
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Communication Operations on Coarse-Grained Mesh Communication Operations on Coarse-Grained Mesh

Architectures Architectures

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Farooq Hameed

Ashfaq A. Khokhar

Report Number:
94-037

Hambrusch, Susanne E.; Hameed, Farooq; and Khokhar, Ashfaq A., "Communication Operations on
Coarse-Grained Mesh Architectures" (1994). Department of Computer Science Technical Reports. Paper
1137.
https://docs.lib.purdue.edu/cstech/1137

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COMMUNICATION OPERATIONS ON
COARSE-GRAINED MESH ARCHITECTURES

Susanne E. Hambrusch, Farooq Hameed and Ashfaq A. Khokhar
Computer Sciences Department

Purdue University
West Lafayette, IN 47907

CSD-TR-94-037
May, 1994

Communication Operations on Coarse-Grained Mesh
Architectures *

Susanne E. Hambrusch
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

seh~cs.purdue.edu

Farooq Hameed
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

hameed~c5.purdue.edu

Ashfaq A. Khokhar
School of Electrical Engineering and Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

ashfaq~cs.purdue.edu

May 19, 1994

Abstract

In this paper we consider three frequently arising communication operations, onc-to-all,
all-to-onc, and all-to-all. We describe architecture-independent solutions for each operation,
as well as solutions tailored towards the mesh architecture. We show how the relationship
among the parameters of a parallel machine and the relationship of these parameters to the
message size determines the best solution. We discuss performance and scalability issucs
of our solutions on the Intel Touchstone Delta. Our results show that in order to cover a
broad range of scalability for a particular operation, multiple solutions should be employed.

Keywords: Parallel processing, coarse-grained machines, communication operations, scal
ability.

"Research supported in part by ARPA under contract DABT63-92-C-00220NR. The views and conclusions
contained in this paper are those of the authors and should not be interpreted as representing official policies,
expressed or implied, of the U.S. governmenl.

1

1 Introduction

Coarse-grained machines have emerged as major architectures in massively parallel computa

tion. Achieving the speed-up these machines are capable of requires knowledge about the archi

tectures, familiarity with the basic principles of parallel algorithm design, and an understanding

of the impact of machine parameters on problem-solving approaches and implementations. Ap

plication programmers are not likely to be experts in all these areas. In order to improve the

usability of parallel machines and to allow better utilization of high performance technology,

implementations of fundamental operations should be nne-tuned to the hardware and software

features of a particular machine. Communication operations are, without question, fundamen

tal to parallel computation. Scalable and portable communication routines are the basis for

making programs scalable and portable across different machines. Hence, it is important to

understand the impact of architectural features and machine parameters on the performance of

communication operations.

In this paper we consider one-to-all, all-to-one, and all-to-all communication. These three

communication patterns arise in many applications and are a crucial component of a commu

nications library. We describe different architecture-independent solutions, as well as solutions

tailored towards the mesh architecture. We show how the relationship among the parameters

of a parallel machine and the relationship of these parameters to the message size determines

which solution is efficient in which environment. In addition to the number of processors and

the message size, other parameters which influence performance include the cost of setting up

a message, the ratio between send and receive times, the bandwidth of the processors and the

network, the latency, the bisection width, and the type of synchronization used. Our conclusion

is that for a given operation, different algorithms scale well for different ranges of input and

dlJIerent machine characteristics. This agrees with related work reported in [1, 2, 3, 4, 8, 11, 12J.

We support our conclusion by presenting the performance of a number of dlverse implementa

tions for the Intel Touchstone Delta [10]. Some of our algorithms use well~know approaches,

while others make use of characteristics intrinsic to the Intel Delta. We also address scalability

issues and provide insight into the behavior of various algorithms on dlfferent machine sizes and

data sizes.

2

Our algorithms assume that computation is synchronized by a barrier-style synchronization

mechanism similar to the one described in [6, 14]. More precisely, an algorithm can be parti

tioned into a sequence of supersteps, with each superstep corresponding to local computation

followed by sending and receiving messages. Synchronization occurS between supersteps. In

order to classify different approaches used in our implementations, we introduce the notion of a

k-Ievel algorithm. Intuitively, in a k-level algorithm the machine is partitioned into k levels of

submachines, with the submachines within each level operating independently from each other.

Hence, for a k-Ievel algorithm, k > 1, to be efficient, the machine needs to support a limited use

of process groups [5J. In our algorithms, processors belonging to the same process group form a

scaled down version of the bigger machine. We thus refer to a process group as a submachine.

Communication within different submachines occurs without interference. An algorithm is a

i-level algorithm if, in the description given in terms of supersteps, no superstep operates on

different submachines. In a k-Ievel algorithm, k > 1, at least one superstep assumes a par

tition into submachines, not necessarily of identical size, and subsequent supersteps specify a

(k - I)-level algorithm for each submachine.

When describing our algorithms, we assume, for the sake of simplicity, that the size of the

message routed between any two processors is L. We refer to L as the actual message size. This

is in contrast to the effective message size, which is the size of the message routed between two

processors in a particular superstep. Our k-Ievel algorithms are characterized by combining the

original messages of size L and by performing independent routings within submachines. For

all algorithms, the effective message size is never smaller than the actual message size.

In Section 2 we give a brief description of the Intel Delta. Section 3 discusses one-to-all

communication, Section 4 all-to-one, and Section 5 ali·to-all communication. In each section,

we first discuss the different algorithms in an architecture-independent setting and then turn

to the mesh architecture and the performance results achieved on the Intel Delta. For one

to-all we identify a log p-Ievel algorithm that performs well for ali machine and message sizes

we considered. All-to-one algorithms exhibit a different behavior than one-to-all algorithms.

We identify a 2-level algorithm that performs reasonably well for ali machine and message

sizes. However, the choice of the best alioto-one algorithm for the Intel Delta depends on

3

I

machine and message size. For all-to-all, our results clearly show that algorithms based on

different approaches should be used for small and large message sizes, regardless of the size of

the machine. We identify a I-level algorithm which performs well for large message sizes and a

2-level algorithm which performs well for small message sizes.

