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1 INTRODUCTION

Our approach to the design and analysis of geometric algorithms for operations on polynomial (algebraic) curves
and surfaces is to take the view of abstract data types, that is, a dala representation coupled together with
the operations on them (7, 8]. In this framework, the choice of which representation of the polynomial curve or
surface patch to use is determined by the desired optimality of the geometric algorithms for the operations.

Polynomial curves and surfaces can be represented in an implicit form, and sometimes also in a parametric
form. The implicit form of a real polynomial surface in I? is

flz,3,2)=0 (1)
where f is a polynomial with coefficients in IR.. The parametric form, when it exists, for a real polynomial surface
in R® is
fi(s,t)

f‘i(s! t)

y = f2(3: t)
f‘i(s!t)
fS(SIt)

z = = Lf 2
Fals.) ®

where the f; are again polynomials with coefficients in IR. The above implicit form describes a two dimensional
real algebraic variely (a surface) with a single polynomial equation in IR3, The parametric form also describes a
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real two dimensional algebraic variety (a surface), however with a set of three independent polynomial equations
in IR®, with coordinate variables z,y,z,s,1. Alternatively, the parametric form of a real surface may also
be interpreted as a rational mapping from IR? to IR®. We can thus compare the implicit and parametric
representations of polynomial surfaces by considering Lthe the parametric form either as a mapping or alternatively,
an algebraic variely.

In these notes, we consider specific geometric operations of display/finite element mesh generation and data
fitting, and compare the implicil and parametric polynomial forms for their superiority (or lack thereof) in
optimizing algorithms for operations in these categories.

Section 2 sets the terminology and introduces some well known facts about pelynomial curves and surfaces
and their patch representations. Section 3 compares the implicit and parametric surface representations for
graphics display and triangular mesh generation operations. Here the rational mapping gives an advantage to
the parametric form, though the algorithms to solve this problem in this representation are still non-trivial.
Seclion 4 considers the tradeofl between implicit and parametric surlace splines for interactive design and data
fitling operations.

2 PRELIMINARIES
2.1 Mathematical Terminology

In this section we review some basic terminology from algebraic geomnetry that we shall use in subsequent sections.
These and additional facts can be found [or example in [64, 68].
The set of real and cornplex solutions (or zere set Z{C)) ol a collection C of polynomial equations

f](zll"'!zd) = 0

Jalz1yoyzd) =0 (3)

with coefficients over the reals IR or complexes T, is referred to as an elgebraic set. The algebraic sct defined
by a single equation (m = 1) is also known as a hypersurface. A algebraic set that cannot be represented as the
union of two other distinct algebraic sets, neither containing the other, is said to be irreducible. An irreducible
algebraic set Z(C) is also known as an algebraic veriely V.

A hypersurface in IRY, some d dimensional space, is of dimension d—1. The dimension of an algebraic variety
V is k if its points can be put in (1,1) rational correspondence with the points of an irreducible hypersurface
in & 4 1 dimensional space. In IR, a varicty V; of dimension % intersects a a variety V» of dimension k, with
h > d—k, in an algebraic set Z(S) of dimension at least & + k& — d. The resulting interseclion is termed proper
if all subvarieties of Z(S5) are of the same minimum dimension f 4+ k — n. Otherwise the intersection is termed
ezcess or improper. Let the algebraic degree of an algebraic variety V be the mazimum degree of any defining
polynomial. A degree 1 hypersurface is also called a hyperplane while a degree 1 algebraic variety of dimension
k is also called a k-flat. The geometric degree of a variety V of dimension & in some IR? is the maximum number
of intersections between V and a (d — k)-flat, counting both real and complex intersections and interscctions
at infinity. Hence the geometric degree of an algebraic hypersurface is the maximum number of intersections
between the hypersurface and a line, counting both real and complex intersections and at infinity.

The following theorem, perhaps the oldest in algebraic geometry, summarizes the resulting geometric degree
of intersections of varieties of different degrees.
[Bezout] A variely of geometric degree p which properly intersects a variety of geometric degree ¢ does so in an
algebraic set of geometric degree either at most pg or infinity. ©

The normal or gradieni of a hypersurface 7 : f(z,, ..., #n) = 0 is the vector Vf = (fz,, fza,- - +fz.). A point
P = (a0, a1, -..an) on a hypersurface is a regular point if the gradient at p is not null; otherwise the point is
singular. A singular point q is of multiplicity e for a hypersurface H of degree d if any line through q meets
‘H in at most d — e additional points. Similarly a singular point q is of multiplicity e for a variety V in R® of
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Figure 1: A Classification of Low Degree Algebraic Curves

dimension ¥ and degree d il any sub-space IR™~* through q meets ¥ in at most d — ¢ additional points, It is
important to note that even if two varieties intersect in a proper manner, their intersection in general may consist
of sub-varieties of various multiplicites. The total degree of the intersection, however is bounded by Bezout’s
theorem. Tinally, one notes thal a hypersurface f(zy,...,z,) = 0 of degree d has K = (":d) coellicients, which
is one more than the number of independent coefficients. Hypersurfaces f(z1,...,zn} = 0 of degree d form K — 1
dimensional vector spaces over the field of coefficients of the polynomials.

Finally, two hypersurfaces f(z;,...,2,) = 0 and g(z1,...,Z,) = 0 meet with C*-continuity along a common
subvariety V' if and only if there exist functions a(z1,...,2,) and #(z,,..., z,) such that all derivatives upto
order k of o f — Bg equals zero at all points along V, see for e g., [36].

2.2 Polynomial Curves and Surfaces

We cast our real implicit and parametric curves and surfaces, in ithe terminology of the previous subsection.
A real implicit algebraic plane curve f(z,y) = 0 is a hypersurface of dimension 1 in IR?, while a parametric
plane curve [fa(s)z — fi(s) = 0, fa(s)y — fo(s) = 0] is an algebraic variety of dimension 1 in IR3, defined
by the two independent algebraic equations in the three variables z,y,s. Similarly, a real implicit algebraic
surface f(z,y,2) = 0 is a hypersurface of dimension 2 in IR®, while a parametric surface [fa(s, t)z — fi(s, ) =
0, fa(s, )y — fa(s,t) = 0, fa(s,t)z — fa(s,t) = 0] is an algebraic variety of dimension 2 in IR%, defined by Lhree
independent algebraic equations in the five variables =, 4, 2, s, 1.

