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1 INTRODUCTION

Qur approach to the design and analysis of geometric algorithms for operations on polynomial (algebraic) curves
and surfaces is to take the view of abstract data types, that is, a data representation coupled together with
the operations on them [7, 8]. In this framework, the choice of which representation of the polynomial curve or
surface patch to use is determined by the desired optimality of the geometric algorithms for the operations.

Polynomial curves and surfaces can be represented in an implicit form, and sometimes also in a parametric
form. The implicit form of a real polynomial surface in m? is

f(~,y,z) = 0 (1)

where f is a polynomial with coefficients in lR. The parametric form, when it exists, for a real polynomial surface
in lR3 is

x ~

M', t)
f,(s, t)

y
f,(s,t)

I'(',t)

,
~

13(" t)
(2)

1,(" t)

where the Ii are again polynomials with coefficients in lR. The above implicit form describes a two dimensional
real algebraic variety (3 surface) with a single polynomial equation in lR3. The parametric form also describes a
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real two dimensional algebraic variety (a surface), however with a set of three independent polynomial equations
in :IRs, with coordinate variables z,y,z,s,t. Alternatively, the parametric form of a real surface may also
be interpreted as a rational mapping from m.2 to m.3 . We can thus compare the implicit and parametric
representations of polynomial surfaces by considering the the parametric form either as a mappingor alternatively,
an algebraic variety.

In these notes, we consider specific geometric operations of display/finite element mesh generation and data
fitting, and compare the implicit and parametric polynomial forms for their superiority (or lack thereof) in
optimizing algorithms for operations in these categories.

Section 2 sets the terminology and introduces some well known facts about polynomial curves and surfaces
and their patch representations. Section 3 compares the implicit and parametric surface representations for
graphics display and triangular mesh generation operations. Here the rational mapping gives an advantage to
the parametric form, though the algorithms to solve this problem in this reprcsentation are still non-trivial.
Sedion 4 considers the tradeoff between implicit and parametric surface splines for interactive design and data
fitting operations.

2 PRELIMINARIES

2.1 Mathematical Terminology

In this section we review some basic terminology from algebraic geometry that we shall use in subsequent sections.
These and additional facts can be found for example in [64, 68].

The set of real and complex solutions (or zcro set Z(C)) of a collection C of polynomial equations

(3)

with coefficients over the reals m. or complexes [:, is referred to as an algcbraic set. The algebraic set defined
by a single equation (m:::: 1) is also known as a hypersurface. A algebraic set that cannot be represented as the
union of two other distinct algebraic sets, neither containing the other, is said to be irreducible. An irreducible
algebraic set Z(C) is also known as an algebraic variety V.

A hypersurface in lRd
, some d dimensional space, is of dimcnsion d-l. The dimension of an algebraic variety

V is k if its points can be put in ~1, 1) rational correspondence with the points of an irreducible hypersurface
in k + 1 dimensional space. In m. , a variety Vi. of dimension k intersects a a variety V2 of dimension h, with
h 2. d - k, in an algebraic set Z(S) of dimension at least It + k - d. The resulting intersection is termed proper
if all subvarieties of Z(S) are of the same minimum dimension h + k - n. Otherwise the intersection is termed
exccss or improper. Let the algebraic degTCe of an algebraic variety V be the maximum degree of any defining
polynomial. A degree 1 hypersurface is also called a hyperplane while a degree 1 algebraic variety of dimension
k is also called a k~flat. The geometric degree of a variety V of dimension k in some md is the maximum number
of intersections between V and a (d - k)-flat, counting both real and complex intersections and intersections
at infinity. Hence the geometric degree of an algebraic hypersurface is the maximum number of intersections
between the hypersurface and a line, counting both real and complex intersections and at infinity.

The following theorem, perhaps the oldest in algebraic geometry, summarizes the resulting geometric degree
of intersections of varieties of different degrees.
(Bezout] A variety of geometric degree p which properly intersects a variety of geometric degree q does so in an
algebraic set of geometric degree either at most pq or infinity. 0

The normal or gradient of a hypersurface 1£ : f(zl' ... , :en) :::: 0 is the vector 'Vf :::: (/",,1"2, . .. '/"A)' A point
p :::: (ao, at, ... an) on a hypersurface is a regular point if the gradient at p is not nullj otherwise the point is
singular. A singular point q is of multiplicity e for a hypersurface 1t of degree d if any line through q meets
1£ in at most d - e additional points. Similarly a singular point q is of multiplicity e for a variety V in m.n of



r
o
•o
M

••
R
X
C

D
E
o
R

•
E

o
o
o

f"'-?\::;-.~.. "Be"gras" Niiie;·PariiriiEiirlcs···· ••••.••••..

