surfaces are usually assumed to be spherical, convex or genus
zero. The function-on-surface are not always polynomial [4], [8] or rather higher order polyno
mial [9] or a large number of pieces [1] compared to the approach of this paper. The method
of [1] is a CI Clough-Tocher scheme that splits a tetrahedron into 4 subtetrahedra, uses degree
5 polynomials and requires C2 data on the vertices of each subtetrahedron. Another Clough
Tocher scheme[10] requires only C I data at the vertices, for again constructing a CI function
which is a cubic polynomial over each subtetrahedron, however splits the original tetrahedron
into 12 pieces. A CI scheme [9] that does not split each tetrahedron uses degree 9 polynomials
and requires C4 data at the vertices. In extending the method of [9] to a C2 scheme, requires
degree 17 polynomials and C8 data at the vertices of each tetrahedron. Compared to these
approaches, our CI IC2 construction has no splitting and uses much lower degree polynomials
(cubiclquintic) requiring only C I IC2 data respectively, at the vertices of each tetrahedron.

Our solution to the modeling problem involves the following steps: (a). Construct a planar
triangular approximation T of the domain surface D in the region of the points (Xi,Yi, Zi) on D.
(b). Generate CI IC2 data at the vertices of the triangulation T for a desired CI IC2 smooth
approximation, respectively. (c). Construct a simplicial hull (defined below) E surrounding the
triangulation T. (d). Build the CIIC2 function-on-surface F over E by locally interpolating
the CI IC2 data, respectively. (e). Visualize the graph of the function-on-surface F. We shall
not address the first two steps (a) and (b) in this paper. A algorithm for the construction of
the triangulation T of the given surface is given in [5]. See also Figure 1.1. However, we require
our triangulation to satisfy certain conditions which will be discussed in §3. The problem of
estimating the CI /C2 data at the vertices of T is studied in a separate paper[2]. In this paper, we
detail the steps (c), (d) and (e) in §3, §4, and §5 respectively, after the notation and preliminary
section §2.

2 Notation and Preliminary Details

Bernstein-Bezier (BB) Form: Let PI, P2, P3, P4 E lR3 be affine independent. Then the
tetrahedron with vertices PI, P2, P3, and P4 is the convex hull defined by [PIP2P3P4] = {p E lR3

:

P = E;=I O'.iPi,O'.i ~ O,E;=I O'.i = 1}. For any P = E;=IO'.iPi E [PIP2P3P4], 0'. = (O'.I,0'.2'0'.3'0'.4)T
denotes the barycentric coordinates of p. Any polynomial f(p) of degree n can be expressed as
Bernstein-Bezier(BB) form over [PIP2P3P4] as f(p) = EI,\I=n b,\ B~(O'.), A E zt, where B~(O'.) =

,\ ,,\ ~l,'\ I 0'.~10'.;20'.~30'.~4 is Bernstein polynomial, IAI = E;=I Ai with A = (AI, A2, A3 , A4 )T =
1· 2· 3· 4·
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Figure 1.1: A piecewise smooth domain surface D1 and a triangulation on it.

L;=l '\iei, bA = bA1A2A3A4(as a subscript, we simply write'\ as '\1'\2'\3'\4) are called control points
or weights, and Z~ stands for the set of all four dimensional vectors with nonnegative integer
components. The following basic facts about the BB form will be used in this paper.

Lemma 2.1. Let f(p) = F(a) = LIAI=n bABf(a) where a denotes the barycentric coordinates
ofp. Then for any pair of points p(l) and p(2)} with 0'.(1) and 0'.(2) as their barycentric coordinates}
we have

V f(p)T(p(l) - p(2)) = n L bl(a(l) - a(2))B~-1(a)

IAI=n-1

(p(l) _ p(2))TV2f(p)(p(1) _ p(2)) = n(n -1) L b1(a(1) - a(2))B~-2(a)

IAI=n-2

where Vf(p) = [8 f (p) 8f(p) 8f (p)]T8x 8y 8z ,
Lljl=r bMj Bj(0'.(1) - 0'.(2))

See [6] for the two dimensional case of the above lemma. From this lemma we have

Corollary 2.2. Let f(p) = LIAI=n bABf(a) be defined on the tetrahedron [P1P2P3P4L then

b(n-1)ei+ej = bnei + !(pj - Pifv f(Pi), j i- i
n

(2.1)

(2.2)
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(a) (b)

Figure 2.1: The related control points of Cl (a) and C2 (b) conditions

The corollary tell us that the weights around a vertex can be computed from the given C2

data.