A plane parametric curve is a very special algebraic variety of dimension 1 in z, 3, s space, since Lhe curve lies
in the 2-dimensional subspace defined by x,y and furthermore points on the curve ¢an be put in (1, 1) rational
correspondence with points on the 1-dimensional sub-space defined by s. Parametric curves are thus a special
subsel of algebraic curves, and are often also called rational algebraic curves. Figure 1 depicts the relationship
belween ihe set of parametric curves and non-parametric curves at various degrees.

Example parametric (rational algebraic) curves are degree two algebraic curves (conics) and degree three
algebraic curves (cubics) with a singular point. The non-singular cubics are not rational and are also known
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Figure 2: A Classification of Low Degree Algebraic Surfaces

as elliptic cubics. In general, a necessary and sufficient condiiion for the rationality of an algebraic curve of
arbitrary degree is given by the Cayley-Riemann criterion: a curve is rational iff g = 0, where g, the genus of the
curve is a measure of the deficiency of the curve’s singularities from its maximum allowable limit [66]. Algorithms
for computing the genus of an algebraic curve and for symbolically deriving the parametric equations ol genus 0
curves, are given for example in [1, 2, 3].

Similarly, a parametric surface is a very special algebraic variety of dimension 2 in z,, z, 5,1 space, since the
surface lies in the 3-dimensional subspace defined by ,y, z and furthermore poinis on the surface can be put in
(1,1) rational correspondence with points on the 2-dimensional sub-space defined by s,f. Figure 2 depicts the
relationship between parametric and non-parametric surfaces.

Example parametric (rational algebraic) surfaces are degree two algebraic surfaces (quadrics) and most degree
three algebraic surfaces (cubic surfaces). The cylinders of nonsingular cubic curves and the cubic surface cone
are of not rational. Other examples of rational algebraic surlaces are Steiner surfaces which are degree lour
surfaces with a triple point, and Pliicker surfaces which are degree four surfaces with a double curve. In general,
a necessary and sufficient condition for the rationality of an algebraic surface of arbitrary degree is given by
Castelnuovo’s criterion: Py = P, = 0, where P, is the arithmetic genus and P; is the second plurigenus [67).
Algorithms for symbolically deriving the parametric equations of degree two and three rational surfaces are given
in[1, 2, 3, 4, 62).

2.3 Degree & Singularities

For implicit algebraic plane curves and surfaces defined by polynomials of degree d, the maximum number
of intersections between the curve and a line in the plane or the surface and a line in space, is equal to the
maximum number of roots of a polynomial of degree d. Hence, here the geometric degree is the same as the
algebraic degree which is equal to d. For parametric curves defined by polynomials of degree d, the maximum
number of intersections between the curve and a line in the plane is also equal to the maximum number of roots
of a polynomial of degree d. Hence here again the geometric degree is the same as the algebraic degree. For




parametric surfaces defined by polynomials of degree d the geometric degree can be as large as d2, the square
of the algebraic degree d. This can be seen as follows. Consider the intersection of a generic line in space
{@1z + b1y + c1z2 — d1 = 0,027 + bay + €22 — d2 = 0] with the parametric surface. The intersection yields two
implicit algebraic curves of degree d which intersect in O(d?) points (via Bezoul's theorem), corresponding to
Lhe intersection points of the line and the parametric surface.

A parametric curve of algebraic degree d is an algebraic curve of genus 0 and so have Ld—_%@l = O(d?)
singular (double) points. This number is the maximum number of singular points an algebraic curve of degree
d may have. From Bezout's theorem, we realize that the intersection of two implicit surfaces of algebraic degree
d can be a curve of geometric degree O(d?). Furthermore the same theorem implies that the inlersection of two
parametric surfaces of algebraic degree d (and geometric degree O(d?)) can be a curve of geometric degree O(d*).
Hence, while the potential singularities of the space curve defined by the intersection of two implicit surfaces
defined by polynomials of degree d can be as many as O(d1}, the potential singularities of the space curve defined
by the intersection of two parametric surfaces defined by polynomials of degree d can be as many as O(d5).

2.4 Polynomial Patch Representations

The popular polynomial bases amongst interactive geometric designers are the Bernstein-Bézier and the B-Spline
basis. These bases are defined for restricted subdomains of the deining space as opposed 1o the power basis which
is defined for all points of the space. The example formulations given below are defined for values of cach of the
variables z, y and z in the unil interval [0,1].

Bernstein-Bézier Basis (BB)

Univariate: o
P(z)=)  w;Bl'(z)
Jj=0
where
B™(z) = (’:‘) (1 — )™=
Bivariate:
(1) Tensor:

P(z,y) =Y wi B (z)Bl ()

i=0 y=0
(2) Barycentric:
P(z,y)=) > wiBj(z,9)
=0 j=0
where
m my ;o m—i—j
B (z,y) = (ij)z vY(l-z—-y)™ "7
Trivariate:
(1) Tensor:
m n p
P(z,y,2) =Y > > wiji B )B} (v) By (z)
i=0 j=0 k=0
(2) Mixed:

m—i

P(z,y,2) = Z Z > bk B (2, v)Bi(2)

m -
i=0 j=0 k=D




(3) Barycentric:

—im—i—3

Plz,y,z)= Z wiie Biip(z, 9, 2)

m
i=0 j=0 k=D

3

T
Il

where
Bm = [P - —_ m—i—j—k
I_;lk(a:!y! Z) (ijk)z y’z (1 & ¥ Z)

The B-spline basis over the unit interval [0,1] is easily generated by a fractional linear recurrence as given
below for the univariate case. The bivariate and trivariate forms can also be similarly generated from this in
either tensor product or barycentric form, as given for the BB form above.

B-Spline Basis
Univariate:

Po =Y piN(2)
=0

where
er (z) = 1 for z; < zpy

0 otherwise.

and knot sequence 0 =ug < w3 < ... < uypy1 = 1

T — Zj-1 -1 Tign — T -1
N =N —  — N
r(z) Ztamr — o (=) + ———" (2)

Both the parametric and the implicit representation of algebrate curve segments and algebraic surface patches
can be represented in cither of the above BB or B-spline bases. Note that the canonical representation of a
parametric plane curve segment and surlace patch in =, y, z space are given by Curve:

z = Py(1),
= Pg(t),
w= P3(i).
Surface:

= P](S,t),
¥ = Pa(s,1),
z = Pa(s,t),
w = Py(s,1).

where the P; are polynomials in any of the above appropriate bases and the variables/parameters s, and t range
over the unit interval [0,1].
An implicit curve segment and surface patch can be defined in z,y, z space by Curve:

z2=Plz,y)Az=0

Surface:
w=Plz,y,z2)Aw=0

where the P is a polynomial in any of the above appropriate basis and the variables =, y, z range over Lhe unit
interval [0,1].

