
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1994 

The Roles of Models, Software Tools, and Applications in High The Roles of Models, Software Tools, and Applications in High 

Performance Computing Performance Computing 

Leah H. Jamieson 

Susanne E. Hambrusch 
Purdue University, seh@cs.purdue.edu 

Ashfaq A. Khokhar 

Edward J. Delp 

Report Number: 
94-032 

Jamieson, Leah H.; Hambrusch, Susanne E.; Khokhar, Ashfaq A.; and Delp, Edward J., "The Roles of 
Models, Software Tools, and Applications in High Performance Computing" (1994). Department of 
Computer Science Technical Reports. Paper 1133. 
https://docs.lib.purdue.edu/cstech/1133 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


THE ROLE OF MODELS, SOFTWARE
TOOLS AND APPLICATIONS IN

mGH PERFORMANCE COMPUTING

Leah H. Jamieson
Susanne E. Humbrusch

Ashfaq A. Kohkhar
Edward J. Delp

CSD TR·94-032
May 1994



The Role of Models, Software Tools, and Applications in High
Performance Computing *

Leah H. Jamieson t Susanne E. Hambrusch+
,

Edward J. DelpT

Ashfaq A. Khokharlt

tSchool of Electrical Engineering
Purdue University, West Lafayette, IN 47907

{lhj.ace}~ecn.purdue.edu

+Departrnent of Computer Sciences
Purdue University, West Lafayette, IN 47907

{5eh.ashfaq}~cs.purdue.edu

May 4,1994

Abstract

In this paper we identify and discuss technical issues we consider crucial to the HPCC
program. The focus is on the usefulness of scalable parallel computers for National Challenge
problems. We identify three interrelated aspects of usefulness: performance, programmabil
ity, and the role of an application-driven design philosophy. We discuss the importance of
algorithm design and computational model development and advocate the design of libraries
and software environments to bridge the gap between algorithm designer and application
programmer. Finally, we consider the role of applications for solving National Challenge
problems.

"This work was supported by the Advanced Research Projects Agency under contract DABT63-92-C-0022.
The conlenl of the information does nol necessarily re:!lect the position or policy or the Uuited States Government
and no official endorsement should be inferred.

1



1 Introduction

During the last several years significant progress has been made on the Grand Challenge prob

lems (9]. Crucial to tills progress has been the ability of recent architectures to deliver high

performance on floating point operations [4, 14] and the development of substantial libraries

for scientific computing problems [1, 2, 3]. At the same time, the beginnings of an emerging

community of computational scientists are evident and the experience base for scientific com

puting is growing. Parallel to the advances in solving Grand Challenge problems, a new set of

applications, known as the National Challenge problems, has emerged [10]. In contrast to the

Grand Challenges, many of the National Challenge problems are in areas for which the expe

rience with scalable parallel computers is mlnimal, but where the eventual size of the end-user

community is immense. This makes issues related Lo usability of high performance computing

even more crucial for National Challenge problems.

The focus of our paper is on the usefulness of scalable parallel computers, with particular

emphasis on the National Challenge problems. We identify three interrelated aspects of useful

ness: performance, programmability, and the role of an application-driven design philosophy.

Because it is not valuable to provide programmability at the expense of performance that re

quires unreasonable programmlng effort, we discuss these two aspects together. An important

requirement of almost all National Challenge problems is the need to process and manipu

late large sets of spatial and/or imagery data [101. This differs from a majority of the Grand

Challenge problems, and leads us to consider the role of applications in hardware and software

design. Many of the examples we use Lo substantiate our position are related to research we

are conducting in using high performance computers to solve problems in image processing and

computer vision.

The paramount conclusion of our paper is that high performance computing can achieve

lts goals only If software development 1s significantly accelerated. We maintain that useful

advances in software must meet seemingly contradictory goals: that software development

should be carried out in an architecture- and technology-independent environment, but that

both algorithms and system software should take full advantage of the hardware features of

potentially diverse architectures. We propose four areas of research as fundamental means of

reconciling these contradictory demands:

- research on models as platforms for architecture-independent algorithm development;

- development of portable scalable communications libraries;



- further development of scalability measures that, when coupled with models, will give an

accurate predlction of algorithm performance across a wide range of problem sizes, machine

sizes, and architecture types;

- applications-driven library-based software for bridging the software gap between usability

and high performance.

2 Performance and Programmability

If there were no need for high performance, there would be no need for scalable parallel com

puters. We therefore state the underlying premise: HPCC applications must make good use of

a system's capabilities. Although computer vendors continue to demonstrate that machines can

be made to be ever faster, it is not appropriate to usc improved speed as an excuse for achieving

performance that is significantly below a machine's potential performance. In particular, faster

machines do not mean that we do not need good algorithms or good system software. In the

following, we identify and discuss our position on some of the issues related to performance and

programmability.