2 Intel Delta

In this section we give a brief description of aspects of the Intel Delta relevant to the develop

ment of our algorithms and necessary for understanding the experimental results. For a more

complete description we refer to [10l

The Intel Touchstone Delta is a coarse-grained multi-processor system with 512 nodes or

ganized as a 16 x 32 2-dimensional mesh. Each node is directly connected to its 4 nearest

neighbors. The communication network uses wormhole routing. Packet size is 512 bytes, with

482 bytes reserved for data and 30 bytes for the message header. The operating system supports

both blocking and non-blocking communication primitives.

The machine sizes we considered in our experiments were 4 x 4, 4 X 8, 8 x 8, 8 x 16, and

16 x 16. The actual message sizes we considered varied from 16 to 16,384 bytes. Our code was

written in C.

3 One-to-all Communication

In one-to-all communication a source processor P~ sends out p - 1 distinct messages, each to

a different destination. One-to-all is also refered to as the scatter or personalized broadcast

operation [5, 8]. The source processor is clearly the bottleneck. In Section 3.1 we use the

concept of a k-Ievel algorithm to describe different algorithms. The amount of data sent out

by the source processor is the same for all algorithms, but the algorithms differ on how the

actual messages are combined into larger messages which are sent to their destinations via

intermediate processors. The objective of all algorithms is (i) to have processor Ps send out

the p - 1 messages as fast as possible and (li) to minimize the time between processor Ps

sendlng out the last packet and a processor receiving the last packet of its message. How to

best minimize this time difference depends on the message size and features of the underlying

4

machine. Section 3.2 discusses performance and scalability issues for the Intel Delta.

3.1 The Algorithms

There exist two conceptually different I-level algorithms for one-to-all communlcation. One

approach is to have processor P~ issue p - 1 direct sends (and every other processor issues a

receive). This strategy is likely to be used by a programmer not familiar with parallel processing

and it is likely to perform well on small machines (fewer than 16 processors). Another approach

is to have processor Ps form one long message of size L(p - 1) which is broadcast to every

processor (i.e., the effective message size is L(p - 1)). Mter receiving this message, every

processor extracts the message destined for H. One expects the broadcasting approach to be

efficient only when L is small and when the parallel machine has a control network dedicated

to fast broadcasts.

We next describe a generic 2-level approach. Logically partition the p-processor machine into

pOi submachines, each containing pI-OI processors for lo~p ~ a < 1. Designate one processor

in each submachine as a leader. Processor P~ then forms pOi long messages, each having an

effective message size of L pI-OI. The i-th long message formed consists of the pI-OI actual

messages destined for the processors in the i-th submachine, 0 ~ i < pcl. Next, processor Ps

issues pOi sends (or pOi - 1 sends if P" is a leader) to route the long messages to the leaders.

Once a leader received its long message, it initiates a I-level one-to-all algorithm within its

submachine. A 3-level algorithm is obtained by applying the above 2-1evel approach to each

submachine.

An interesting class of algorithms arises when each snperstep partitions into two subma

chines and the number of processors in each submachine is a fraction of the original number.

We call such an algorithm a Binomial Heap algorithm (since the sends issued induce a tree

having the shape of a binomial heap) and also refer to it as a Iogp-Ievel algorithm (the number

of supersteps is proportional to logp). When the machine is divided into submachines of equal

size in each superstep, we perform log p supersteps and minlmize the total number of message

set-up costs experienced.

The approaches described above are architecture-independent. For most existing architec

tures, there exist 2-, 3-, and logp-level algorithms that minimize link congestion and that allow

5

the lower level algorithms to be executed on independent submachines. For the mesh architec

ture, submachines consisting of a row or a column or submachines having the same aspect ratio

as the original mesh are natural choices. We conclude this section by describing two logp-Ievel

algorithms especially suitable for the mesh. A natural approach for a 2-dimensionaJ mesh is

to alternate making vertical and horizontal cuts. For a square p-processor mesh, the algorithm

operates then on a square mesh of size p/4 after two supersteps. Another approach is to divide

the mesh into two submachines based on a given parameter 7,0.5:::; I < 1. The division is

made so that the submachine containing the source processor P3 consists of IP processors and

the other submachine contains the remaining (I-I)p processors. The motivation for parti

tioning into two submachines of different size comes from our experience with the Intel Delta

on which processors can send data faster than they can receive it. Clearly, since data cannot

be received faster than it is sent out, a value of 7 < 0.5 cannot give a better performance for

one-to-all communication.

3.2 Implementations and Experimental Results

In this section we describe different one-to-all algorithms we implemented on the Delta, and

discuss their performance and related scalability issues. For darity, an outline of the algorithms

is given in Figure 1. The actual implementations handle rectangular meshes, but for simplicity

the algorithms are stated in the outline for square meshes. When a processor issues multiple

sends, our implementations give higher priority to destinations further away. We use this simple

rule to increase the amount of possible pipelining, minimize congestion, and minimize the time

between P3 sending its last message and a processor receiving its message from P3 • Since we

assume that each message has length L, we did not run into the situation in which messages

sent out by a processor have different length. In such a case, longer messages should be given

preference over shorter ones.

We considered three I-level algorithms: Algorithm l-lev-dir, which issues direct sends, Al

gorithm l-lev-sys-br, which uses the system's broadcast, and Algorithm l-lev-our-br, which uses

a broadcasting tree in the form of a binomial heap. We implemented one 2-level algorithm,

Algorithm 2-lev-rec, in which each submachine consists of a row of processors. The leaders are

the processors in the same column as processor P3 • We use Algorithm l-lev-dir as the I-level

6

Algorithm l-lev-dir(p)
The source processor issues pol sends, one to each
distinct destination.

Algorithm l-Iev-sys-br(p)fl-Iev-our.br(p)
1. The source processor concatenates the pol mes

sages into one long message which is broadcast.
Algorithm f-fev-ol/r·br uses a broadcast based on
the binomial heap pattern.

2. Each processor extracts its message from the long
message received.

Algorithm 2.lev-rec(p)

I. The source processor prepares (pin_I) long mes

sages, each containing pin messages, and sends one
long message to each processor in its column.

2. A processor that received a long message, applies

Algorithm 1-1ev-dir(pl12) within its row.