The work of characterizing the BB form of polynomials within a tetrahedron such that the zero contour of the
polynomial is a single sheeted surface within the tetrahedron, has been attempted in the past. In [60], Sederberg
showed that if the coefficients of the BB form of the trivariate polynomial on the lines that parallel one edge,
say L, of the tetrahedron, all increase {or decrease) monotonically in the same direction, then any line parallel
to L will intersect the zero contour algebraic surface patch at most once. In [39], Guo treats the same problem
by enforcing monotonicitly conditions on a cubie polynomial along the direction from one vertex to a point of the
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opposite face of the vertex. From this he derives a condition ax_e, 4., —ax > 0 for all A = (A), Aa, A3, A4)T with
A1 = 1, where a are the coefficients of the cubic in BB form and e; is the i-tk unit vector. This condition is
difficult to satisfy in general, and even if this condition is satisfied, one still cannot avoid singularities on the zero
contour. In{l1, 10] sufficient conditions of a smooth, single sheeted zero contour generalizes Sederberg’s condition
and provides with an efficient way of generating nice irnplicit surface patches in BB-form (called A-patches for
algebraic patches). See Figures 3 and 4.

3 DISPLAY & MESH GENERATION

We present two algorithms for computing planar triangular approximations (triangulations) of real algebraic
surfaces, one specialized Lo the implicit representation[20], and the other for the rational parametric[16]. These
are easily adaptable to different implicit and parametric surface patch representations. Modern day computer
graphics hardware accept such triangulations and accurately render the complicated surfaces with sophisticated
lighting and shading models. Similar planar triangular meshes of surfaces are required for finite element methods
of solving systems of partial differential equations. See also [17, 19, 20, 21] for higher order, curved finite element
approximations of implicil polynomial curves and surfaces with piecewise parametric splines.

3.0.1 Implicit Surfaces

To compute real points on implicit polynomial surfaces requires the solution of polynomial equations. Further-
more, the problem of construcling a polygonal approximation, especially for finite element meshes, is complicated
by the need for a correct topology of the mesh even in the presence of singularities and mulliple sheets of the
real polynomial surface. Direct schemes which work for arbitrary implicit polynomial surfaces are based on
the entire enclosing space: either the regular subdivision of the cube [23], a finite subdivision of an enclosing
simplex [43], uniform refinement [19] or enclosing simplicial continuation [6] or enclosing cube continuation [25].
However, such spatial sampling methods fail in the presence of point and curve singularities of the polynomial
surface, or yield ambigucus topologies in neighborhoods where multiple sheets of the surface come close together.
Symbolic methods are necessary to disambiguate or calculate the correct topology for general polynomial curves
and surlaces.

Our algorithm uses a triangular surface patch expansion scheme and works directly on the surface instead of
a spatial subdivision. It requires a seed point for cach real component of the polynomial surface. Compared to
the above approaches the patch expansion is cenlered on points on the surface, and fully uses the polynomial
and its derivatives to construcl local neighborhoods of canvergence. The point selection and hence Lhe final
triangulation is adaptive to the k°h order of derivatives (e.g. & = 2 implies curvature adaptive) selected for each
expansion. By its very nature the triangulation generalizes to arbitrary analytic function surfaces and not just
algebraic (polynomial) surfaces.

We begin with a [ew notational definitions

FEzpansible edge. During the process of expansion of the triangular mesh, an edge is called expansiblc if we can
go Turther from this edge to obtain a new triangle on the surface. That is

(a) this edge is on the boundary of the presently constructed mesh
(b) this edge is inside the given boundary box.

The directional expansion, expansion poini and the T-plane,

Let py = (p§, 4, pi) be a point on the surface f(z,y,z) =0. If
|3f(PD) (or 0f(pa) laf(Po)

8z oz dy
then the surface f(z,y, 2} = 0 can be expressed locally as a power (Taylor) serics z = ¢(z,y) (or z = ¢(y, 2),
¥ = ¢{z, z)). We call this a z-direction ezpansion. The point pg is referred to as the ezpansion poini. The

) = 19720l




%L?l(s: -p31+ g‘%ﬁ—“l(y -+ 2%5_01(2 — p3) = 0 the tangent plane of f =0 at po, denoted by T-plane.

The projection of a space point p onto the T-plane is denoted by T'(p).
The following algorithm constructs a triangular mesh on each real component of a real polynomial surface,
within a given bounding box. We assume that we have a starting seed point on each real component of the
surface in this bounded region. Several numeric and symbolic methods exist to compute such seed points [20, 28]

1. Initial Siep: For a given seed point pp on a real component of the surface f(z,y,z) = 0, we first compute
a directional expansion, say z = ¢(z,y). On the T-plane, find a circle with center pp such that ¢(z,¥)
is convergent within the circle. The computation of the radius of convergence, based on the % coefficient
terms of a power series expansion are well known and given for example in [44]. Take three poinls on the
circle uniformly, say qo, g1, g2, and refine the points (g;, 2(¢;)) by a Newton iteration such that the resulting
points V; are on the surface. The triangle [Vp, V1, Vo] is the first one we want. Each edge of this triangle
is expansible except perbaps if the seed point was chosen such thal one edge is on the boundary of the
surface with respect to the bounding box.

2. General Step: Suppose we have constructed several space triangles that form a connected mesh. Assume al
least one edge (V;, V;) of a boundary triangle (V;, V}, Vi] is expansible. Then the general step is to construct
one or more triangles that connects to the edge (V;, V5)

(a) Start from the expansion point Fjj. of the triangle [V;, V;, Vi} and directional expansion, say z =
&(z,y). Choose one point ¢} on the T-plane at F;;;. within the convergence radius, such that @ is on
the middle-perpendicular line of [T(¥;), T(V;)] and as far as possible from T'(Pij)-

(b) Refine the point (Q, z(?)) to a point on the surface, say €. The point @ becomes a new expansion
point. Compute directional expansion at @, say z = ¢;(=z,y), and its circle ol convergence. The
triangulation around @, s reconstructed as follows.