• Algorithm design for parallel computers will continue to be more difficult than for serial com

puters.

A large number of parameters affect the performance of a parallel algorithm. Besides machine

and problem size, these parameters include network and processor bandwidth, network topol

ogy, latency, and distribution of the data. We expect that these parameters will continue to

playa significant role in future systems. Hence, algorithm design will remain important, even

as machines continue to get faster. The challenge is to provide computational models and tools

that allow a user to develop high performance algorithms without having intimate knowledge

of parallel processing.

• No architectural convergence is in sight.

A standard parallel architecture is not likely to emerge in the near future. Besides distributed

and shared memory machines, the development of new fine-grained as well as coarse-grained

distributed memory machines will continue. In addition, design and development time for par

allel machines has sharply decreased. For example, the T3D by Cray Inc. WM designed and

built in 26 months. A consequence of this architectural diversity is that software development



and compiler construction are lagging behind: compiler and software development have not

experienced a comparable shortening of the design cycle. However difficult it may he, it is

undesirable for compilers and software to ignore architecture differences if higher performance

can he achieved by exploiting the architectural strengths of a particular architecture. In order

to improve usability of current and future paraUel machines, significant attention is required

towards software development .

• Libraries and software environments will bridge the gap between algorithm designer and ap

plication progmmmer.

A parallel software environment wiU allow paraUel machines to be used as general-purpose ma

chines and will give applications programmers access to high performance computing. Providing

efficient library routines can make programs scalable and portable across different machines.

Hence, libraries are a fundamental building block for achieving high performance for applica

tion programmers. Libraries should be implemented with the specifics of a parallel machine in

mind and implementations should take advantage of hardware as weU software fealures of the

underlying parallel machine.

So the question is: What willlt take to achieve both ease of use and high performance? In

Section 3 we address three aspects of the performance/programmability issue and discuss the

approaches we are taking in our research projects. In Section 4 we consider how an applications

focus can help in making high performance computers useful. We conclude by summarizing our

recommendations.

3 Achieving Performance and Programmability

The simultaneous goals of high performance and programmability lead to immediate contra

dictions. Programmability is most easily achieved by assuming architecture independence and

programmer naivete. High performance is best achieved by assuming architecture expertise

and programmer sophistication. We identify three areas where research can help bridge the

gap between these opposing points of view, describe the work that we have been doing in these

areas, and point to directions for further research.



1. A computational model as a platform for algorithm development.

Coarse-grained machines arc emerging as general-purpose parallel machines, while fine-grained

parallel machines will continue playing the role of special purpose machines. A successful gen

eral purpose parallel machine needs a sound computational model. Such a model should bridge

software and hardware and be robust with respect to technological and architectural changes,

much in the same way as the von Neumann model for sequential computation. Such a model

should also serve as a platform for the design of portable, scalable, coarse-grained algorithms.

In [8], we propose an architecture-independent computational model, the C3-model. The

motivation for this work is the recognized need for a model that (i) accurately reflects the con

straints of a coarse-grained parallel machine, (ii) has broad applicability with respect to existing

machines, and (iii) allows accurate prediction of performance. A novel feature of the C3 -modc!

is that it evaluates not only the complexity of computation and the pattern of communication,

but also estimates the effect of the potential congestion. This is accomplished by a new metric

which estimates the effect of link and processor congestion on the performance. The metric

can be used without having to specify fine scheduling details and it allows the evaluation of

arbitrary communication operations. This high-level abstraction of communication, together

with ability to estimate link and processor congestion, distinguishes the C3-model from other

proposed models [6, 19].

No matter how fast HPCC systems become, performance will be limiled by the quality of

algorithms executed. The development of appropriate models is critical to the ability of users

to design quality algorithms for complex UPCC architectures.

2. Development of portable communication libraries.

Efficient and portable communication routines are crucial to many National Challenge prob

lems. Our work on the Intel Delta and Paragon reported in [7] has demonstrated that the

performance of communication operations is influenced by relationships among the parameters

of a parallel machine, as well as by the relationship of the machine parameters to the amount of

data involved. ClearlYl the number of processors and the length of the messages influence which

algorithms give the best performance. In addition, we found that the set-up cost, the ratio be

tween send and receive lime, the bandwidth of the processors and the network, the latency and

the bisection width, and the type of synchronization used also influence the performance. Our



work has demonstrated that for a given operation different algorithms perform well for different

ranges of input and macltine sizes. We are currently building a general communications library

which includes, for every communication operation, a set of implementations based on different

approaches.