Lemma 2.3 ([6]). Let f(p) = I:IAI=n aABf(a) and g(p) = I:IAI=n bABf(a) be two polynomials
defined on two tetrahedra [PlP2P3P4] and [P~P2P3P4L respectively. Then
(i) f and 9 are CO continuous at the common face [P2P3P4] if and only if

(2.3)

(ii) f and 9 are C l continuous at the common face [P2P3P4] if and only if (2.3) holds and

(iii) f and 9 are C2 continuous at the common face [P2P3P4] if and only if (2.3)-(2.4) holds and

b2A2A3A4 f3;a2A2A3A4 + 2f3lf32aoA2A3A4+ll00 + 2f3lf33aOA2A3A4+l01O + 2f3lf34aoA2A3A4+l00l
+ f3iaoA2A3A4+0200 + 2f32f33aoA2A3A4+0110 + 2f32f34aoA2A3A4+0l0l (2.5)
+ f3~aoA2A3A4+0020 + 2f33f34aoA2A3A4+0011 + f3laoA2A3A4+0002

where 13 = (131, 132, 133, (34)T are defined by the relation P~ = f3lPl + f32P2 + f33P3 + f34P4, 1131 = 1.
In Lemma 2.3, if we divide (2.4) and (2.5) by f3l, then the Cl and C2 conditions become

aOA2A3A4+000l = !lla1A2A3A4 + !l2blA2A3A4 + !l3aOA2A3A4+0l00 + !l4aOA2A3A4+001O (2.6)

!ll (!ll a2A2A3A4 + !l3aOA2A3A4+1100 + !l4aOA2A3A4+lOl0 - aOA2A3A4+l00l)

= !l2(!l2b2A2A3A4 + !l3bOA2A3A4+ll00 + !l4boA2A3A4+l0l0 - bOA2A3A4+l00l) (2.7)

respectively, where!ll = -~,!l2 = )4' !l3 = -~,!l4 = -f, that is P4 = !llPl +!l2P~+!l3P2+!l4P3.
It is not difficult to show the following from Corollary 2.2 :

Lemma 2.4. Let f(p) and g(p) be defined as Lemma 2.3. If the coefficients of f and 9 around
the vertices are determined by (2.1)-(2.2)) then the Cl and C2 conditions (2.4)-(2.5) related
only to these coefficients are satisfied.
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Degree Elevation. The polynomial f(p) = 2:1>'I=n b>. B~(a) can be written as one of degree
n + 1 (see e.g. [6] ). f(p) = 2:1>'I=n+l (Eb)>. B~+I(a), A Ezt where (Eb)>. = n~1 2:;=1 Aib>.-e;'
We shall use these formulas in approximating lower degree polynomials, in §4. .

3 Simplicial Hull

Given a planar triangular approximation T of D containing (and not necessarily as vertices)
the points (Xi, Yi, Zi) on D, a simplicial hull of D and T, denoted by 2:, is a collection of non
degenerate tetrahedra which satisfies the following:

(1) Each tetrahedron in 2: has either a single edge of T(then it will be called an edge
tetrahedron) or a single face of T(then it will be called a face tetrahedron).

(2) For each face f of T there are at most two face tetrahedra (above and below f) in 2:
that share the face f.

(3) Two face tetrahedra that share a common edge do not intersect in any other region.
This condition is referred to in this paper as non-self-intersection.

(4) For each edge there are two pairs of common face sharing edge tetrahedra in 2:, such
that each pair blends the two adjacent face tetrahedra on the same side.