o Let [V;, V)] and [V}, Vin] be the neighboring edges of [Vi, V;]. Then on the T-plane at point @, if
the angle < T(V;)T(V;)T(Vi) > § and < T(V;)T(V;)T(Va) > % or the convergence circle has no
intersection points with [T(V;), T(V1)] and [T(V;), T(Vin)], then choose the intersection poini @2
of the circle and the perpendicular line of [T(V;), T(V;)] passing through T'(@1). I (T(Q1), Q1)
intersects a previous edge or the bounding box, then s is chosen to be this intersection point.
Refine {Q2, $1{@Q2)) and obtain a new vertex V,, and form the new triangle [V;, V}, V;,]. Also see
top part of Figure 5.

o If the angle < T(V;)T(Vi)T(V) < % and (T(V;), T(V;)) intersect the circle (or, angle < T(V:)T(V; )T (Vi) <
Z and (T(V;),T(V.n)) intersects the circle), (see middle part of Figure 5, then take @, as this
intersection point. Otherwise take ¢y = T(V;). In the first case, we add a point on the edge
[V;, V] and divide it into two edges, [Vi, V] and [V5, V4], The [V2, V4] is expansible and {Va, V4]
is not. A new expansible edge [V}, V5] is produced. In the second case, edge [V, V;] and [V;, V]
become non-expansible and a new expansible edge [V}, Vi] is generated. A related case is shown
in the botiom part of Figure 5 and is handled in much the same fashion.

3. Final Step. We iterate the General Step, until every edge is non-expansible for that real component.

Figure 6 shows the triangulation of implicitly defined polynomial surfaces.

3.0.2 Rational Parametric Surfaces

A well-known strength of the parametric representation (its mapping from IR? to IR?) is the ease by which real
points can be generated on the parametric curve or surface. However the problem of constructing triangulations
with consistent topology is still highly non-trivial. Arbitrary rational parametric surfaces have real pele curves
in their domain, where the denominators of the parameter functions vanish, domain real base peints for which
all four numerator and denominator polynomials vanish simultaneously, and other features that cause naiive
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Figure 5: Expansion Steps for the Surface Triangulation




Figure 7: A Quadratic Parametric Surface with Domain Poles

polygonal approximation algorithms to fail. These are ubiquitous problems occurring even among the natural
quadries. See examples shown in Figures 7 and 8.

In geometric design and graphics, where rational Bezier and B-spline surfaces have become popuiar, the
above problems have so far been avoided by a restriction to smooth rational surface patches with denominator
polynomials having all positive coefficients [32, 58] (i.e. no real poles or real base points). Sophisticated but
unsuspecting triangulation techniques which accept arbitrary rational parametric input (e.g. those implemented
in MapleV, Mathematica, Macsyma) produce completely unintelligible results. Our second algorithm provides a
complete and general solution to this problem.

We first illustrate the topological problems that arise if one naively mapped a triangulation from the (s,1)
domain to the surface in (z,y, z) space, using the rational parametric equations.

1. [Finite Parameter Range] To fully cover the parametric curve or surface, one must allow the parameters
to somehow range over the entire parametric domain, which is infinite. For example, the unit sphere
f(z,9,2z) = 2% + y* + 22 — 1 = 0 has the standard rational parametric representation (z = ﬂ_—%’ﬁ, y=




Figure 8: A Cubic Parametric Surface with Seam Curves Due to Base Points

o4 1—a?—¢?
1453443 1453443
values s = = co.

z= ) In this parameterization the point (0,0,-1) can only be reached by the parameter

. [Poles] Even when restricting the surface to a bounded real part of the parametric domain, the rational
functions describing the surface may have poles over that domain. A hyperboloid of two sheets, with
implicit equation z® + yz + zz — y* — zy — 22 — 1 = 0, has the parametric representation (z(s,{) =

s — 4t — 5t°46Gat— 2045572541 :
e s 1) = sarmimee 2(s 1) = AR =E) then problems arise because of the

pole curve described by 5i2 + 6st 4 55 — 1 = 0 in the parameter domain. See Figure 7.

. [Base Points] The rational parameter functions describing curves and surfaces are generally assumed to be
reduced to lowesl common denominators, i.e., the numerator and denominator of each rational function
are relatively prime. Thus for a curve, there is no parameter value that can cause both numeralor and
denominator of a rational parameter function to vanish. For surfaces, the situation is different. For the
general parametric representation staled earlier, even if fi, fa, fa, f1 are relatively prime polynomials, it
is still possible that there are a finite number of points (a,b) such that fi(a,b) = fa{e,b) = fa(a,b) =
fa(a,b) = 0. Each such point is called a bese point of the parametric surface and is a value for which the
parametric mapping is undefined (2). There may also be base points at infinity in the parameter domain,
and the basc points can be complex as well as real-valued. Information about base points can be found
in books on zlgebraic geometry such as [64, 67]. Base points are problematic since there is no one surface
point for the corresponding domain point. To each base point there actually corresponds a curve on the
surface [64], and since there is no parameter value for surface points on such a curve, the entire curve will
be missing from the parametric surface. Such a curve is called a seam curve. See the right side of Figure 8
which corresponds the cubic parametric surface £ = 'a"',,‘";:,‘_l_’:"‘l Y= 2‘3“:,'_'_’:;':'12"3*‘2,: = ‘;_;_ij_‘l'_al. Thus
for a valid triangulation of a parametric surface, one should also consistently triangulate the gaps caused
by the seam curves.

Finite Parameter Range Solution

In [15], the infinite parameter value problem is solved for rational varieties in any dimension using projective

linear transformations of ithe domain. We reproduce without proof the key results, which are necessary for the
triangulation algorithm.

Lemma 3.1 Consider a rational algebraic variely of dimension n in R™, n < m, given by paramelric equations

zl(sll ey 3")
V(S) = 3 5 € [_ool +°°]

3m(511 - -,Sn)




Figure 9: A Complete Triangulation of the Steiner Parametric Surflace

Lei the 27 octani cells in the parameter domain R" be labelled by the tuples < oy,...0n > with o7 € {—1,1}.

Then the projeclive reparameterizations V(teo,, . a.>) given by
i

1—ty—ta—...— 1’

i=1,...,n 4)

5§ = a0y

together map the enlive rational variely using only i; > 0 suck that 0 <¢; + o+ ...+ < 1.

i —1
Corollary 3.1 Rational curves C(s) = (z1(5),...,zm(5))¥, 5 € [—00,+00] are covered by C(m),C(E

)i

using ondy 0 <2 < 1.