The existence of possible communications primitives will provide users with an important

tool for designing parallel algorithms. Such libraries have the potential to enlarge the user

community and will improve the performance of user's algorithms.

3. Scalability measures that give an accurate prediction of algorithm performance.

The performance of an algorithm on a serial computer can be accurately characteri;;:ed by the

problem size and processor speed. On the other hand, similar characterization of a parallel algo

rithm on a parallel computer entails consideration of a far greater number of parameters. These

additional factors include machine size, interconnection topology, interprocessor communication

speed and bandwidth, and data distribution. Tltis characterization of parallel algorithm perfor

mance is generally referred to as the scalability of the algorithm. Several metrics for analyzing

the scalability of a parallel algorithm-macltine pair have been proposed in the recent past [13].

However, there is no precise, commonly accepted definition of scalability. Comparing different

scalability measures is difficult and risky. In fact, applying different scalability measures to the

same parallel scenario can lead to contradictory results. A better understanding of these issues

is essential if we are to harness the computing power of current and future parallel machines.

We address the issues related to scalability by applying different scalability measures to

various computer vision and image processing algorithms, and implementing these algorithms on

currently available parallel machines. We have compared analytical and experimental results

of the scalability of these algorithms, varying the basic algorithm approach as well as the

machine size, problem size, and interconnection topology [11, 16]. We have chosen the FFT

and list ranking as representative problems whose algorithms typically have highly regular and

highly irregular communication patterns, respectively. We observed that, similar to algorithms

for implementing communication operations, no single algorithm would give maximum speedup

over the entire range of problem and machine sizes. This suggests the use of multiple algorithms

to cover the entire range of scalability, where each algorithm scales best only on a fIxed range

of problem and machine size.

Work on scalability and models should proceed hand-in-hand. A more comprehensive the-



ory of scalability, coupled with architecture-independent models, will give an accurate prediction

of algorithm performance across a wide range of problem sizes, machine sizes, and architecture

types.

4 The Role of Applications

The ability to process, manipulate, and store/retrieve imagery data in a high speed networked

environment is a key issue in several National Challenge problems. For example, in the area of

health care the need to store, process, and display medical images from distributed databases

is paramount. Such requirements have direct implications on the hardware and software design

philosophies for future HPCC systems.

In this section, we consider two aspects of the how applications can affect HPCC research.

First, we identify areas in which current systems most clearly fail to meet the needs of Na

tional Challenge problems. Second, we argue that application-driven approaches can make

progress in some areas where general-purpose methods have not yet successfully provided both

programmability and high performance.

1. Architectural and software support for I/O intensive applications.

For many applications in the National Challenges domain, the I/O subsystem of HPCC sys

tems is one of the major bottlenecks. Dedicated disk me systems are often very slow to load

or unload. This has become more crucial with the insurgence of high speed networks. Current

HPCC systems do not easily support real-time frame grabbers or other image and video digitiz

ers. Similarly, most of the applications require that massive databases be searched, e.g. digital

libraries and government records. Also, in applications areas such as intelligent highway sys

tems, real-time processing, and fast I/O is very much desired. Special attention is needed in the

design of algorithms, systems software, and in the hardware components of an I/O sub-system

to achieve high performance computing goals.

We have designed parallel techniques to implement the JPEG compression algorithm on a

massively parallel SIMD computer [5]. Implementing the algorithm in parallel was not difficult;

the performance bottleneck arose in reading data into the processor array and writing dataout of

the processor array in such a way that these communication times did not overwhelm the gains

obtained by parallel processing. We have developed a data-independent input re·alignment



algorithm and two data-dependent output re-alignment algorithms. The results show near real

time performance. Using these data re-alignment techniques, the I/O task execution time is

decreased by a factor of 10000 on a 16K processor MasPar machine.

In the above example, the I/O problem was handled at the algorithm design level. However,

a comprehensive effort that addresses algorithm, system software, and architecture issues is

needed in order to reach the point where I/O capability matches current computing power.

2. Support for non-floating point operations.

It is likely that today's systems that deliver highest performance for Grand Challenge problems

would also deliver the highest performance for National Challenge problems (analogous to the

observation made in 1980's that supercomputers were the fastest word processors), by virtue

of their raw speed. However, they may not well be the fastest possible systems for solving Na

tional Challenge problems. Many image processing and computer vision problems could benefit

from high speed fixed point operations that are not currently available. Many such application

problems could be implemented more easily and would run faster if true fixed point support

were available. Many of the National Challenge problems are also characterized by the need to

do symbolic operations, particularly in database problems.