N:l.n. CUrv ..b-"''-7< - _..
Degree Eight Parametrics

Separallng
Parametric and
Non-parametric
Curves

[;] Quar1ic
Parametrics

:r:mp~:l.c::l.1: Quarl::l.c:................_-
0

x_ :l.cd.e 'co

~ Qundrotic Dap~:l.c:l.t ""0

Q planar J.:l.c::I.t and Parametrics

/' /'

Figure 1: A Classification of Low Degree Algebraic Curves

dimension k and degree d if any sub.space m.n- k through q meets V in at most d - e additional points. It is
important to note that even if two varieties intersect in a proper manner, their intersection in general may consist
of sub-varieties of various multiplicites. The total degree of the intersectioIl, however is bounded by Bezout's
theorem. Finally, one notes that a hypersurface /(X11 "0' xn) = 0 of degree d has J( = (nt d

) coefficients, which
is onc more than the number of independent coefficients. Hypersurfaces /(Xl, ... , x n) = 0 of degree d form J( - I
dimensional vector spaces over the field of coefficients of the polynomials.

Finally, two hypersurfaces /(XI, ... , x n) = 0 and g(Xl' ... , xn ) = 0 meet with Ok-continuity along a common
subvariety V if and only if there exist functions a(xl' ... , zn) and f3(Xl, ... , xn) such that all derivatives upto
order k of 0:/ - f3g equals zero at all points along V, see for e.g., [36].

2.2 Polynomial Curves and Surfaces

We cast OUT real implicit and parametric curves and surfaces, in the terminology of the previous subsection.
A real implicit algebraic plane curve /(x, y) = 0 is a hypersurface of dimension I in m.2

, while a parametric
plane curve [!J(s)x - !I(s) = O,fa(s)y - h(s) = 0] is an algebraic variety of dimension 1 in lR.3 , defined
by the two independent algebraic equations in the three variables x, y, s. Similarly, a real implicit algebraic
surface f(x, y, z) = 0 is a hypersurface of dimension 2 in lR.3 , while a parametric surface [/4(S, t)x - !I(s, t) =
0, /4(S, t)y - h(s, t) =0, 11(s, t)z - h(s, t) =0] is an algebraic variety of dimension 2 in IRs, defined by three
independent algebraic equations in the five variables x, y, z, s, t.

A plane parametric curve is a very special algebraic variety of dimension 1 in x, y, s space, since the curve lies
in the 2-dimensional subspace defined by x, y and furthermore points on the curve can be put in (1,1) rational
correspondence with points on the I-dimensional sub-space defined by s. Parametric curves are thus a special
subset of algebraic curves, and are often also called rational algebraic curves. Figure 1 depicts the relationship
between the set of parametric curves and non-parametric curves at various degrees.

Example parametric (rational algebraic) curves are degree two algebraic curves (conics) and degree three
algebraic curves (cubics) with a singular point. The non-singular cubics are not rational and are also known
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Figure 2: A Classification of Low Degree Algebraic Surfaces

as elliptic cubics. In general, a necessary and sufficient condilion for the rationality of an algebraic curve of
arbitrary degree is given by the Cayley-Riemann criterion: a curve is rational iff 9 = 0, where 9, the genus of the
curve is a measure of the deficiency of the curve's singularities from its maximum allowable limit [66]. Algorithms
for computing the genus of an algebraic curve and for symbolically deriving the parametric equations of genus 0
curvcs, are given for example in [I, 2, 3].

Similarly, a parametric surface is a very special algebraic variety of dimension 2 in x,y, z, S, t space, since the
surface lies in the 3-dimensional subspace defined by x, y, z and furthermore points on the surface can be put in
(1,1) rational correspondence with points on the 2·dimensional sub-space defined by s, t. Figure 2 depicts the
relationship between parametric and non-parametric surfaces.

Example parametric (rational algebraic) surfaces are degree two algebraic surfaces (quadrics) and most degree
three algebraic surfaces (cubic surfaces). The cylinders of nonsingular cubic curves and the cubic surface cone
are of not rational. Other examples of rational algebraic surfaces are Steiner surfaces which are degree four
surfaces with a triple point, and Pliicker surfaces which are degree four surfaces with a double curve. In general,
a necessary and sufficient condition [or the rationality of an algebraic surface of arbitrary degree 1s given by
Castelnuovo's criterion: Pa = Pz = 0, where Pa is the arithmetic genus and P2 is the second plurigenus [67].
Algorithms for symbolically deriving the parametric equations of degree two and three rational surfaces are given
in [1, 2, 3, 4, 62].

2.3 Degree & Singularities

For implicit algebraic plane curves and surfaces defined by polynomials of degree d, the maximum number
of intersections between the curve and a line in the plane or the surface and a line in space, is equal to the
maximum number of roots of a polynomial of degree d. Hence, here the geometric degree is the same as the
algebraic degree which is equal to d. For parametric curves defined by polynomials of degree d, the maximum
number of intersections between the curve and a line in the plane is also equal to the maximum number of roots
of a polynomial of degree d. Hence here again the geometric degree is the same as the algebraic degree. For



parametric surfaces defined by polynomials of degree d the geometric degree can be as large as d2 , the square
of the algebraic degree d. This can be seen as follows. Consider the intersection of a generic line in space
[alx + bly + ClZ - dl = 0, a2X + b 2y + C2Z - d2 = 0] with the parametric surface. The intersection yields two
implicit algebraic curves of degree d which intersect in O(d2

) points (via Bezout's theorem), corresponding to
the intersection points of the line and the parametric surface.