(5) The surface D is contained in 2:. This condition is referred to in this paper as the surface
containment condition.

Therefore, a simplicial hull of D and T is in a neighborhood surrounding D. It should be
noted that, for the given triangulation T of D, there may exist infinitly many simplicial hulls
or perhaps no simplicial hull may exist. However under the following conditions on T, we can
always construct a simplicial hull.
Condition 1. The triangulation T is locally even. That is for every face of T, say [PlP2P3], the
angle between the surface normal ni at the vertex Pi and the normal of the face [PIP2P3] is less
than

-1( 2stan(~min{aI,a2,a3}) )
tan

II IIpj - Pill(Pk - Pi) + I!Pk - Pi II (Pj - Pi) II
fori = 1,2,3 and distinct 1::; i,j,k::; 3. Here s is the area of the face [PIP2P3], and al,a2,a3
are the dihedral angles of the three edges of the face [PIP2P3]'
Condition 2. The surface D is single sheeted on T. That is, for every face ofT, say [PIP2P3]
let L be a straight line that is perpendicular to the face f and passes through the center c of
the inscribed circle of f. Let P4 and q4 be the center's nearest points on L off each side of f
such that IIp4 - ell = IIq4 - cll and the three tangent planes at the three vertices are contained in
[P4PIP2P3q4]' Then for any P E f the broken line [P4PQ4] intersects the surface D only once.
Condition 3. Any two adjacent faces are not coplanar.

Since the given surface is curved and smooth, by adding additional points on D, we can
modify the algorithm of [5] to achieve a T satisfying the above conditions.

For such a T we now show how to construct a simplicial hull 2: in two easy steps.
1. Build Face Tetrahedra. For each face f = [PIP2P3] of T, let L be a straight line that is
perpendicular to the face f and passes through the center e of the inscribed circle of f. Let P4
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and q4 be the center's nearest points on L off each side of I such that IIp4 - ell = IIq4 - ell and
the three tangent planes at the three vertices are contained in [P4PlPZP3q4], then construct two
face tetrahedra [PlPZP3P4] and [PlPZP3q4]'
2. Build Edge Tetrahedra. Let [PZP3] be an edge of T and [PlPZP3] and [P~PZP3] be the
two adjacent faces. Let [PlPZP3P4] and [PlPZP3q4], and [P~PZP3P~] and [P~PZP3q~] be the face
tetrahedra built for the faces [PlPZP3] and [P~PZP3], respectively. Now two pairs of tetrahedra
are constructed. The first pair [P~PZP3P4] and [P~PZP3P~] is between [P~PZP3P~] and [PlPZP3P4]'
The second pair [q~PZP3q4] and [q~PZP3q~] is between [P~PzP3q~] and [PlPZP3q4]' Here p~ E (P4P~)

or above (p4' p~), say p~ = (l;t) (pz + P3) + Hp~ + P4), t;:::: 1, so that p~ is above [Pz, P3]
and the surface containment condition is satisfied. Similarly, q~ E (q4q~) or below (q4' q~), say
q~ = (l;t)(PZ +P3) + Hq~ +q4), t;:::: 1, so that q~ is below [PZ,P3] and the surface containment
condition is satisfied.

The locally even condition guarantees that the face tetrahedron constructed has height(the
distance between the top vertex P4 or q4 to the face) at most rtan(~min{ao,al,az}),where r
is the radius of the inscribed circle. Hence the dihedral angles at the bottom edges of the tetra
hedron are less than ~ min{ao, aI, az}. Therefore, there is no additional intersection between
two adjacent face tetrahedra.