Corollary 3.2 Rational surfaces S(s1,52) = (z1(s1,52),- - -, Zm(51,52))7, 51,52 € [—00, +00] are covered by
4 12 —1 2
r S ] !
S(I—tl—tgll—il—h) (l—il—ig 1-—11-—32)

-1 —to i —13
)

S(l—tl —13’1—11—12)' 3(1—11—12’1—11—12
using onlyi; > 0A0 <1+ < 1.

The projective reparameterizations are shown here as fractional affine domain Lransformations for convenience.
In practice, the parametric equations of the rational variety would be homogenized using an additional variable
and the numerator and common denominator substituted separately as polynomials, thus avoiding rational
function manipulation.

: _ 2t — __2s _ 2 : _ A2 4 6a4A) =438
) For :.he Steiner s:n‘face (== 1595 ,ay = 17.958 .:z = Tear3)» and the cubic elbow surface (z = =8
A1 4L{—a27 — 61 —20)142s74-81416 _ (2sBNTH(~15-12)1—57—4s - N . . .
TR TEwL vy 13 = SA—417:744: 18 ), four different projective reparameterizations yield a

complete covering of the rational parametric surface. See Figure 9.

Solution for Domain Poles

The main idea behind the solution is as follows: The (s,2) domain is triangulated in such a way that triangles
conlain pole points only at their vertices. A domain triangle with a pole at a vertex may map onto an infinite-area
surface patch, which may lie partly inside the bounding region. If we determine this to be the case, we binary
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Figure 10: A Domain Triangulation over Unit Simplexes for a Hyperboloid of Two Sheets

search on the edges of the surface triangle for points that intersect the bounding box, clip it with respect to the
box and re-triangulate the resulting four or five sided convex polygon on the surface.
The algorithm([14] is as follows.

1. Perform the projective reparameterizations so the entire surface is mapped in four pieces. Perform the
next steps for each piece.

2. Generate points on the pole curve that lies inside the unit simplex.

3. Generate points in the rest of the unit simplex according Lo some scheme. The two kinds of points are
distinguished from each other.

4. Compule a triangulation ol the points thus generated. If an edge of any such triangle intersects the pole
curve, insert the intersection point and recompute the triangulation.

5. Every triangle will then have 0, 1, or 2 pole points. A triangle with 3 pole points is split by inserting
a simple point in its interior. See also Figure 10. If a triangle has no pole points, it can be mapped
immediately to the surface. Suppose it has one pole point and two regular points. Let the pole point be
called p and the regular points g1, gg. We denote the surface peint corresponding to a point x as 9(x).
We assume that S(p) is a point at infinity, which is likely since p is a pole. If S(qy ), S(gp) both lie outside
the bounding region, this triangle will not be mapped. If both lie inside the region, then a binary search
is performed along the edges [rom p to q; and p to qg, for the intersection points S(qy ), S(qa) with the
bounding box. Then mapped surface triangle is thus replaced by a polygon using the two new vertices. By
a similar process a a domain triangle with two pole points, and one simple point is either discarded, or the
two pole points in the triangle are replaced by regular points whose images are Lthe intersection of the the
bounding box and the mapped triangle. Each resulting four or five sided polygon on th surface is convex
and easily triangulated.




Figure 11: Complete Triangulaticns and Display of Rational parametric surfaces

Pole curve points with the unit simplex are generated for example by the subdivision method of [37]. In the
the second sctup, we just generate a constant-size triangular grid on the unit simplex. The grid points are merged
with the pole curve points in a special dala struclure that allows Lhem to be marked as pole or regular points,

and an incremental Delaunay triangulation of the entire sel of points is constructed [33, 35]. See Figures 10 and
Vi'd

Solution to Base Points

First an important fact about the image of a base point: Base points blow up o curves on the surface ([64],
Chapter VI, section 2.1, Theorem III, p. 107). Let O be a base point of multiplicity g, and each of the curves
H(s, 1) =0,..., fa(s,t) = 0 have ¢ distinct tangents at O. Furthermore, let the curves have no common tangents
al (. Then the image ol the base point O is a curve of degree g on the surface S.

In [16] we show how to compute a parameterizalion of the seam curve, from the original parameterization
and for any base point. For a better correspondence of the surface parameterization to the seam curve parame-
terization we redefine X = X(s,1) = fi(s5,8)Y = Y(s,%) = fa(s5,1), Z = Z(s,1) = fa(s,1), W = W(s,1) = fa(s,1).

Theorem 3.1 Lei (a,b) be an affine base point of multiplicity q. Then for any m € R, the image of a domain
point approaching (a,b) along a line of slope m is given by

(X(m), ¥ (m), Z(m), W(m) = (z(aa"—xmw)mz(;‘—gw)m) )

i=0 i=0

The points (X (m), Y (m), Z(m), W(m)) form a one-dimensional family or curve on the surface S, of degree at
most ¢, called the seam curve of the base point (a, ).

Corollary 3.3 If the curves X(s,1) = 0,...,W(s,t) = 0 share ¢ tangent lines al (a,b), then the seam curve
(X(m),Y (m), Z(m), W(m)) has degree g—t. In particular, if X(s,t) =0,...,W(s,t) = 0 have identical tangents
al (a,b), then for all m € R the coordinates (X(m),..., W(m)) represent a single poini.

Knowing the parameterization (X(m),Y (m), Z(m), W(m)), with parameter m ol each real seam curve it is
quite straightforward to sample this curve at distinct values of m, and stitch the triangulation together.




4 DATA FITTING

Consider the problem of constructing a C* mesh of smooth surface patches or splines that interpolate or approx-
imate scattered data in IR3. Computations which we would like Lo optimize by our choice of curve and surface
representation include:

¢ solution requiring a small number of surface patches
¢ reduction of the fitting problem to solving small linear systems
* low geometric degree of the solution surfaces

There are several possible variants of the problem depending on the nature of the interpolation problem
on hand: local versus non-local patch interpolalion, splitting v.s. non-splitting of the surface patches per
triangulation face, the convexity versus non-convexity of the given triangulation, etc. In cach of these cases,
the comparison between the implicit versus parametric representation does not yield a clear winner. While the
implicit representation yields lower geometric degree solutions (for reasons relating to degrees of freedom and
the number of constraints, the parametric surfaces shows a clear advantage when suitable surfaces need to be
selected from an infinite family of interpolatory solutions. Straightforward conditiens on the parameter domain
can yield parametric surface solutions which are {ree of poles and base peints.