A parametric curve of algebraic degree d is an algebraic curve of genus 0 and so have Cd lMd
-

2
j = O(d'l )

singular (double) points. This number is the maximum number of singular points an algebraic curve of degree
d may have. From Bezout's theorem, we realize that the intersection of two implicit surfaces of algebraic degree
d can be a curve of geometric degree O(d'l ). Furthermore the same theorem implies that the intersection of two
parametric surfaces of algebraic degree d (and geometric degree O(d'l )) can be a curve of geometric degree O(dol.).
Hence, while the potential singularities of the space curve defined by the intersection of two implicit surfaces
defined by polynomials of degree d can be as many as O(dol.), the potential singularities of the space curve defined
by the intersection of two parametric surfaces defined by polynomials of degree d can be as many as O(d8 ).

2.4 Polynomial Patch Representations

The popular polynomial bases amongst interactive geometric designers are the Bernstein-Bezier and the B-Spline
basis. These bases are defined for restricted subdomains of the deining space as opposed to the power basis which
is defined for all points of the space. The example formulations given below are defined for values of each of the
variables x, y and Z in the unit interval [0,1].

Bel'llstein-Bezier Basis (BB)
Univariate:

rn

P(.) = L:: wiBj(.)
j""O

where

Bivariate:
(1) Tensor:

rn "

P(., y) = L:: L:: w'i Bi(.)Bj(y)
;",,0 j""O

(2) Barycentric:

m m-i

P(., y) = L:: L:: w'iBf';(',y)
i""O j""O

where

Trivariate:
(1) Tensor:

rn " p

P(., y,.) = L:: L:: L:: w'i,Br(.)Bj (y)B"z)
;",,0 j""O J:""O

(2) Mixed:
m m-i p

P(., y,.) = L:: L:: L::b'i,Bf';(.,y)B~(z)
i""O i""o 1:",,0



where

where

(3) Barycentric:
m m_im_i_j

P(X,y,Z) = LL L WijkBi]k(X,y,Z)
i=O j=lI 1:=0

B m ( ) (.m.) x;.j z1:(1 _. _ y _ Z)m-i-j-k
;;k x,y,z = k" •

J !J .

The B-spline basis over the unit interval [0,1] is easily generated by a fractional linear recurrence as given
below for the univariate case. The bivariate and trivariate forms can also be similarly generated from this in
either tensor product or barycentric form, as given for the BB form above.

B-Spline Basis
Univariate:

m

p" = LP,N,"(x)
1=0

Nl(x) = {I for Xl ~ XI+I
ootherwIse.

and knot sequence 0 = Uo :::; ttl < ... < Um+l = 1

Both the parametric and the implicit representation of algebraic curve segments and algebraic surface patches
can be represented in either of the above BB or B-spline bases. Note that the canonical representation of a
parametric plane curve segment and surface patch in x, y, z space are given by Curve:

{

X = P,(t),
Y = P,(t),
w = P,(t).

Surface:

{

X = P,(" t),
Y = P2 (s, t),
z:::: P3 (s,t),
W = P4 (s, t).

wherc the Pi are polynomials in any of the above appropriate bases and the variables/parameters s, and t range
over the unit interval [0,1]'

An implicit curve segment and surface patch can be defined in x, y, z space by Curve:

z = P(x,y)l\z= 0

Surface:
W= P(x,y,z)l\w = 0

where the P is a polynomial in any of the above appropriate basis and the variables x, y, z range over the unit
interval [0,1].

The work of characterizing the BB form of polynomials within a tetrahedron such that the zero contour of the
polynomial is a single sheetcd surface within the tetrahedron, has been attempted in the past. In [60], Sederberg
showed that if the coefficients of the BB form of the trivariate polynomial on the lines that parallel one edge,
say L, of the tetrahedron, all increase (or decrease) monotonically in the same direction, then any line parallel
to L will intersect the zero contour algebraic surface patch at most once. In [39], Guo treats the same problem
by enforcing monotonicity conditions on a cubic polynomial along the direction from one vertex to a point of the
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opposite face of the vertex. From this he derives a condition U>.._e,+e, - U>.. 2: 0 for all A= (AI, A~2, A3, ..\o1)T with
Al 2: I, where u>.. are the coefficients of the cubic in BB form and ej is the i-th unit vector. This condition is
difficul t to satisfy in general, and even if this condition is satisfied, one still cannot avoid singularities on the zero
contour. In[II, 10J sufficient conditions of a smooth, single sheeted zero contour generalizes Sederberg's condition
and provides with an efficient way of generating nice implicit surface patches in BB-form (called A-patches for
algebraic patches). See Figures 3 and 4.