Algorithm 3.lev-sq(p)

I. The machine is partitioned into pin square subma
chines.

2. The source processor prepares pl12_ 1 long mes

sages, each containing pll2 messages and sends one
long message to each leader processor in thc sub
machine.

3. Each submachine applies Algorithm 2-fev-rec(pll2).

Algorithm logp-Iev-sq(p)
1. The machinc is partitioned into 2 submachines,

alternating partitions along the columns and rows.

2. The source processor concatenales p/2 messages
into one long message and sends the long message
to the leader processor in the other submachine.

3. Each submachinc applies Algorithm
fogp-fev-sq(pl2).

Algorithm logp-Iev-rec(p,y)
I. The machine is partitioned into 2 submachines, one

containing yp processors including the source pro
cessor, and the other containing (I-y)p processors.

2. The source processor concatenales (l-y)p messages
into one long messllge and sends it to the leader pro
cessor iII the other submachiIlc.

3. The submachine with yp processor applies Algo
rithm logp-fev.rec(yp, y), and the submachinc wilh
(I-y)p processors applies Algorithm logp-lev
rec((1-y)p, y).

Figure 1: Outline of one-to-aU algorithms implemented on the Intel Delta.

7

algorithm within each row. Algorithm S-lev-sq is a 3-level algorithm. For square mesh sizes, the

p-processor machine is logically partitioned into .,jjj submachines, each being an array of size

p1/ 4 x pl/4. If the source processor is in row i and column j of a submachine, then the processor

in row i and column j of each submachine is the leader in its submachine. This convention

avoids sending data from Ps to another processor in the same submachine. Once a leader re

ceives its long message from P", it initiates a 2-level algorithm using Algorithm 2-1ev-rec within

its subrnachine.

Algorithm logp-lev-sq is the log p-Ievel algorithm alternating vertical and horizontal cuts.

Algorithm logp-Iev-rec(-y) is an algorithm partitioning the machine into two submachines using

i as the partitioning factor, 0.5 .s i < 1. The partitioning is done by viewing the processors as

being indexed in snake-like row-major order. Let s be the index of the source processor in this

indexing schema. If s < iP, we assign the ,p processors with smallest index to one submach..ine

(and the remaining (l-,)p processors to the second submachine). If s ~ ,p, we assign the iP

processors with largest index to one submachine. Observe that for, = 0.5 and p a power of

two, we perform logp supersteps. If the mesh is square, the first half of the supersteps can be

viewed as making horizontal cuts and the second half making vertical cuts.

The experimental results of the one-to-all algorithms obtained from a 256-processor Intel

Delta for P" = Po are shown in Figure 2. We chose processor Po as the source since it gives

a worse performance than a source processor more in the center of the mesh. We give the

performance of the algorithms using nonblocking sends. The performance using blocking sends

is consistently worse for one-to-all routing.

For all machine sizes considered (which ranged from 16 to 256 processors), the relative

performance of the algorithms was the same. Hence, the following discussion applies to aU

machine sizes. Algorithm 1-1ev-dir minlmlzes the effective message size, but experiences a total

of P - 1 message set-up costs. 1-1ev-dir is a reasonable choice only for large message sizes (at

least 4 Kbytes). We point out that sending messages of size .s 482 bytes costs approximately

the same. The two broadcasting algorithms, Algorithms l-lev-sys-br and i-lev-our br, give the

worst performance of all algorithms, with the system's broadcast performing significantly worse

than our own broadcast. Because of the poor expected performance of 1-1ev-sys-br, we did not

8

Message Size (in Bytes)
One-to-All
Algorithms

16384 8192 4096 2048 1024 512 256 128 64 32 16

1-1ev-dir

l-Iev-sys-br

420.62 226.21 130,80 75.22 52.80 37.61 29.50 28.58 26.05 26.45 26.04

1773.89 887.07 442.78 219.30 110.68 53.65 27.43 13.13

1-1ev-our-br 4377.44 2193.51 1096.23 549.12 275.79 138.88 70.67 36.73 19.90 11.29 6.78

2-lev-rec

3-1ev-sq

logp-Iev-sq

logp-lev-rec(0.7S)

..__....... ,..,,,"':,,,, ._- ::. _.

:~~~: ::~~.~~ ~~1&!;??: ~~~;~.:61·~ ~\~;~~1 ~\\~~0~ m~\~'?'?:~ ::~~~~~~1 :::::~~~: [iij~~;~~[:~~:3~~~

E1!#.~~: j~~=: ~:~~~~;: :1:M:~;: ~~[~;~1 ~;~!@?,: TI\~?~?1~ Hmi~~ J~~~!~t ~i~E~~.K \ikHr:

.:::.:~: .;~~ .. :::~";~;;;; ~-~l:t~i ••~.~~.•••~~•..••••~~. --:::
Figure 2: Performance results for one-to-all communication on a 256-Processor Intel Delta
(times are in msec).

run thls algorithms on messages sizes of 4 Kbytes and more. The poor performance is partly

due to the large effective message size (it remains Lp throughout), as well as due to the absence

of a dedicated fast broadcasting network in the Delta.

Of all the algorithms, 2-lcv-rec, 3-lev-sq and logp-lev-rec(O.75) perform the best. This holds

for all message and machine sizes, with the exception of 3-1ev-sq for small machine sizes. We

believe that Algorithm logp-lev-rec(O.75) performs well because it 1s tailored towards the Delta.

The value of'Y = 0.75 was obtained through experiments. This value gave optimal or near opti

mal results for all machine and message sizes. As one would expect, Algorithm logp-lev-sq and

Algorithm logp-lev-rec(O.5) give about the same performance. Algorithm 3-1ev-sq balances the

effective message size, the number of messages sent, and the bisection width of the underlying

submachines more than any of the other algorlthm. We expect that on a mesh archltedures in

which a processor can send out data via different links simultaneously, the performance of this

3-1evel algorithms compared to 2-1ev-rec and, logp-lev-rec(O.75) would improve.