4 0 1/02 Interpolation by Cubic/Quintic

(4.1)
,B~l) + ,B~l) + ,B~l) + ,Bil ) = 1

,B~Z) + ,B~Z) + ,B~Z) + ,BiZ) = 1

J.ll + J.lz + J.l3 + J.l4 = 1

Suppose we have established a simplicial hull L.: for the given triangulation T of D. Now we
construct a C l

/ Cz function lover L.: such that I has the given C l
/ Cz data, respectively at

each vertex. Let VI = [PlPZP3P4] , 1-'2 = [P~PZP3P~], WI = [P~PZP3P4]' Wz = [P~PZP3P~], V{ =
[PIPZP3q4] , V{ = [P~PZP3q~], W; = [q~PZP3q4], W~ = [q~PZP3q~] and the cubic/quintic polyno
mials Ii over Vi, gi over Wi, II over Vi' and g: over WI be expressed in Bernstein-Bezier form
with coefficients a~i), b~i), e~i) and d~i), respectively. Now we shall determine thes~ coefficients
step by step. Denote

p~ ,B~l)Pl + ,B~l)pZ + ,B~1)p3 + ,Bil )p4'

p~ = ,B~Z)p~ + ,B~Z)pz + ,B~Z)p3 + ,BiZ)p~,

p~ = J.llP4 + J.lzp~ + J.l3PZ + J.l4P3,

C l Cubic Scheme
(1) The number 0 weights(see Figure 4.1) are given by the function values at the vertices.
(2) The number 1 weights are determined by formula (2.1) from C l data.
(3) The number 2 weights, that is a~1l0' are free.
(4) The number 3 weights are determined by C l conditions (2.4) and (2.6). More precisely,

a~il11 = O~i) a~i~o + O~i) a~~l0 + O~i) a~ilzo + O~i) a~i~o, i = 1,2

where
P4

p~

O~l)Pl + O~l)pZ + O~1)p3 + O~l)p~,

O~Z)PI + O~Z)PZ + e~Z)P3 + O~Z)p~ ,

OP) + O~l) + O~l) + O~l) = 1

e~Z) + O~Z) + O~Z) + O~Z) = 1
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Figure 4.1: Adjacent Tetrahedra, Control Points of Cubic Functions

D free weight

o dependent weight

a (1)

Figure 4.2: Adjacent Tetrahedra, Control Points of Quintic Functions
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(5) The number 4 weights are free.
(6) The number 5 weights are determined by C1 conditions (2.4).
(7) The number 6 weights are free.
(8) The number 7 weights are determined by C1 conditions (2.6).
The remaining weights with index ).1).2).3).4 are determined by C1 condition (2.4) for ).4 ::; 1

and freely chosen for ).4 > 1.

C2 Quintic Scheme
(1) The number 0 weights(see Figure 4.2) are given by the function values at the vertices.

For examples, a~~~ = f(Pi), i = 1,2,3.
(2) The number 1 weights are determined by formula (2.1).
(3) The number 2 weights are determined by formula (2.2).

(4) The number 3 weights, that is ai~20' a~~10 and a~?20' are free.
(5) The number 4 weights are determined by C1 conditions (2.4), that is

(i) (i) (1) (i) (i) (i) (i) (i) (2)
a0221 = ()1 a1220 + ()2 a 0320 + ()3 a0230 + ()4 a 1220

(1) (1) (2) (1) (1)
b1220 = /11 a0221 + /12 a 0221 + /13 a 0320 + /14 a 0230

(6) The number 5 and 6 weights have to be determined simultaneously. In determining these
weights, we need to consider all the C 1 and C 2 conditions related to the tetrahedra surrounding
the vertex P2. Suppose there are k triangles(hence k edges) around P2, then by C1 and C2

conditions, we have 6k equations. That is, crossing each face, we have two equations. The
number of related unknowns is also 6k. That is, k number 5 weights and 5k number 6 weights.
Now we investigate these equations. It follows from (2.4) and (2.5) that

(i)b2210 =

+
for i = 1,2.