3 DISPLAY & MESH GENERATION

We present two algorithms for computing planar triangular approximations (triangulations) of real algebraic
surfaces, one specialized to the implicit representation[20], and the other for the rational parametric[16]. These
are easily adaptable to different implicit and parametric surface patch representations. Modern day computer
graphics hardware accept such triangulations and accurately render the complicated surfaces with sophisticated
lighting and shading models. Similar planar triangular meshes of surfaces are required for finite element methods
of solving systems of partial differential equations. See also [17, 19, 20, 21] for higher order, curved finite element
approximations of implicit polynomial curves and surfaces with piecewise parametric splines.

3.0.1 Implicit Surfaces

To compute real points on implicit polynomial surfaces requires the solution of polynomial equations. Further­
more, the problem of construc:l.ing a polygonal approximation, especially for finite element meshes, is complicated
by the need for a correct topology of the mesh even in the presence of singularities and multiple sheets of the
real polynomial surface. Direct schemes which work for arbitrary implicit polynomial surfaces are based on
the entire enclosing space: either the regular subdivision of the cube [23], a finite subdivision of an enclosing
simplex [43], uniform refinement [49] or enclosing simplicial continuation [6] or enclosing cube continuation [25].
However, such spatial sampling methods fail in the presence of point and curve singularities of the polynomial
surface, or yield ambiguous topologies in neighborhoods where multiple sheets of the surface corne close together.
Symbolic methods are necessary to disambiguate or calculate the correct topology for general polynomial curves
and surfaces.

Our algorithm uses a triangular surface patch expansion scheme and works direel.ly on the surface inslead of
a spatial subdivision. It requires a seed point for each real component of the polynomial surface. Compared to
the above approaches the patch expansion is centered on points on the surface, and fully uses the polynomial
and its derivatives to construel. local neighborhoods of convergence. The point selection and hence lhe final
triangulation is adaptive to the kIlt order of derivatives (e.g. k = 2 implies curvature adaptive) selected for each
expansion. By its very nature the triangulation generalizes to arbitrary analytic function surfaces and not just
algebraic (polynomial) surfaces.

We begin with a few notational definitions

Expansible edge. During the process of expansion of the triangular mesh, an edge is called expansible if we can
go further from this edge to obtain a new triangle on the surface. That is

(a) this edge is on the boundary of the presently constructed mesh

(b) this edge is inside the given boundary box.

The directional expallsion, expansion point and the T-plane.

Let prJ = (Po ,p~, Po) be a point on the surface f(x, y, z) = O. If

laf~:o)1

then the surface f(:z:, y, z) = 0 can be expressed locally as a power (Taylor) series z = ¢(x, y) (or :z: = ¢(y, z) J

Y = ¢(:l:', z)). We call this a z-direction expansion. The point Po is referred to as the expansion point. The



BJj~O)(Z _ p~) + BIJ~o) (y _ ~) + BIMo) (z - p~) = 0 the tangent plane of 1 = 0 at Po, denoted by T-planc.
The projection of a space point p onto the T-plane is denoted by T(p).

The following algorithm constructs a triangular mesh on each real component of a real polynomial surface,
within a given bounding box. We assume that we have a starting seed point on each real component of the
surface in this bounded region. Several numeric and symbolic methods exist to compute such seed points [20, 28]

1. Initial Step: For a given seed point Po on a real component of the surface 1(z, y, z) = 0, we first compute
a directional expansion, say z =::: ¢i(z, y). On the T-plane, find a circle with center Po such that tjJ(x, y)
is convergent within the circle. The computation of the radius of convergence, b&;ed on the k coefficient
terms of a power series expansion are well known and given for example in [44]. Take three points on the
circle uniformly, say qo, qiJ Q2, and refine the points (qi J z(qi)) by a Newton iteration such that the resulting
points Vi are on the surface. The triangle [Yo, VI, V2] is the first one we want. Each edge of this triangle
is expansible except perhaps if the seed point w&; chosen such that one edge is on the boundary of the
surface with respect to the bounding box.

2. General Step: Suppose we have constructed several space triangles that form a connected mesh. Assume at
least one edge (Vi, Vj) ofa boundary triangle [Vi, Vj, Vl:] is expansible. Then the general stcp is to construct
one or more triangles that connects to the edge (V;, Vi)

(a) Start from the expansion point P,jk of the triangle [Vi, Vj, Vk] and directional expansionJ say z =:::

¢(x,y). Choose one point Q on the T-plane at Pijk within the convergence radius, such that Q is on
the middle-perpendicular line of [T(Vi), T(Vj)] and as far as possible from T(Pijk).

(b) Refine the point (Q, z(Q)) to a point on the surface, say Ql. The point Ql becomes a new expansion
point. Compute directional expansion at Ql, say z =::: ¢iJ(x,y), and its circle ofconvcrgence. The
triangulation around Ql is reconstructed as follows.

• Let [ViJ lI/] and [Vj, Vm ] be the neighboring edges of [Vi, Vi]· Then on the T-plane at point QlI if
the angle < T(Vi)T(Vi)T(lI/) 2: ~ and < T(Vi)T(Vi)T(Vm ) ~ I or the convergence circle has no
intersection points with [T(Vi)J T(lI/)] and [T(Vj), T(Vm )], then choose the intersection point Q2
of the circle and the perpendicular line of[T(Vi), T(Vj)] passing through T(QI). If (T(QJ), Q2)
intersects a previous edge or the bounding box, then Q2 is chosen to be this intersection point.
Refine (Q2,¢iJ(Q2)) and obtain a new vertex VII and form the new triangle [Vi, Vj, VII]' Also see
top part of Figure 5.