F1gures 3(a) and 3(b) show the scalabilty behav10r of four one-to-all algorithms when the

total number of bytes sent out by the source processor 1s 64 Kbytes and 256 Kbytes, respectively,

and the machlne size var1es from 16 to 256 processors. Tills corresponds to the situation when

the problem size remains constant. Algorithms 2-1ev-rec, 3-lev-sq and logp-lev-rec(O.75) show

9

o-I..J/:'Mlj,

--- -.i'" '.
I -'. _

.- -Iogp-lov~oc(0.75)

,
---__ oj(-----.--,--

~- -Iogp.-Iov-,oc (0.75)

~.
..".. -."

..

(a) (b)

Figure 3: Scalability results for processor Ps sending a total of G4 Kbytes and 256 Kbytes,
respectively, varying machine sIze.

'"
O-I~"-<IIr

,~ +-2~OVofeC

"H:>--k!Y-sq

'00 .- -low·l,rNOC (0.75)

I
gao
1
F

fro
•"
~

'00 'ro ~

Machine Stze

(b)(a)

100 150 200
Meehlne Stzo

+- 2-1Ov-r""

._:)-I....-sq

.- - Jow-Iov~oc (0.75)

'.

,

~'r--~--~-------..",----,

•

Figure 4: Scalability results for processor Pa send.lng an actual message size of 256 bytes and 4
Kbytes, varying machine size.

10

'A,----~--_--~---~--~--___,

0- L = 16384 Bytes

0- L =4096 Byles

x- L = 1024 Bytes

+- L:256 Byles

,
\~.x.)(... -.·-,-,,--'--'-'"

1
~ 1 '\"-~----------::::::C:::::"C3-~..'"
" ',,
~O.8

~
o
1;lO.6

I
ZOA

0.2 _/ .-- L = 64 Byles

°O~--~'~O----O'~OOc----O'~50c----O""=--~25=O--~
Number 01 MSSSOgll Sel-ups

Figure 5: Scalability results for five one-to-all algorithms, showing the number of message
set-ups on a 25G-processors machine, varying the actual message size.

an ideal behavior. For small meshes (e.g., 4 x 8), the advantages of the 3-level algorithm are

almost lost. This shows up in the graphs, especially in Figure 3(b). Figure 4 shows the scalabilty

behavior of the same four one-to-all algorithms when the actual message sizes are 256 bytes

and 4 Kbytes, respectively. Again, Algorithms 2·1ev-rec, 3-/ev-sq and logp-lev-rec(O.75) show an

ideal behavior. In comparison to Algorithm l-lev-dir, these algorithms performs well for small

messages size while the performance gap narrows for messages of size 4 Kbytes.

Figure 5 provides insight into the relationshlp between the total number of message set-ups

experienced and the actual message size. Observe that for a fixed machine size, the number

of message set-ups experienced by an algorithm does not change as the message size increases.

For a 256-processor machine, Algorithm logp-Iev-sqexperiences 8, logp-Iev-rec(O.75) experiences

15, 3-lev-sq 21, 2-lev-rec 30, and l-lev-dir experiences 255 message set-up costs. For better

illustration, we normalized the execution time to the time taken by Algorithm l-lev-dir. The

figure demonstrates in an interesting way the effect of the number of message set-ups on the

overall performance. With the increase in message size, the effect of the set-up cost on the

overall performance decreases for all algorithms. This can be observed by the almost flat line

for L = 16,384.

11

In summary, our experimental work on the Intel Delta indicates that the message-combining

algorithms (excluding the broadcasting algorithms) perform well for small message sizes; i.e.,

when L ::; 256 bytes. For large message sizes, Algorithm logp-lev-rec(O.75) is the best choice,

independent of the machine size. We expect our message-combining algorithms to perform well

for small messages on other architectures as well. Which one of them gives the best performance

will depend on the ratio between the send and receive time, the packet length, the ratio between

the processor and network bandwidth, and the start-up cost.

4 All-to-one Communication

In all-to-one communication, also known as the gather operation [5], every processor sends a

message to a destination processor, Pd. Processor Pd is now the bottleneck. Conceptually, alI

ta-one is the inverse of one-to-all. However, from a practical point of view, the best one-to-all

algorithms do not necessarily correspond to the best all-to-one algorithms. In this section we

describe different all-to-one implementations and discuss their performance on the Intel Delta.

We then compare the performance of all-to-one algorithms to that of one-to-ali's.

All one-to-all algorithms, except the algorithms based on broadcasting, have correspondlng

all-to-one algorithms. Algorithm l-lev-dir for all-to-one is an implementation in which every

processor issues a send to processor Pd (and Pd issues p -1 receives). Algorithms 2-lev~rec and

3-lev-sq are the correspondlng 2-level and 3-level algorithms, respectively. Algorithm logp-lev-sg

is the log p-Ievel algorithm partitioning the mesh lnto two submachines by alternating horizontal

and vertical cuts. Algorithm logp-Iev-rec(-r) partitions the mesh into two submachlnes based on

the value of "1,0 < "I < 1. For one-to-all, the Msumption "I ~ 0.5 guarantees that the source

processor P3 is in the submachine containing "IP processors. For all-to-one, allowing "I < 0.5

can create the following scenario: When determining the submachines bMed on their snake

like row-major index, neither of the first "IP, nor the last "IP processors may now contain the

destination processor Pd. In this situation (i.e., iP < d < (l-i)P), Algorithm logp-Iev-1'ec(/)

uses d to partition into submachines. The partition is chosen so that one submachine contains

the first d - 1 processors and executes an all· to-one communication with Pd-l M destination.

The remaining processors belong to the second submachine and they continue with Pd as the,

12

destination. It is easy to see that for / < 0.5 such a partition around the destination processor

occurs at most once during the algorithm. For the Delta, we did not expect a value of "'I < 0.5

to give a better performance and experimental work has confirmed this.