(i) _ (i) (i) (i) (i) (i) (i) (i) (i)
b1211 - 131 a 1211 + 132 a 0311 + 133 a 0221 + 134 a 0212

j3 (i)j3(i) (i) + 2j3(i)j3(i) (i) + 2j3(i)j3(i) (i) + 2j3(i)j3(i) (i) + j3(i)j3(i) (i)
1 1 a 2210 1 2 a 1310 1 3 a 1220 1 4 a 1211 2 2 a 0410

2j3(i)j3(i) (i) + 2j3(i)j3(i) (i) + j3(i)j3(i) (i) + 2j3(i)j3(i) (i) + j3(i)j3(i) (i)
2 3 a 0320 2 4 a 0311 3 3 a 0230 3 4 a 0221 4 4 a 0212

(4.2) and (4.3) can be written briefly as

(4.2)

(4.3)

b(i) _ j3(i) (i) j3(i) (i). (i)
1211 - 1 a 1211 + 4 a 0212't +10

b~~10 = 2j3ii)j3ii)ai~11 + j3ii)j3ii)a~~12 + Iii)

where I~i) and Iii) are the known terms in (4.2) and (4.3). Since (see (2.6) and (2.7) )

b
(l) b(l) b(2)
2210 = /11 1211 + /12 1211 +12

2b(l) b(l) _ 2 (2) (2)
/11 0212 - /11 1211 - /12 b0212 - /12 b1211 +13

8
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_ (i) (i) _ (2) (2) ) (1) (1) )where ,2 - /13 b1310 + /14 b1220 and ,3 - /12 /13 b0311 + /14 b0221 -/11 /13 b0311 + /14b0221 , then by
substituting (4.4) into (4.6) and (4.7) and then eliminating b~idlO from (4.5) and (4.6) we get
three equations related to four unknowns which could be written as:

[

(1) ] [ (.1(1) ] [ (1) ](34 - /11 -/12 P4 0 a0212
(2) (2) (2)

- /11 (34 - /12 0 (34 a0212

[
(1) ] [ (1) ] [ (1)] [(1)]_ _ 2(34 - /11 - /12 (31 0 a1211 + '4

- (2) (.1(2) (2) (2)
-/11 2(34 - /12 0 PI a1211 '4

(4.8)

[-/11((31
1
)-/11) /12((31

2
)-/12)] [a~~}2] _ [/11(3~1),-/12(3~2)] [at~}l] =,5 (4.9)

a0212 a1211

where,11) = /1l/~1)+/12/~2)+'2-,~1), ,12) = /1l/~1)+/12,~2)+'2-,~2), and,s = '3+/1l/~1)-/12/~2).

Since the coefficient matrix of (4.8) is nonsingular, by solving [a~~;2 a~;;2Y from (4.8) and then
substituting it into (4.9), we get one equation relating to the unknowns al~;l' al;)l1' Let the
equation be in the form

"'"a(l) + ol··a(2) - w· (4.10)
'fJt 1211 'f/t 1211 - t

Then, these unknowns form a closed chain around the vertex P2. The coefficient matrix of all
these equations related to the vertex P2 is in the form of

The system (4.10) is a solvable in general with one degree of freedom. That is the rank of

:a:::xs~: :d~ :~ :,e:: ~:: :l::::~t:~:a:r::
1
::: i::::V:~fo:h: s~rr[O;di~~ t~trahedr]a

. <Pk 1/Jk

which can be changed to A = [~1 1
2

] if one of the unknowns, say the l-th is chosen to be a

free parameter. Hence the system of equations can be decomposed into two sub-systems. Each
of the sub-systems can be easily solved.

(7) The number 7 weights are similarly determined as that of number 6.
(8) The number 8 weight alil12 are free.
(9) The number 9 weights are determined by the C1 and C2 conditions. Both the number

of equations and the number of unknowns are 6k. That is for i = 1,2

(i) (i) (i) (i) (i) (i) (i) (i) (i)
b1202 = (31 a1202 + (32 a0302 + (33 a0212 + (34 a0203

9
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(4.13)

(4.14)

(4.12)
(i)b2201 f3ii)f3i i)a~~01 +2f3ii)f3~i) ai~Ol + 2f3ii)f3~i) ai~l1 + 2f3ii)f3ii)ai~02 + f3~i) f3~i) a~201