The generation of 2 C! mesh of smooth surface patches or splines that interpolate or approximate trigangulated
space data is one of Lhe central topics of geometric design. Alfeld [5], Chui [26], Dahmen and Michelli [31] and
Hollig [46] summarize much of the history of scattered data fitting and multivariate splines. Prior work on
splines have traditionally worked with a given planar triangulation using a polynomial function basis [5, 57, 63].
More recently surface fitting has been considered over closed triangulzaiions in three dimensions using parametric
surface patches [22, 20, 24, 34, 38, 42, 45, 47, 51, 53, 54, 55, 59, 65]. Little work has been done on spline
bases using implictly defined algebraic surface patches. Sederberg [60, 61} showed how various smooth implicit
algebraic surfaces in trivariate Bernstein basis can be manipulated as functions in Bezier control tetrahedra with
finite weights. Patrikalakis and Kriezis [52] extended this by considering implicit algebriac surfaces in a tensor
product B-spline basis. Ilowever the problem of selecting weights or specifying knot sequences for C! meshes of
implicit algebraic surface patches which fit given spatial data, was left open. Dahmen [29] presented a scheme
for constructing C! continuous, piecewise quadric surface patches over a data triangulation in space. In his
construction each triangular face is split and replaced by six micro quadric triangular patches, similar to the
splitting scheme of Powell-Sabin [56]. More on this later. Moore and Warren [50] extend the marching cubes
scheme of [48] and compute a C! piecewise quadratic approximation (least-squares) to scattered data. They too
use a Powell-Sabin like split, however over subcubes.

In paper [13] the authors consider an arbitrary spatial triangulation 7 consisting of vertices p = (z:, 9, 2:)
in R? (or more generally a simplicial polyhedron P when the triangulation is closed), with possibly “rormal”
vectors al the vertex points. An algorithm is given to construct a C! continuous mesh of low degree real algebraic
surface palches S; over 7 or P. The algorithm first converts the given triangulation 7 or simplicial polyhedron
P into a curvilinear wireframe (with at most cubic parametric curves) which C! interpolates all the vertices,
[ollowed by a fleshing of the wireframe with low degree algebraic surface patches. See Figure 12, The technique
is completely general and uses a single implicit surface patch of degree at most 7, for each iriangular face of
T of P, 1e. no local splitting of triangular faces. Furthermore, the C! interpolation scheme is local in that
each triangular surface patch has independent degrees of freedom which may be used to provide local shape
control. Extra free parameters may be adjusted and the shape of the patch controlled by using weighted least
squares approximation from additional points and normals, generated locally for each triangular patch. Similar
techniques exist for parametrics [24, 34, 38, 54, 59] however the geometric degree of the solution surfaces tend
to be prohibitively high.

In papers {11, 10] we show how to join a collection of cubic A-patches of §2 to form 2 C! smooth surface
interpolating scattered data points and respecting the topology of a given surface triangulation T of the points.
Tor this problem, prior approaches have been given by [29] using quadric patches, [30, 39, 40) using cubic paiches
and [13] using quintic for convex triangulations and degree seven patches for arbitrary surface triangulations 7',




Figure 13:

Figure 12: C! Implicit Splines over a Spatial Triangulation
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Figure 14: Adjacent Tetrahedra, Quintic Functions and Centrol Points for two Non-Convex Adjacent Faces
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Figure 15: A Surface Triangulation, the Simplicial Hull and some of the interpolatory G! Cubic A-Patches

All these papers provide heuristics to overcome the multiple sheeted and singularity problems of implicit patches.
In this paper our cubic A-patches are guaranteed to be nonsingular and single sheeted within each letrahedron.

While the details of the methods of [30] and [40) differ somewhat, they both use the scheme of [29] of building
a surrounding simplicial hull (consisting of a series of tetrahedra) of the given triangulation T. Such a simplicial
hull is nontrivial to construct for triangulations and neither of the papers [29, 30, 39, 40] enumerate the different
exceptional cases (possible even for convex triangulations) nor provide solutions to overcoming them. Paper [11]
also uses the same simplicial hull approach but enumerates the exceptional situations and provide strategies for
rectifying them. See Figure 15 for an example surface triangulation and its simplicial hull.

In [40], Guo uses a Clough-Tocher split{27] and subdivides each face tetrahedron of the simplicial hull, hence
utilizing three patches per face of T. In paper [11], we consider the computed “normals” at the given dala points,
and distinguish between “convex” and “non-convex” faces and edges of the triangulation. We use a single cubic
A-paich per face of T' excepl for Lhe following two special cases. For a non-convex [lace, if additionally the three
inner products of the face normal and its three adjacent face normals have different signs, then in this case one
needs Lo subdivide the face using a single Clough-Tocher split, yielding C! continuity with the help of three cubic
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Figure 16: The Complete Smoothing of the Surface Triangulation using C! Cubic A-Patches

A-patches for that face. Furthermore for coplanar adjacent faces of T, we show that the ¢! conditions cannot
be met using a single cubic A-patch for each face. Hence for this case we again use Clough-Tocher splits for the
pair of coplanar faces yielding C' continuity with the help of three cubic A-palches per face. See Figures 15,16
for examples of the C! interpolation of polyhedra.

The C! intcrpolation schemes of [11, 29, 30, 40, 41] all build an outside simplicial hull (consisting of a
series of edge and face tetrahedra) containing the given polyhedron P. As mentioned before, such a simplicial
hull is nontrivial to construct for arbitrary P (even convex P with sharp corners) and can give rise to several
exceptional situations and degencracies (co-planarity, hull self-intersection, etc). In [12] a new corner-cutting,
inner simplicial hull construction is presented and can handle all convex P and also arbitrary polyhedra with
non-convex faces. This new simplicial hull scheme is the three dimensional generalization of the two-dimensional
corner-cutting scheme used to construct C* continuous bivariate A-splines [18]. Using this new hull construction
lechnique paper [12] presents efficient algorithms to construct both a C* smooth mesh with cubic A-patches and
C? smooth mesh with cubic and quintic A-patches to approximate a given polyhedron P in three dimensions.




Figure 17: C! and C? Smooth Approximations

For the construction of smooth patch complexes within the simplicial hull built on two adjacent triangles(see
Figure 13 for C! and Figure 14 for C2.

See also Figures 17 and 18 for examples of the C! and C? approximation of polyhedra and their shape
modification.

5 QUICKTIME MOVIES

The CDROM includes two QuickTime movies showing algorithmic animations of :

1. Shows algorithmic animation of the C' interpolatory cubic A-patch data fitting scheme[11] discussed in
the previous section. The patch computations and display are done using a network of workstations, with
individual patch computations done on separate machines.