4.1 Implementations and Experimental Results

The experimental results for the all-to-one algorithms obtained from a 256-processor Intel Delta

for Pd = Po using nonblocking sends are shown in Figure 6. The performance using blocking

Message Size (in Bytes)
All-te-One
Algorithms

16384 8192 4096 2048 1024 512 256 128 64 32 16

2-1ev-rec 564.,30

1451,35 540.16 230.57 118.24. 66.65 40.26 22.76 20.06 16,37 16.76 16.70I-lev-dir

287.27 145.79 95.32 ~i)~T~\: ,\~~~\~~ ~\l\~l0;- :.~W;~\tW ,~li~~~~~l}: ~\\W~\~~t ,~\;?;S4'
3-1ev-sq 610.34 300.63 14.0.16 67.60 37.79· :1S:,jg' :~~:~O~9'l'; ~:- :6:41; .. -'1-;22 ::",3:13: :~;;:2;_6S;

logp-Iev-sq 548,38 276.10 139.49 71.04 37.10 m~.~~r :\\;~~iW~~ m\{fj~~ @;~_~.~ \l~;~.~J \:\;i.~:
logp-lev-rec(0.60) ~:508.~; ;~~~i; ~1~;~: l\;;~?:~ T~~~'7,; ;;~B~~~~ l\\\~~~~ ~J;j~~~:: :E;:~~~\: ::l;i~~\ I[;i~~~~~

Figure 6: Performance results for all-to-one communication on a 256-Processor Intel Delta
(times are in msec).

sends was consistently worse, with the exception of Algorithm l-lev-dir. Algorithm l-lev-dir

using blocking sends performed 4-10 msec better than l-lev-dir using nonblocking sends (the

exact value depends on the message size). However, for all machine and all message sizes we

considered, the performance of Algorithm l-lev·dir does not come close to that of the better

performing algorithms. For a 256·processor machine, aU algorithms that combine messages give

a comparable performance for L ~ 512, while for L > 512 Algorithm logp-lev-rec(O.60) gives

the best performance. Observe that for Algorithm 2-1ev-rec the table shows a 3-fold increase

in time when the message size doubles from 1024 to 2048. We observed such an undesirable

behavior in more than one all-to-one algorithm. In particular, it showed up for certain values

of J in Algorithm logp-lev-rec(/) when L = 2048 to L = 4096. We are not able to provide an

explanation, but it appears that some system limits are being exceeded.

Overall, for all message and aU machine sizes we considered, Algorithm 2-lev·rec is a good

choice. Its good performance is also apparent from Figures 7 and 8. However, Algorithm 2-

13

,,~-~~----------~----, "~----~-----~-------,

-"
__ ·x

'--"

,.~----;~:;------.:,oo;;---,~~,-,~.:.-,",---,),~~;}.--,~:.-"oo;;----.:,~;;--,~;;,;--,",,----,!,
_.SIlo IJ.acI'Ot1eSlzo

(a) (b)

Figure 7: Scalability results for processor Pd receiving a total of 64 Kbytes and 256 Kbytes,
respectively, varying machine size.

leV-Tee does not provide the best results for all machine size/message size pairs. Figures 7 and

8 show the scalability behavior of fOUf algorithms, Algorithm I-lev-dir, 2-1ev-rec, 3-1ev·sq, and

logp-lev-rec(O.60). In the first figure we keep the problem sh~e fixed and in the second one the

message size, varying the machine size in both cases.

For one-ta-all we found that I = 0.75 gave an optimal or near optimal performance for all

machine and message sizes. For all-to-one, we cannot identify a single value of l' that gives a

good performance. For each machine size, a different range of I'S worked best. In addltion, for a

fixed machine size, the message size influenced the choice of /. For example, for a 256-processor

machine, 0.60 ~ / ::; 0.65 performs well, with I = 0.65 performing better for L ::; 2048 bytes

and 1= 0.60 performing better for L > 2048 bytes. Using I = 0.65 for large messages increased

the time by about 40%. The pattern of a slightly larger value of I giving a better performance

for messages of size::; 2048 bytes and a smaller value of / giving a better performance messages

of length more than 2048 bytes holds for all machine sizes we considered. For example, for 16

and 32-pIOcessor macillnes the I-values are 0.70 and 0.60.

Comparing the performance of the all-to-one to the one-to-all algorithms provides interesting

insight into how machine parameters can influence performance. Recall that the all-to-one

algorithms correspond to one-to-all algorithms with the role of the sends and receives reversed.

14

100 ISO 200
MOChi""S1ze

a- H.v-<l~

._,c;

"-3-Iav-sq

=

=

lsc,
1
",§,oo
•
~

~ '.100 ISO 200
~eS!ze

"_:Hev-sq

." -1oW--Jav-(oc (0.60)

(aJ (b)

Figure 8: Scalability results for processor Pd receiving actual message sizes of 256 bytes and 4
Kbytcs, varying machine size.

However, for messages of length < 512 bytes the all-to-one algorithms are slightly faster than

their one-ta-all counterpart, while for messages of length ~ 512 bytes the all-ta-one algorithms

are significantly slower. This can be explained as follows. In our algorithms for one-ta-all,

when a processor issues multiple sends, higher priority is given to the destinations further

away. For all-ta-one, when a processor issues multiple receives, the processors are not able to

employ such a rule. In addition, a processor issuing multiple receives experiences an additional

overhead when dealing with the arbitrary arrival of messages and determining which posted

receive corresponds to an arriving message. Finally, for the Delta the set-up time of receiving a

message is less than the set-up time of sending a message, while a processor can send out data

faster than it can be received.

Using the above observations, one would expect Algorithm logp-lev-sq to exhibit a similar

performance for one-to-all and all-to-one. Our results for the Delta support this statement

(compare 2nd last row of Figures 6 and 2). (Recall that in logp-lev-sq every processor issues at

most one send and at most one receive in a superstep.) For small message sizes, the set-up cost

experienced when sending messages constitutes a bigger fraction of the overall time. Since the

set-up time of receiving a message is less than the set-up time for sending, it is not surprising

that most all-to-one algorithms are faster than their one-to-all counterpart for small messages.

15

For large message sizes, the one-to-all algorithms are faster. Contrary to one-to-all, all-to·one

algorithms are not able to effectively use the buffering capacity of the network to exploit the

difference in send and receive rates. This appears to be the main reason for the increase in time

on the Delta.

5 All-to-all Communication

In all-to-all communication every processor sends a distinct message to every other processor.