+ 2f3~i) f3~i) a~~l1 + 2f3~i) f3ii)a~~02 + f3~i) f3~i) a~~21 + 2f3~i) f3ii)a~~12 + f3ii)f3ii)a~~03

b1~~0 = /11 b~~~l + /12 b~;~l + /6

llibi~b2 - 1l1b~~b1 = ll~bW02 - /12b~;b1 + /7

where /6 = /13b~~00 + 1l4b~~10 and /7 = 1l2(1l3bWOl + 1l4bi;~1) -1l1(/13bW01 + 1l4bi~~1). Substitute
(4.11) and (4.12) into (4.14), so that we have

a(l)( a(l))b(l) a(2)( a(2))b(2)1l1fJ4 /11 - fJ4 0203 - 1l2fJ4 112 - fJ4 0203 = ...

This is a system that is in the same form as (4.10). The coefficient matrix of this system is
nonsingular, in general.

(10) For the number 10 weights, we have six equations parallel to the equations (4.11)-(4.14)
with all the indices changed by the rule:

The index of the number 10 weight = The index of the number 9 weight - e2 + e3

and seven independent weights. By chosing one of them, say b1
i
l10 , to be a free parameter, the

system can be solved.
(11) The number 11 weights are determined in the same way as the number 9.
(12) The number 12 and 13 weights are free, while the number 14 are determined by C1

and C2 conditions. That is bi?03 are defined by (2.4). b~il02 are defined by (2.5). For b1?01' we
have by (2.6) and (2.7) that

b(l) (2) _ 2b(2) 2b(2)
-Ill 3101 + 112 b3101 - /12 2102 - III 2102 + /9

b(l) 2b(2) 2 b(2) b(l) 2b(2) 2 b(2)
b(l) _ 4100 - /12 2102 + III 2102 + /8 - /9 b(2) _ 4100 + /12 2102 - III 2102 + /8 + /9

3101 - 2 ' 3101 - 2
/11 III

(13) The number 15 weights are similar to that of number 14, the index being changed by
the same rule as above.

(14) The number 16 weights are free, the number 17's are determined by C1 and C2 condi
tions.

(15) The number 0 to number 8 weights of the lower tetrahedra, below faces of T (see Figure
4.2) are determined by Co, C1 and C 2 conditions (2.3), (2.4) and (2.5) from weights in the upper
tetrahedron.

16 The number 9 to 17 weights of the lower tetrahedra are determined in a fashion similar
to the Co, C1 and C 2 conditions between the face and edge tetrahedra.

In summary, the construction steps 1-14 and 16 is according to the Co, C 1 and C 2 conditions
across the common faces between face and edge tetrahedra that are both above or" both below
the original triangulation T. Step 15 is according to the Co, C1 and C 2 conditions across the
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faces of T and between the upper and lower tetrahedra. Therefore, the composite function is
global C 2 continuous in 2:.

The Use of Free Weights
In both of the C1 and C 2 schemes described above, there are some free weights which can

be freely determined to control the local geometry of F without affecting the continuity. We
suggest three approaches or their combinations to achieve this local control. The first is to
modify the shape of F by interactively adjusting the free weights. The second is to locally
interpolate some of the function-on-surface data earlier approximated by the polynomial in each
tetrahedron. The third approach is to least-square approximate some additional lower degree
polynomial (acting as a controlling function) by use of the degree elevation formula of §2. For
example, in the C1 scheme, the number 2 weights can be determined by

(i) _ 1 (i) (i) (i) (i) (i) (i) 1 (i) (i) (i)
alllO - 4" (a1200 + a 2100 + a 2010 + a 1020 + a 0210 + a0120) - 6" (a3000 + a0300 + a 0030)

and the number 4 weights are determined by

(i) _ 1 (i) (i) (i) (i) (i) (i)
a 0003 - 3"[2(q0101 + q1001 + qOOll) - (a0300 + a 3000 + a 0030 )]

(i) _ 1 (i) (i) (i) _ 1 (i) (i) (i) _ 1 (i) (i)
aOlO2 - 3"(2q0101 + a0003), alO02 - 3"(2qlO01 + a0003), a0012 - 3"(2qOOll + a0003)

where
(i) _ 3 (i) (i) (i) (i) 1 (i) (i) (i) (i)