2. Shows algorithmic animation of C! smooth surface reconstructions from unorganized data points[9]. In this
movie one has used tensor-product A-patches (defined over cuboids) as opposed to the triangular A-patches
of the first movie.

Acknowledgement: Implementations of the above algorithms (for parametric and implicit surface palches), the
figures and the two QuickTime movies shown were all accomplished in SHASTRA, a distributed and collaborative
{multi-user, multi-workstation) [ree-form geometric design and visualization environment developed by the author
at Purdue University. Inlormation on SHASTRA software availabilily can be obtained from the author or via
anonymous {tp from [tp.cs.purdue.edu:pub/shastra/ and via the world wide web hypertext program Mosaic from
hitp://www.cs.purdue.edu/research/shastra/shastra.htmi.

References

(1] S. Abhyankar and C. Bajaj. Automatic Ralional Parameterization of Curves and Surfaces I: Conics and
Conicoids. Computer Aided Design, 19(1):11-14, 1987.




Figure 18: Shape Control of Smooth Approximations of a Polyhedron

(2] S. Abhyankar and C. Bajaj. Automatic Rational Parameterization of Curves and Surfaces II: Cubics and
Cubicoids. Compuler Aided Design, 19(9):499-502, 1087.

(3] S. Abhyankar and C. Bajaj. Automatic Rational Parameterization of Curves and Surfaces III: Algebraic
Plane Curves. Computer Aided Geomeiric Design, 5(1):309-321, 1988.

[4] S. Abhyankar and C. Bajaj. Automatic Rational Parameterization of Curves and Surfaces IV: Algebraic
Space Curves. ACM Transactions on Graphics, 8(4):324 - 333, 1989.

[56] P. Alfctd. Scattered Data Interpolation in Three or More Variables. In T. Lyche and L. Schumaker, editors,
Mathematical Methods in Compuler Aided Geomelric Design, pages 1-34. Academic Press, 1989.

(6] Allgower, E., and Gnutzmann, S.,. Simplicial Pivoling for Mesh Generation of Implicitly Defined Surfaces.
Compuler Aided Geomiric Design, pages 305-325, 1991.

[7] C. Bajaj. Geometric modeling with algebraic surfaces. In D. Handscomb, editor, The Mathemalics of
Surfaces JIT, pages 3-48. Oxford Univ. Press, 1988.

(8] C. Bajaj. The Emergence of Algebraic Curves and Surfaces in Geometric Design. In R. Mariin, editor,
Directions in Geometric Computing, pages 1 — 29. Information Geometers Press, 1993.

(9] C. Bajaj, I. Bernardini, and G. Xu. Reconsiruction of Surfaces and Surfaces-on-Surfaces from Unorganized
Weighted Poinis. Computer Science Technical Report, C5-94-001, Purdue University, 1994,

[10) C. Bajaj, J. Chen, and G. Xu. Modeling with Cubic A-Paiches. Computer Science Technical Report,
CSD-TR-93-02, Purdue University, 1993.

[11] C. Bajaj, J. Chen, and G. Xu. Free form surface design with a-patches. In Procecedings of Graphics
Inierface’d4, pages x—y, Banfl, Canada., 1994.

[12] C. Bajaj, J. Chen, and G. Xu. Smooik Low Degree Approzimations of Polyhedra. Computer Science Technical
Report, CSD-TR-94-002, Purdue University, 1994,

[13] C. Bajaj and I. Ihm. ! Smoothing of Polyhedra with Implicit Algebraic Splines. SIGGRAPH92, Computer
Graephics, 26(2):79-88, 1992.




[14] C. Bajaj and A. Royappa. The Robust Display of Arbitrary Rational Parametric Surfaces. In Curves end
Surfaces in Compuler Vision and Graphics ITI, pages 70 — 80, Boston, MA, 1992.

(15) C. Bajaj and A. Royappa. Finiie Representalion of Parametric Curves and Surfaces. In Proc. of IFIP TC
/WG 5.10 IT Conference on Geomeiric Modeling in Compuler Graphics, pages x-y, Genova, Italy, 1993,

[16) C. Bajaj and A. Royappa. Topologically Correct Approzimations of Arbitrary Rational Paramelric Surfaces.
Computer Science Technical Report, CAPO 93-06, Purdue University, 1993.

[17] C. Bajaj and G. Xu. Piecewise Rational Approzimatiion of Real Algebraic Curves. Computer Science
Technical Report, CAP(Q-91-19, Purdue University, 1991.

[18] C. Bajaj and G. Xu. A-Splines: Local Interpolation and Approzimaiion using C*-Conlinuous Piecewise
Real Algebraic Curves. Computer Science Technical Report, CAP(Q-92-44, Purdue University, 1992.

(19] C. Bajaj and G. Xu. NURBS Approzimation of Surface-Surface Inlersection Curves. Computer Science
Technical Report, CAP0O-92-17, Purdue University, 1992.

[20] C. Bajaj and G. Xu. Piecewise Rationel Approzimation of Real Algebraic Surfaces. Computer Science
Technical Report, CAPO 93-21, Purdue University, 1993.

[21] C. Bajaj and G. Xu. Rational spline approximations of real algebraic curves and surfaces. In H.P. Dikshit
and C. Michelli, editors, Advances in Computational Mathematics, pages x—x. World Scienlific Publishing
Co., 1994,

[22] Beeker, E. Smoothing of Shapes Designed with Free Form Surfaces. Computer Aided Design, 18(4):224-232,
1986.

[23] Bloomenthal, J. Polygonization of Implicit Surfaces. Computer Aided Geomeiric Design, 5:341-355, 1988.

[24] Chiyckura, H., and Kimura, F. Design of Solids with Free-form Surfaces. Compuier Graphics, 17(3):289-298,
1983.

[25] Chuang, J.,. Surface Approzimations in Geomiric Modeling. PhD thesis, Computer Science, Purdue Uni-
versity, 1990,

[26] Chui, C. Multivariaie Splincs. Regional Conference Series in Applied Mathematics, 1988.

[27] R. Clough and J. Tocher. Finite Element Stiffness Matrices for Analysis of Plates In Bending. In Proceedings
of Conference on Matric Methods in Structural Analysis, 1965.