When performing an alI-to-all, the congestion arising because of the bisection of the underlying

architecture can significantly influence the performance. The bisection width of a machine is the

minimum number of links that have to be removed to disconnect the machine into two equal

sized halves [9J. In a p-processor architecture with a bisection width of b, at least one of the b

links partitioning the machine is used by at least p2/4b messages during an all-to-all communi

cation. Thus algorithms for all-to-aI1 not only have to consider how to combine actual messages

into larger messages, but they have to address how congestion can be avoided or is handled. In

Sections 5.1 and 5.2 we describe a number of 1·level algorithms and discuss higher level algo

rithms, respectively. Section 5.3 discusses the performance of dlfferent implementations based

on these algorithms on the Intel Delta.

5.1 I-level Algorithms

The most straightforward I-level approach is the one in which each processor sends its p - 1

messages, one by one, regardless of what the other processors are doing. In such an algorithm no

combining of messages is done, the machine is flooded with messages, and the arising congestion

is left to be handled by the system.

A frequently used approach that attempts to control congestion implements all-to-all through

p - 1 or p one-to-one routings. More precisely, the p(p - 1) message routing requests are parti

tioned into permutations. We view such algorithms as I-level algorithms. Common partitioning

schemas are linear permutations and exclusive-or permutations. When partitioning into linear

permutations , processor Pj sends a message to processor P(i+j)mod(p-l) in the i-th permutation,

1 :::; i :::; P - 1. When partitioning into exclusive-or permutations, all-to-all is partitioned such

16

that in the i-th permutation processor Pj sends a message to ~'f!Jj. Implementations of these

approaches on different architectures have shown exclusive-or permutations to be superior to

linear permutations [11, 12J.

In order to evaluate different partitioning schemas, we define two quantities, maxJoad and

sum-ioad. Assume all-to-all is partitioned into p permutations, IIo, ... IIp _ I ' The load of a link

in permutation IIi is defined as the number of messages using this link in the same direction

during the routing of permutation IIi. The load of permutation IIi, load(II j), is defined as

the maximum load over all links during the routing of permutation IIi. Let max.1oad =

maxO,:5:i:SP-1 load(IIi) and sum.1oad = L:~b-Iload(IIi)'

Consider a p-processor square mesh architecture with ..jP being a multiple of 4. Any par

titioning into permutations gives maxJoad ~ ..jP/4 and sum-ioad ~ p3/2/4 [13]. Linear and

exclusive-or permutation have max.1oad = .jP/2, which is a factor of 2 off from the optimal

maxJoad. For exclusive-or permutations we have sum.1oad = ~p3/2, which is a factor of 12/7

off from the optimal sum-ioad. Using an approach developed in [13], all-to-all communication

can be partitioned into p permutations achieving max.1oad = .JP/4 and sum.1oad ~ p3/2J4.

We refer to this approach as partitioning into balanced permutations. For completeness sake,

we describe the method given in (13J for generating balanced permutations. We start by de

scribing balanced permutations for linear arrays. The permutations for the mesh are obtained

by performing a cross product.

Consider a k-processor linear array. Assume, for the time being, that k is a multiple of

4. Logically partition the linear array into a left half and into a right half. Next, determine

a tournament involving k/2 "players". Such a tournament consists of k/2 - 1 rounds, where

in each round one player is matched up with exactly one other player. The rounds can be

generated by using, for example, the method given in [7] for finding the I-factors of a complete

graph. Assume i is matched up with j in a round, 0 ~ i < j < k/2. Then, the cycle

describes the sending offour messages. Hence, the k/2 match-ups of round induce two permu

tations (in the second permutation we simply interchange sending and receiving processors).

From the kJ2-1 rounds of a tournament we obtain a total of k - 2 permutations. The messages

17

that remain to be sent are the ones in which processor Pi sends and receives from processor

Pk-i-l, 0 ~ i < k/2. In order to achieve max.1oad = k/4, these final messages are routed in

two permutations, resulting in a total of k permutations. It is easy to see that each of the k

permutations has a load of k/4, giving max.1oad = k/4 and sum.1oad = k3 /4.

We briefly comment on how to handle values of k that are not a multiple of 4. Assume first

k = 4i+2. We introduce one "dummy player" in the tournament, resulting in 2i+2 tournament

players. All-to-all can now be done in k permutations, with half the permutations having a

load of rk/41 and half having a load of Lk/4J. When k = 4i + 3, all-to-all can be partitioned

into k permutations, with each permutation having a load of rk/41. Finally, for k = 4i + 1, the

approach of creating dummy players results in k + 1 permutations, half having a load of rk/41

and half having a load of lkj4J.

Consider now a 2-dimensional p-processor mesh with p = T . c. Let ITo, ... ,ITT- 1 be the T

balanced permutations of an r-processor linear array, and let II~, ... , II~_l be the c balanced

permutations of a c-processor linear array. Then, IIi X IIj gives the p balanced permutations

with maxJ.oad = max{[rj41, rcj411.

In summary, we have described three partitioning approaches that can be implemented

on any p-processor architectures supporting one-to-one communication. For a mesh architec

ture, partitioning into balanced permutations is optimal with respect to the defined quantities

measuring link congestion. All three partitioning approaches can be applied to 2-dimensional

meshes of any size.

5.2 Higher-level Algorithms

In this section we describe two 2-level algorithms and one commonly used log p-Ievel algorithm.

The 2-level algorithms can be generalized to higher.level algorithms. For k > 1, a k-Ievel

algorithm combines the actual messages into larger messages, with the goal of achieving a

better performance for smaller message sizes. To simplify the description of the algorithms, we

assume a square mesh of size vp x,;p. In the 2-level algorithms, the p-processor machine is

logically partitioned into,;p submachines, So, ...S..;p-l.

We start with the description of the first 2-level algorithm. It consists of 3 steps and we

refer to it as the 3-step algorithm. A similar approach for hypercube architectures has been

18

described in [3]. In each step of the algorithm every processor sends out a total of pL bytes;

the first and the last step send out pL bytes in the form of ..;p messages and the second step

sends them out as one single message. The goal of the first step is to have processor Pi in

submach.ine Sj contain the p messages originating within submachine Sj and destined for the

processors in submachine Sj. This is achieved by performing a I-level all-to-all algorithm within

each suhmacmne. The length of the message sent from processor Pk to processor Pi in Sj is

..;pL. The second step is a one-to-one communication. Processor Pi of submachine Sj sends

a concatenation of the ..;p messages it received in the first step to processor Pj in submachine

Sj. The communication pattern of this one-to-one operation has the flavor of a transpose

and, depending on the architecture, it could be congestion-prone. The third and final step is

again an all-to-all communication within each submachine. The message of size pL received in

the second step is partitioned into ..;p equal-sized messages, each one destined for a different

processor in the suhmachine. After this all-to-all communication, every processor contains the

p - 1 messages destined for it.