Q0101 - 4"(a l101 - a lOll + aOll1 + a 0201 ) - 4"(QllOO - QlO10 + QOllO + a 0300 )

(i) _ 3 (i) (i) (i) (i) 1 (i) (i) (i) (i)
Q1001 - 4"(al101 + alOll - a01ll + a2001) - 4"(QllOO +QlO10 - QOllO + a3000)

(i) _ 3 (i) (i) (i) (i) 1 (i) (i) (i) (i)
QOOll - 4"(-al101 + a 10ll + a 0111 + a 0021 ) - 4"( -QllOO +Q10lO + QOllO + a0030 )

(i) _ 1 (i) (i) (i) (i)
QllOO - 4"(3a1200 + 3a2lO0 - a0300 - a 3000 )

(i) _ 1 (i) (i) (i) (i)
Q10lO - 4"(3a20lO + 3a1020 - a0030 - a 3000 )

(i) _ 1 (i) (i) (i) (i)
QOll0 - 4"(3a0210 +3a0120 - a 0300 - a 0030)

5 Visualization and Examples

We can visualize the graph of the constructed function F on the domain surface D either by
projecting the iso-contours onto the surface D, or by directly dsiplaying iso-contours or the
surface graph of the function F in space.
Displaying Iso-contours of F on D

11



Figure 5.1: Iso-contours of a C 1 approximated function F shown on a domain torus D

Figure 5.2: Iso-contours of a C 2 approximated function F shown on and surrounding a domain
torus D using a normal projection
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We display the iso-contours on the domain surface by showing different colors in the region
between two iso-contours. In our approach, we achieve this by first generating a planar triangular
approximation of the domain surface, and then generating the corresponding four dimensional
triangles on F, and finally intersecting these triangles with the iso-values to get the line segments
of the iso-contours. Let w be a given iso-value, [P1P2P3] be a triangle on D. Without loss of
generality, we may assume F(P1) ~ F(P2) ~ F(P3)' Then if w < F(P1) or w > F(P3), the
triangle does not intersect the iso-value. If w E [F(P1)' F(P3)] , say w E [F(P1)' F(P2)], let
t - W-F(Pl) t - W-F(Pl) - t + (1 t) - t + (1 t) th [ ]

1 - F(P2)-F(Pl) ' 2 - F(P3)-F(Pl)' q1 - 1P1 - 1 P2, q2 - 2P1 - 2 P3, en q1q2
is one segment of the contour F(p) = w. The collection of all of these line segments form a
piecewise approximation to the iso-contours. By increasing the resolution of the triangulation of
the domain surface, we can get better approximations of the iso-contours. Figure 5.1 (left and
right) shows the iso-contours of a C1 approximated function F, on a domain torus D. Figure 5.2
(left and right) shows the iso-contours of a C2 approximated function F, on a domain torus D.
The iso-contours of the C2 approximated function F are also shown surrounding the domain
torus using the normal projection scheme given below.
Displaying Iso-contours and the graph of F in R 3

Since the iso-contours may not clearly indicate the geometric shape of the function-on
surface, one often plot the function-on-surface in one way or another. One approach is to use
a radial projection from some center of the domain. However, if the domain surface is not
convex or has non-zero genus, this projection scheme has difficulties caused by self-intersection.
Another more natural way is to use the normal projection, that is, project the point P on
the domain surface D to a distance proportional to F(p) in the normal direction of D at p:
G( ) L V'f(p)(F(p)-Fmin) h L . 't' 1 D d D • • dP = P + IIV'f(plll(Emax-Fmin) were IS a POS1 1ve sca ar, rmin an r max are mlllimum an
maximum values of F on D. Here L has to be chosen properly so that the projected surface G
does not self-intersect.

Figures 5.3, 5.4, (left and right) shows the iso-contours of a C2 approximated function F, on
a domain D. The iso-contours of the C2 approximated function F are also shown surrounding
the domain using the normal projection scheme.
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