{28] G. Collins. Quantifier Elimination for Real Closed Fields: A Guide to the Literature, in compuler algebra,
symbolic and algebraic computalion, 1983,

[29) W. Dahmen. Smooth piecewise quadratic surfaces. In T. Lyche and L. Schumaker, editors, Mathematical
Methods tn Compuier Aided Geometric Design, pages 181-193. Academic Press, Boston, 1989,

[30) W. Dahmen and T-M. Thamm-Schaar. Cubicoids: modeling and visualization. Computer Aided Geometric
Design, 10:93-108, 1993.

(31] Dahmen, W. and Micchelli, C. Recent Progress in Multivariate Splines. In L. Schumaker C. Chui and
J. Word, editors, Approzimation Theory I'V, pages 27-121. Academic Press, 1983.

[32] DeRose, T. Rational Bezier Curves and Surfaces on Projective Domains. In G. Farin, editor, NURBS for
Curve and Surface Design, pages 1-14. SIAM, 1091.

[33] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1987.




(34] G. TFarin. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design, 3:83-127, 1986.

[35] Fortune S.,. Numerical Stability of Algorithms for 2D Delaunay Triangulations. In Proc. of the 8th ACM
Symposium on Computational Geometry, pages 83-92, 1989.

[36] Garrily, T., and Warren, J. Geometric continuity. Compuler Aided Geomeiric Design, 8:51-65, 1991.

[37] Geisow, A.,. Surface Inierrogations. PhD thesis, University of Anglia, School of computing Studies and
Accountancy, 1983.

(38] Gregory, J., and Charrot, P. A C! Triangular Interpolation Patch for Computer Aided Geometric Design.
Compuler Graphics and I'mage Processing, 13:80-87, 1980.

[39] B. Guo. Modeling Arbitrary Smooth Objects with Algebraic Surfaces. PhD thesis, Computer Science, Cornell
University, 1991.

[40] B. Guo. Surface generation using implicit cubics. In N.M. Patrikalakis, editor, Scientific Visualizaton of
Physical Phenomene, pages 485-530. Springer-Verlag, Tokyo, 1991.

[41] B. Guo. Non-splitting Macro Patches for Implicit Cubic Spline Surfaces. Computer Grapkics Forum,
12(3):434 — 445, 1993.

[42] Hagen, H., and Pottmann, H. Curvature Continuous Triangular Interpolants. Mathemalical Methods in
Computer Aided Geomelric Design, pages 373-384, 1989.

{43] Hall, M., and Warren, J. Adaptive Polygonalization of Implicitly Defincd Surfaces. JEEE Compuier Graphics
and Applications, pages 33-42, 1990.

[44] P. Henrici. Applied and Compuiational Compler Analysis, 1988.

[45] Herron, G. Smooth Closed Surfaces with Discrete Triangular Inierpolants. Computer Aided Geomelric
Design, 2(4):297-306, 1985.

[46] Tollig, K. Multivariate Splines. SIAM J. on Numerical Analysis, 19:1013-1031, 1982.

f47] Liu, D., and Hoschek, J. GC! Continuity Conditions Between Adjacent Rectangular and ‘Iriangular Bezier
Surface Patches. Computer Aided Design, 21:194-200, 1989.

(48] Lorensen, W., and Cline, H. Marching Cubes: A High Resolution 3D Surface Construction Algorithm.
Compuler Graphics, 21:163-169, 1987.

[48] Micchelli, C., and Prautzsch, H.,. Computing Surfaces Invariant under Subdivision. Computer Aided
Geometric Design, 4:321-328, 1987.

(50] D. Moore and J. Warren. Approximation of dense scattered data using algebraic surfaces. Tn Proe. of the
24th Hawati Intl. Conference on Sysiem Sciences, pages 681-690, Kauai, Hawaii, 1991.

[61) Nielson, G. A Transfinile Visually Continuous Triangular Interpolant. In G. Farin, editor, Geomelric
Modeling Applications and New Trends. SIAM, 1986.

[62] Patrikalakis, N., and Kriezis, G. Representation of Piecewise Continuous Algebraic Surfaces in Terms of
B-splines. The Visual Computer, 5(6):360-374, Dec. 1989.

[53] Peters, J. Local Cubic and BiCubic C' Surface Interpolation with Linearly Varying Boundary Normal.
Computer Aided Geomelric Design, T:499-516, 1990,

[54] Peters, J. Smooth Interpolation of a Mesh of Curves. Censtructive Approzimation, 7:221-246, 1991.




[55] Piper, B. Visually Smooth Interpolation with Triangular Bezier Patches. In G. Farin, editor, Geomelric
Modeling: Algorithms and New Trends. SIAM, 1987.

[66] Powell, M., and Sabin, M. Piecewise Quadratic Approximations on Triangles. ACM Trans. on Math.
Seftware, 3:316-325, 1977.

(57) Ramshaw, L. Beziers and B-splines as Multiaffine Maps. In Theoretical Foundations of Computer Graphics
and CAD. Springer Verlag, 1988.

[58] Rockwood, A., Heaton, K., and Davis, T. Real-Time Rendering of Trimmed Surfaces. Computer Graphics,
23(3):107-116, 1989.

[69] R. Sarraga. G interpolation of generally unrestricted cubic Bézier curves. Computer Aided Geomeiric
Design, 4:23-39, 1987.

[60] T.W. Sederberg. Piecewise algebraic surface patches. Computer Aided Geometric Design, 2(1-3):53-59,
1985.

[61] T.W. Sederberg. Techniques for cubic algebraic surfaces, tutorial part ii. IEEE Computer Graphics and
Applications, 10(5):12-21, Sept. 1990.

(62) Sederberg, T., and J. Snively, J.,. Parameterization of Cubic Algebraic Surfaces. In Oxford Universily Press
R. Martin, cditor, The Mathematics of Surfaces IT, 1987.

[63] Seidel, H-P. A New Multiaffine Approach to B-splines. Computer Aided Geomeliric Design, 6:23-32, 1989.
[64) Semple, J., and Roth, L. Introduction to Algebraic Geometry. Oxford University Press, Oxford, U.K., 1949.

[65) Shirman, L., and Sequin, C. Local Surface Interpolation with Bezier Patches. Compuler Aided Geomelric
Design, 4:279-295, 1987.

[66] Walker, R. Algebraic Curves. Springer Verlag, 1950.
[67]) Zariski, O. Algebraic Surfaccs. Ergebnisse der Mathematik und ihre Grenzgebiete 4, 1935.
[68] Zariski, O., and Samuel, P. Commutative Algebra {Vol. I, II). Springer Verlag, 1958.




	Polynomial Surface Patch Representations
	Report Number:
	

	tmp.1307986960.pdf.W72LH