Our second 2-level algorithm consists of only 2 steps, with each step sending out a total of

pL bytes in the form of..;p messages. We refer to it as the 2-step algorithm. The potential

disadvantage of tlus algorithm is the requirement that each one of the two steps needs a different

submachines partitioning with the following property. Let So, ... S,JP-l be the partition used in

the first step and let To, ... T..;p_l be the one used in the second step. Then, there exists exactly

one processor, say Pij, that is in submachine Sj and in submachine T j , 0 ~ i,i:S. ..;p - 1. The

first step performs an all-to-all communication within each submachine Si so that Pij contains

the p messages to be sent from processors in Sj to processors in Tj. The second step performs

an all-to-all communication to delivers the messages at their final destinations within each

submachine Tj.

Finally, consider the following logp-Ievel algorithm which is based the butterfly communica

tion pattern. In the first superstep of this algorithm every processor Pi sends the p/2 messages

destined for the p/2 processors not in its half to processor P(i+p!2)modp. After the received mes

sages are combined with the messages that remained in a processor, all-to-all in performed on

two p/2-processor submachlnes. This approach has consistently been judged as being expensive

19

for large message sizes [3, 12J.

5.3 Implementations and Experimental Results

We have implemented a total of eight all-to-all algorithms on the Delta. This includes four 1

level algorithms: Algorithm 1-1ev-dir, in which each processor simply issues its p - 1 sends and

p - 1 receives, and three algorithms that partition all-to-all communication into permutations.

These algorithms are Algorithm I-Lev-lin, 1-1ev-xor, and 1-1ev-bal and they partition into linear,

exclusive-or, and balanced permutations, respectively.

We have implemented three 2-level algorithms. Algorithm 2-lev-sq corresponds to the 3

step algorithm described in the Section 5.2. For a square mesh, each submachine is a square

submesh of size pl/4 Xpl/4. Algorithm 2-lev-c, r corresponds to the 2-step algorithm described in

Section 5.2. In this algorithm submachine Si corresponds to the i-th column and suhmachine Tj

corresponds to the j-th row of the mesh. We use Algorithm l-lev-xor as the I-level algorithm

within the columns (and then the rows). For the sake of comparison, we also considered a

variation of Algorithm 2-1ev-c,r reported in [12J. The differences are as follows. As before, a

processor in Sj sends the corresponding data to processor Pij. However, processor Pjj does

not wait until all vp large messages have been received, but sends out messages of size L to

the destination processors in submachine Tj as soon as they are received. Tills interleaves the

two steps and we refer to the corresponding algorithm as Algorithm 2-1ev-c,r-int. The 8-th

algorithm is Algorithm logp-lev-bfly which uses the butterfly communication pattern.

Figure 9 shows the performance of these eight algorithms on a 256-processor Delta, varying

the message size from 16 bytes to 16,384 bytes. We only report the performance for non-blocking

sends (use of blocking sends increased the time). Algorithm 1-1ev-xor gives the best performance

for larger message sizes; l.e., L ~ 256. For small messages sizes (i.e., L ::; 256), Algorithm 2-lev

c,r achieved the best performance. This conclusion holds not only for a 256-processors machine,

but for all machine sizes we considered. Figure 10 shows the scalabilty behavior of Algorithms

l-lev-dir, l-lev-xor, 2-lev-c,r, 2-lev-c,r-int, and 2-1ev-sq with actual message sizes of 64 bytes

and 4096 bytes, respectively, varying over different machine sizes.

We briefly comment on the performance of the other algorithms compared to 1-1ev-xo,· and

2-lev-c,r. As expected, Algorithm l~lev-lin did consistently worse than l-lev-xor. We found the

20

AIl-to-AII
Message Size (in Byles)

Algorithms
16384 8192 4096 2048 1024 512 256 12. 64 32 16

I-lev-direct 6860.21 3115.27 1494.48 598.82 316.76 169.48 82.84 73.21 70.28 68.11 69.75

I-lev-lin 5476.28 2661.56 1294.39 639.83 330.90 162.18 94.48 7U2 67.66 63.03 66.55

~~\~i l~~;~~
... --

nt~~~
..

iltJ820~l-Iev-xor 46lJ8.85: ::536:01" ::147.98" 63.75 59.51 59.21 61.40.::;c:;::::: ,0::::.::;.: .. - - .. _,'
.. - co,,, co:;. _._... ..-_._.--

1-lev-balance 4986.76 249290 1221.90 619.62 305.24 144.25 77.43 77.83 72.83 64,47 61.11

2-lev-sq 6561.45 3260.92 1633.19 809.42 401.09 201.35 99.75 60.03 34.43 24.18 18.69
.- •••••------0- ...

t#?:~i2-lev-c,f 5632.29 2659.75 1319.53 665.28 330.50 163.02 78.58 ~;;:-?JM:!t ;~;:ij.46; ;~;~i1:.~~: ,
..

_.... -..
• ,,=--:::::::

2-lev-c,r-int ~~13\~;~: ilii63t iQt!6;~1 543.55 284.23 168.85 113.30 91.23 82.76 78.81 75.96

logp-Iev-bfly 2206.67 1112.07 569.08 298.10 16334 97.10 74.03 43.09 31.&:1

Figure 9: Performance results for all-to-all communication on a 256-processor Intel Delta (times
are in msec).

/
/,,,,,,,,,.

,,
-' r'

./ ,."
.' ,,,.'

/ ,~'
" ",'

,," ~J(, ,

100 150 200

-~.

,-2~OV-sq

O-2·1IrY<::1

.- 2·lov-c.r-lm

,~

,~

,~

II2Cll
',~
~
,~

i
.~-
~

~ '.