• If the angle < T(Vi )T(Vi)T(V/) < t and (T(Vi), T(Vj)) intersect the circle (or, angle < T(Vi)T(Vj )T(Vm ) <
~ and (T(Vj),T(Vm )) intersects the circle), (see middle part of Figure 5, then take QJ as this
i'i,tersection point. Otherwise take Q1 ::;: T(lI/). In the first case, we add a point on the edge
[Vi, Vi] and divide it into two edges, [Vi, V] and [VS, Vot ]. The [V2, Vot ] is expansible and [V2, Vs]
is not. A new expansible edge [Vb VsJ is produced. In the second case, edge [Vi, Vj] and [Vi, lI/]
become non-expansible and a new expansible edge [Vi, Vi] is generated. A related case is shown
in the bottom part of Figure 5 and is handled in much the same fashion.

3. Final Ste.p. We iterate the General Step, until every edge is non-expansible for that real component.

Figure 6 shows the triangulation of implicitly defined polynomial surfaces.

3.0.2 Rational Parametric Surfaces

A well-known strength of the parametric representation (its mapping from m? to m.3 ) is the ease by which real
points can be generated on the parametric curve or surface. However the problem of constructing triangulations
with consistent topology is still highly non-trivial. Arbitrary rational parametric surfaces have real pole curves
in their domain, where the denominators of the parameter functions vanish, domain real base points for which
all four numerator and denominator polynomials vanish simultaneously, and other features that cause naiive
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Figure 6: Surface Triangulations of an Implicitly Defined Sphere, Cubic Elbow and a Torus
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polygonal approximation algorithms to fail. These are ubiquitous problems occurring even among the natural
quadrics. See examples shown in Figures 7 and 8.

In geometric design and graphics, where rational Bezier and B-spline surfaces have become popular, the
above problems have so far been avoided by a restriction to smooth rational surface patches with denominator
polynomials having all positive coefficients [32, 58] (i.e. no real poles or real base points). Sophisticated but
unsuspecting triangulation techniques which accept arbitrary rational parametric input (e.g. those implemented
in Maple V, Mathematica, Mac5yma) produce completely unintelligible results. Dur second algorithm provides a
complete and general solution to this problem.

We first illustrate the topological problems that arise if one naively mapped a triangulation from the (5, t)
domain to the surface in (x, y, z) space, using the rational parametric equations.

1. [Finite Parameter Range] To fully cover the parametric curve or surface, one must allow the parameters
to somehow range over the entire parametric domain, which is infinite. For example, the unit sphere
f( x, y, z) = x 2 + y2 + z2 - 1 = 0 has the standard rational parametric representation (x = 1+J2;+I~' Y =



Figure 8: A Cubic Parametric Surface with Seam Curves Due to Base Points

l+.'2~I+t" Z = ~+;~+:~) In this parameterization the point (0,0, -1) can only be reached by the parameter
values 8 = t = 00.

2. [Poles] Even when restricting the surface to a bounded real part of the parametric domain, the rational
functions describing the surface may have poles over that domain. A hyperboloid of two sheets, with
implicit equation z2 + yz + xz - y2 - xy - 2:2 - 1 = 0, has the parametric representation (X(8, t) =

" ( t) - " ( t) - St'+6.t-2r+s'~-2'+1) th bl . b £th
51"+6Jt+S.~ l'y S, - sr~+6.1+S.2 l'Z s, - St"+6.I+S." 1 en pro ems arise ecause 0 e
pole curve described by 5t 2 + 6st + 5s2

- 1 = 0 in the parameter domain. See Figure 7.

3. [Base Points] The rational parameter functions describing curves and surfaces are generally assumed to be
reduced to lowest common denominators, i.e., the numerator and denominator of each rational function
are relatively prime. Thus for a curve, there is no parameter value that can cause both numerator and
denominator of a rational parameter function to vanish. For surfaces, the situation is different. For the
general parametric representation stated earlier, even if !I,f2,h.f<l are relatively prime polynomials, it
is still possible that there are a finite number of points (a, b) such that ft(a, b) = h(a, b) = h(a, b) =
f4(a,b) = O. Each such point is called a base point of the parametric surface and is a value for which the
parametric mapping is undefined (~). There may also be base points at infinity in the parameter domain,
and the base points can be complex as well as real-valued. Information about base points can be found
in books on algebraic geometry such as [64, 67]. Base points are problematic since there is no one surface
point for the corresponding domain point. To each base point there actually corresponds a curve on the
surface [64], and since there is no parameter value for surface points on such a curve, the entire curve will
be missing from the parametric surface. Such a curve is called a seam curve. See the right side of Figure 8

b' b d 'h b' .... r3 1+.3 .~+I 21 3
:~ .'1±2.3±Q .1 .3 Thw lC correspon S 0 e cu lC parameortc sunace x = r3+.5±1 ,y = 13+,3+1 - ,z = ('±.5+1' us

for a valid triangulation of a parametric surface, one should also consistently triangulate the gaps caused
by the seam curves.

Finite Parameter Range Solution
In [15], the infinite parameter value problem is solved for rational varieties in any dimension using projective

linear transformations of the domain. We reproduce without proof the key results, which are necessary for the
triangulation algorithm.

LeDlDl3 3.1 Consider a rational algebraic variety of dimensiofl n in R m, n < m, given by parametric equations

Sj E [-00, +00]



.r r-·-·--·------· : ;--:!i"-··-------------------r--I-

Figure 9: A Complete Triangulation of the Steiner Parametric Surface

Let the 2n octant cflls in the parameter domain Rn be labelled by the tuples < lTl, ... lTn > with (1'; E {-l,l}.
Then the projective reparameterizations V(t<OI, ...,Oft» given by

t;
s; = ITi -----;-----;"--------;-

I-t 1 -t';? tn'
i = 1, .. . ,n (4)

together map the entire rational variety using only ti 2': 0 such that 0::; t1 + t 2 + ... + In ::; 1.

Corollary 3.1 Rational curves C(s);::: (XI(S), ... ,xm(s»T, S E [-00,+00] are

using only 0 ::; t ::; 1.

t -t
covered by C(--),C(--),

I-t I-I

The projective reparameterizations arc shown here as fractional affine domain transformations for convenience.
In practice, the parametric equations of the rational variety would be homogenized using an additional variable
and the numerator and common denominator substituted separately aB polynomials, thus avoiding rational
function manipulation.

F h S - f (2", 2. 21 ) d th b- lb f ( 4t~+(~'+G.+~)I_~~_8or t e telner sur ace x = 1+~~+j2' Y = l+.~+j2' z = 1+~~+I~ , an e cu IC e ow sur ace x = 21" 4/+.~+4.+8 ' Y
'1/'+( " G. 20)1+2.'+8.+16 (2~+G)I~+(_4'_I2)1_"_4') d' .. ...

21' 41+.'+4.+8 ,z = 21' 4j+.~+4.+8 ,four liferent projective reparametenzatlOns yIeld a
complete covering of the rational parametric surface. See Figure 9.

Solution for Domain Poles
The main idea behind the solution is aB follows: The (s, t) domain is triangulated in such a way that triangles

contain pole points only at their vertices. A domain triangle with a pole at a vertex may map onto an infinite-area
surface patch, which may lie partly inside the bounding region. If we determine this to be the CaBe, we binary



Figure 10: A Domain Triangulation over Unit Simplexes for a Hyperboloid of Two Sheets

search on the edges of the surface triangle for points that intersect the bounding box, clip it with respect to the
box and re-triangulate the resulting four or five sided convex polygon on the surface.

The algorithm[14] is as follows.

1. Perform the projective reparameterizations so the entire surface is mapped in four pieces. Perform the
next steps for each piece.

2. Generate points on the pole curve that lies inside the unit simplex.

3. Generate points in the rest of the unit simplex according to some scheme. The two kinds of points axe
distinguished from each other.

4. Compute a triangulation of the points thus generated. If an edge of any such triangle intersects the pole
curve, insert the intersection point and recompute the triangulation.

5. Every triangle will then have 0, I, or 2 pole points. A triangle with 3 pole points is split by inserting
a simple point in its interior. See also Figure 10. If a triangle has no pole points, it can be mapped
immediately to the surface. Suppose it has one pole point and two regular points. Let the pole point be
called p and the regular points ql' q2. We denote the surface point corresponding to a point x as Sex).
We assume that S(p) is a point at infinity, which is likely since p is a pole. If S(Ql),S(q2) both lie outside
the bounding region, this triangle will not be mapped. If both lie inside the region, then a binary search
is performed along the edges from pta Ql and p to Q2, for the intersection points S(Qi), S(Q"2) with the
bounding box. Then mapped surface triangle is thus replaced by a polygon using the two new vertices. By
a similar process a a domain triangle with two pole points, and one simple point is either discarded, or the
two pole points in the triangle are replaced by regular points whose images are the intersection of the the
bounding box and the mapped triangle. Each resulting four or five sided polygon on th surface is convex
and easily triangulated.



Figure 11: Complete Triangulations and Display of Rational parametric surfaces

Pole curve points with the unit simplex are generated for example by the subdivision method of [37]. In the
the second setup, we just generate a constant-size triangular grid on the unit simplex. The grid points are merged
with the pole curve points in a special data structure that allows them to be marked as pole or regular points,
and an incremental Delaunay triangulation of the entire set of points is constructed [33,35]. See Figures 10 and
??

Solution to Base Points
First an important fact about the image of a base point: Base points blow up to curves on the surface ([64],

Chapter VI, section 2.1, Theorem III, p. 107). Let 0 be a base point of multiplicity q, and each of tile curves
it (s, t) = 0, ... ,14(S, t) = 0 have q distinct tangents at O. Furthermore, let the curves have no common tangents
at O. Then the image of the base point 0 is a curve of degree q on the surface 8.