"
,

._ l-lov-<il

~_ 1·""-,,,,
·-2.....<::.'·h1

o--2.Jov-eJ

__ 2-lov'sq

,,,
J/""'"/ .''"

,.

(a) (b)

Figure 10: Scalability results for all-to-all algorithms with actual message sizes of 64 bytes and
4 Kbytes, varying machine size.

21

"O'r---~--~---_--~--_---,

00

80

'"g
,§.60

~
~'"

~40

;,,,,,
,,,

\
, '., '., ,

x . \

+-- l-Jav-dlr

~_ Hav-xor

"_ 2·lov.c,r·InI

o-2·lov.c,r

".2·IBV·sq

.. x.. ,····-·············

"ol-----~,~O-----"~OO,------,,~,,,------,"""'----'OO---""'O
Machine Size

Figure 11: Scalability results for all-to-all algorithms when the total of all actual messages 1s 2
Mbytes , varying machine size.

performance of Algorithm i-lev-ba.lon the Delta disappointing. The advantage of partitionlng

into balanced permutations compared to exclusive-or permutations did not show up on the

Delta. We conjecture that for other mesh architectures Algorithm i-lev-bal could be superior.

Algorithm 2-lev-sq gave the second best performance for small message sizes. The reason 2-1ev

C,r outperformed 2-lev-sq, lies in the fact that 2-1ev-sq is a 3-step algorithm (which sends out

data three times), while 2-lev-c,r is a 2-step algorithm. The advantage of the 3-step algorithm

may show up for larger mach.ine sizes when the small bisection width of the submachines used

in the 2-step algorithm starts to influences performance. Algorithm 2-lev-c,r-int outperforms

2-lev-c,r only for larger machine sizes (p ~ 64) and larger message sizes (L ~ 1024 bytes).

We conclude this section by showing in Figure 11 the scalabilty behavior of five all-to-all

algorithms when the total of the actual messages sent between all processors is 2 Mbytes.

Tills corresponds to keeping the problem size fixed and changing the machine size. For a 255-

processor machine, every processor sends an actual message of 32 bytes to every other processor.

Figure 11 clearly indicates that an efficient and scalable all-to-aU implementation should employ

different algorithms for large and small message sizes. For a total message size of 2 Mbytes, the

switch away from an algorithm that combines messages occurs when a 54-processor machine

22

,

I

sends messages of size 512 bytes. This is the point at which Algorithm l-lev-xor starts to

outperform Algorithm 2-lev-c,r.

6 Conclusions

We have presented several architecture-independent algorithms for one-to-all, all-to-one, and

all-to-all communication, as well as algorithms tailored towards mesh architectures. In addition

to using the concept of a k-Ievel algorithm, our solutions can be characterized by the maximum

number of sends/receives issued by a processor and the sizes of messages exchanged among

processors. The proposed algorithms have been implemented on the Intel Delta and performance

results were shown. We discussed the behavior of the algorithms on different machine sizes

over a broad range of message sizes. Our conclusion is that for a given operation, different

algorithms scale well for different ranges of input and machine size. We have supported this

conclusion by presenting the performance of diverse and a large number of implementations.

Our implementations provide insight into how the relationship among the parameters of a

machine and the relationship ofthese parameters to the message sizes can influence performance

and thus the choice of the best solution.

References

[IJ V. Dala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis, and M. Snir,
"CCL: A Portable and Tunable Collective Communication Library for Scalable Parallel
Computers," Proceedings of 8-th International Parallel Processing Symposium, pp. 835
844, 1994.

[2] M. Barnett, R. Littlefield, D. G. Payne, and R. van de Geijn, "Global Combine on Meshes
Architecures with Wormhole Routing," Proceedings of 1-th International Parallel Process
ing Symposium, pp. 156-162, 1993.

[3] S.H. Bokhari, "Multiphase Complete Exchange on a Circuit Switched Hypercube," Pro
ceedings of 1991 International Conference on Parallel Processing, pp. 525-529, 1991.

[4] Z. Bozkus, S. Ranka, G. Fox "Benchmarking the CM-5 Multicomputer," Proceedings of
4-th Symposium on the Frontiers of Massively Parallel Computation, pp. 100-107,1992.

[5] J.J. Dongarra, R. Hempel, A.J.G. Hey, D.W. Walker. "A Proposal for a User-level, Message
Passing Interface in a Distributed Memory Environment", Technical Report TM 12231,
Oak Ridge National Laboratory, 1993.

23

[6] S.E. Hambrusch, A. Khokhar, "C3 : An Architecture-independent Model for Coarse
Grained Parallel Machines", Technical Report, Purdue University, December 1993.

[7J F. Harary, Graph TheonJ, Addison-Wesley, 1972.

[8] S.L. Johnsson, C.-T. Ro, "Optimum Broadcasting and Personalized Communication In

Hypercubes," IEEE Transactions on Computers, Vol. 38, pp. 1249-1268,1989.

[9] F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures: Arrays.
n'ees . Hypercubes, Morgan Kaufmann, 1992.

[10] S. Lillevik, "The Touchstone 30 Gigaflop DELTA Prototype," Proceedings oj 6-th Dis
tributed Memory Computing Conference, pp. 671"677, 1991.

[11] R. Ponnusamy, A. Choudhary, G. Fox, "Communication Overhead on CM5: An Experi
mental Performance Evaluation," Proceedings of 4-th Symposium on the Frontiers of Mas
sively Parallel Computation, pp. 108-115, 1992.

[12] R. Thakur, A. Chaudhary, "All-to-all Communication on Meshes with Wormhole Routing,"
Proceedings of 8-th International Parallel Processing Symposium, pp. 561-565, 1994.

[13] D.S. Scott, "Efficient All-to-All Communication Patterns In Hypercube and Mesh Topolo
gies," Proceedings of 6-th Distributed MemonJ Computing Conference, pp. 398-403, 1991.

[14] L.G. Valiant, "A Bridging Model for Parallel Computation," Communications of the ACM,
1990, Vol. 33, No.8, pp. 103-111.

24

	Communication Operations on Coarse-Grained Mesh Architectures
	Report Number:
	

	tmp.1307986960.pdf.4aWnY