In [16] we show how to compute a parameterization of the seam curve, from the original parameterization
and for any base point. For a better correspondence of the surface parameterization to the seam curve parame­
terization we redefine X = X(s, t) = iI(s, t)Y = Y(s, t) = 12(s, t), Z = Z(s, t) = fa(s, t), W = W(s, t) = f4(s, t).

TheoreDl 3.1 Let (a, b) be an affine base point of multiplicity q. Then for any mEn, the image oJ a domain
point approaching (a,b) along a line of slope m is given by

(X(m), Y(m), Z(m), W(m)) (5)

The points (X(m), Y(m), Z(m), W(m)) form a one-dimensional family or curve on the surface 8, of degree at
most q, called the scam curve of the base point (a,b).

Corollary 3.3 If the curves X(s, t) = 0, ... , W(s, t) = 0 share t tangent lines at (a, b), then the seam curve
(X(m), Y(m), Z(m), W(m)) has degree q-t. In particular, ifX(s, t) = 0, ... , W(s, t) = 0 have identical tangents
al (a, b), then Jor all mER the coordinates (X(m), . .. , W(m)) represent a single point.

Knowing the parameterization (X(m), Y(m)' Z(m), W(m)), with parameter m of each real seam curve it is
quite straightforward to sample this curve at distinct values of m, and stitch the triangulation together.



4 DATA FITTING

Consider the problem of constructing a C k mesh of smooth surface patches or splines that interpolate or approx­
imate scattered data in lR? Computations which we would like to optimize by our choice of curve and surface
representation include:

• solution requiring a small number of surface patches

• reduction of the fitting problem to solving small linear systems

• low geometric degree of the solution surCaces

There are several possible variants of the problem depending on the nature of the interpolation problem
on hand: local versus non-local patch interpolation, splitting v.s. non-splitting of the surface patches per
triangulation face, the convexity versus non-convexity of the given triangulation, etc. In each of these cases,
the comparison between the implicit versus parametric representation does not yield a clear winner. While the
implicit representation yields lower geometric degree solutions (for reasons relating to degrees of freedom and
the number of constraints, the parametric surfaces shows a clear advantage when suitable surfaces need to be
selected from an infinite family of interpolatory solutions. Straightforward conditions on the parameter domain
can yield parametric surface solutions which are free of poles and base points.

The generation of a C 1 mesh of smooth surface patches or splines that interpolate or approximate triangulaled
space data is one of the central topics of geometric design. Alfeld [5], Chui (26], Dahmen and Michelli [31] and
Hollig [46] summarize much of the history of scattered data fitting and multivariate splines. Prior work on
splines have traditionally worked with a given planar triangulation using a polynomial function basis [5, 57, 63J.
More recently surface fitting has been considered over closed triangulations in three dimensions using parametric
surface patches [22, 20, 24, 34, 38, 42, 45, 47, 51, 53, 54, 55, 59, 65]. Little work has been done on spline
bases using implictly defined algebraic surface patches. Sederberg [60, 61) showed how various smooth implicit
algebraic surfaces in trivariate Bernstein basis can be manipulated as functions in Bezier control tetrahedra with
finite weights. Patrikalakis and Kriezis [52] extended this by considering implicit algebriac surfaces in a tensor
product B-spline basis. IIowever the problem of selecting weights or specifying knot sequences for C 1 meshes of
implicit algebraic surface patches which fit given spatial data, was left open. Dahmen [29] presented a scheme
for constructing C 1 continuous, piecewise quadric surface patches over a. data triangulation in space. In his
construction each triangular face is split and replaced by six micro quadric triangular patches, similar to the
splitting scheme of Powell-Sabin [56]. More on this later. Moore and Warren [50] extend the marching cubes
scheme of [48] and compute a C 1 piecewise quadratic approximation (least-squares) to scattered data. They too
use a Powell-Sabin like split, however over subcubes.

In paper [13] the authors consider an arbitrary spatial triangulation T consisting of vertices p = (x;, Yi, Zi)
in]R3 (or more generally a simplicial polyhedron P when the triangulation is closed), with possibly "normal"
vectors at the vertex points. An algorithm is given to construct a C 1 continuous mesh oflow degree real algebraic
surface patches S,' over T or P. The algorithm first converts the given triangulation T or simplicial polyhedron
P into a curvilinear wireframe (with at most cubic parametric curves) which C 1 interpolates all the vertices,
followed by a fleshing of the wireframe with low degree algebraic surface patches. See Figure 12. The technique
is completely general and uses a single implicit surface patch of degree at most 7, for each triangular face of
T of P, i.e. no local splitting of triangular faces. Furthermore, the C 1 interpolation scheme is local in that
each triangular surface patch has independent degrees of freedom which may be used to provide local shape
control. Extra free parameters may be adjusted and the shape of the patch controlled by using weighted least
squares approximation from additional points and normals, generated locally for each triangular patch. Similar
techniques exist for parametrics (24, 34, 38, 54, 59] however the geometric degree of the solution surfaces tend
to be prohibitively high.

In papers [11, 10] we show how to join a collection of cubic A-patches of §2 to form a C 1 smooth surface
interpolating scattered data points and respecting the topology of a given surface triangulation T of the points.
For this problem, prior approaches have been given by [29] using quadric patches, [30,39,40] using cubic patches
and [13] using quintic for convex triangulations and degree seven patches for arbitrary surface triangulations T.



Figure 12: C 1 Implicit Splines over a Spatial Triangulation
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Figure 13: Adjacent Tetrahedra, Cubic Functions and Control Points for two Non-Convex Adjacent Faces
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Figure 14: Adjacent Tetrahedra, Quintic Functions and Control Points for two Non-Convex Adjacent Faces
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Figure 15: A Surface Triangulation, the Simplicial Hull and some of the interpolatory C 1 Cubic A-Patches

All these papers provide heuristics to overcome the multiple sheeted and singularity problems of implicit patches.
In this paper our cubic A-patches are guaranteed to be nonsingular and single sheeted within each tetrahedron.

While the details of the methods of [30] and [40) differ somewhat, they both use the scheme of [29] of building
a surrounding simplicial hull (consisting of a series of tetrahedra) of the given triangulation T. Such a simplicial
hull is nontrivial to construct for triangulations and neither of the papers [29, 30, 39, 40] enumerate the diITercnt
exceptional cases (possible even for convex triangulations) nor provide solutions to overcoming them. Paper [11]
also uses the same simplicial hull approach but enumerates the exceptional situations and provide strategies for
rectifying them. See Figure 15 for an example surface triangulation and its simplicial hull.

In [40], Guo uses a Clough-Tocher split{27] and subdivides each face tetrahedron of the simplicial hull, hence
utilizing three patches per face ofT. In paper [11], we consider the computed "normals" at the given data points,
and distinguish between "convex" and "non-convex" faces and edges of the triangulation. We use a single cubic
A-patch per face of T except for the following two special cases. For a non-convex face, if additionally the three
inner products of the face normal and its three adjacent face normals have different signs, then in this case one
needs to subdivide the face using a single Clough-Tocher split, yielding C 1 continuity with the help of three cubic



Figure 16: The Complete Smoothing of the Surface Triangulation using a 1 Cubic A-Patches

A-patches for that face. Furthermore for coplanar adjacent faces of T, we show that the a1 conditions cannot
be met using a single cubic A-patch for each face. Hence for this casc we again use Clough-Tocher splits for the
pair of coplanar faces yielding C 1 continuity with the help of three cubic A-patches per face. See Figures 15,16
for examples of the a l interpolation of polyhedra.

The a 1 interpolation schemes of [11, 29, 3D, 40, 41] all build an outside simplicial hull (consisting of a
series of edge and face tetrahedra) containing the given polyhedron p. As mentioned before, such a simplicial
hull is nontrivial to construct for arbitrary P (even convex P with sharp corners) and can give rise to several
exceptional situations and degeneracies (co-planarity, hull self-intersection, etc). In [12] a new corner-cutting,
inner simplicial hull construction is presented and can handle all convex P and also arbitrary polyhedra with
non-convex faces. This new simplicial hull scheme is the three dimensional generalization of the two-dimensional
corner-cutting scheme used to construct Ck continuous bivariate A-splines [18J. Using this new hull construction
technique paper [12] presents efficient algorithms to construct both a a 1 smooth mesh with cubic A-patches and
C'l smooth mesh with cubic and quintic A-patches to approximate a given polyhedron P in three dimensions.
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Figure 17: C 1 and C 2 Smooth Approximations

For the construction of smooth patch complexes within the simplicial hull built on two adjacent triangles(see
Figure 13 for C 1 and Figure 14 for C2 .

See also Figures 17 and 18 for examples of the C1 and C 2 approximation of polyhedra and their shape
modification.

5 QUICKTIME MOVIES

The CDROM includes two QuickTime movies showing algorithmic animations of :

1. Shows algorithmic animation of the C 1 interpolatory cubic A"patch data fitting scheme[llJ discllssed in
the previous section. The patch computations and display are done using a network of workstations, with
individual patch computations done on separate machines.

2. Shows algorithmic animation of C 1 smooth surface reconstructions from unorganized data points[9]. In this
movie one has used tensor-product. A-patches (defined over cuboids) as opposed to the triangular A-patches
of the first movie.

Acknowledgement: Implementations of the above algorithms (for parametric and implicit surface patches), the
figures and the two QuickTime movies shown were all accomplished in SHASTRA, a distributed and collaborative
(multi-user, multi-workstation) free-form geometric design and visualization environment developed by the author
at Purdue University. Information on SHASTRA software availability can be obtained from the author or via
anonymous ftpfrom ftp.cs.purdue.edu:pubJshastraJ and via the world wide web hypertext program Mosaic from
http:JJwww.cs.purdue.eduJresearchJshastraJshastra.html.
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