3. Application-specific software.

General-purpose parallel programming tools have not yet succeeded in providing both ease

of use and high speed for applications researchers attempting to use parallel machines [17, 18].

One factor that contributes to the difficulty of this task is that current parallel machines often

exhibit anomalous behavior that call have a major impact on performance. Coping with such

behavior requires a detailed knowledge of the system that cannot be expected from a typical

applications user. High performance computing will not be successful if it requires application

researchers to become parallel processing experts in order to reap the beneftts that parallel

systems can provide.

We do not believe that compilers that are both able to perform machine speciftc optimiza

tion and fast to build (commensurate with the time to do architecture design) will exist in the

near future. Application characteristics can provide additional leverage at a number of levels.

Application·driven modification of a language (e.g., FORTRAN-P [12]) can facilitate compiler



construction, and can allow attention to be paid to optimizations that will likely have signifi

cant impact for that application. Application-specific programming environments such as the

Image Understanding Environment [15] can define formats and objects that are recurrent in an

application, so that implementations can concentrate on supporting these constructs. Libraries

and library tools can playa critical role in achieving high performance on applications, as has

been demonstrated for the Grand Challenge problems.

In our work, we are concentrating on the development of application-specific software tools

that incorporate machine-specific performance optimizations into a user's program. Library

primitives and kernels form the basis of this approach. Cloner is a library-based program de

velopment environment for computer vision and image processing (CVIP) that allows users

from different backgrounds to take advantage of the computing power provided by multipro

cessor machines and the algorithmic techniques designed by parallel algorithms experts [20].

Cloner focuses on how information about the CVIP problem domain can make the high per

formance algorithms and the sophisticated algorithm techniques being designed by algorithms

experts more readily available to CVIP researchers. Algorithm and architecture-related scala

bility information as well as appropriate machine-specific expertise are embedded within this

environment.

Cloner is also a software reuse tool that helps a user design parallel algorithms by building

on and modifying algorithms that already exist in an overall system library. It takes advantage

of the fact that CVIP algorithms are often highly structured and that many image-, vector-, and

array-based algorithms have the same or similar structure. Cloner allows the user to identify

similarities between the new algorithm and library algorithms (e.g., median ftltering has the

same data dependency pattern as image smoothing), queries the user about the new algorithm's

principal execution characteristics, and provides the user with code templates from the library

that can be modified for the new algorithm. Since these library codes and mappings contain

machine-dependent optimizations, the user can build high performance algorithms without

intimate knowledge of the target architecture or a high level of parallel programming expertise.

Software tools that take advantage of applications characteristics can make parallel systems

more accessible to users. This is a practical approach that has unrealized potential.



5 Conclusions

We focus on usefulness as the fundamental issue that must be addressed in the coming years of

HPCC research, and identify accelerated software development as the key to achieving useful

HPCC systems. Although compHer technology is obviously critical to making high performance

computing accessible to a broad user community, we do not believe that we aTe close to seeing

compilers that are both fast to build and able to take full advantage of hardware features of

potentially diverse architectures. We therefore identify other areas in which research can make

progress towards meeting the dual goals of performance and programmability. Research in the

theoretical areas of models and scalability measures will improve the ability of users to write

algorithms and predict their performance. Research in the areas of communications libraries

and applications-driven software will provide practical tools for users of IIPeC systems. It is

only through attention to tIus full spectrum of theoretical and practical approaches that upee
systems will be able to fulfill their potential.

References

[1] E. Anderson et a1. "LAPACK: A Portable Linear Algebra. Library for High performance Computers,"
Procecdings of Supercomputing, 1990.

[2] Richard Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, SlAM, Philadelphia, 1994.

[3] Z. Bai, J. Demmel, and A. McI{enney, "On Computing Condition Numbers for the Nonsymmetric
Eigenproblem," ACM Transactions on Mathematical Software, Vol. 19, No.2, pp. 202-223, 1993.

[4] Connection Machine CM-5, Technical Summary, Thinking Machine Corporation, 1992.

[5] G. W. Cook and E. J. Delp, "An investigation of JPEG image and video compression using parallel
processing," Proccedings of the 1994 International Conference on Acouslics, Speech, and Signal
Proccssing, Vol. V, pp. 437-440, ApriI199~.

[6] D. E. Culler et a1., "LogP: Towards a. Realistic Model of Parallel Computation," Fourth ACM
SrGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.

(7] S.E. Hambrusch, F. Hameed, A. Khokhar, "Communication Operations on Coarse-Grained Mesh
Architectures," Technical Report, Purdue University, West Lafayette, IN, April 199'1.

[8] S.E. Hambrusch, A. Khokhar, "C3
: An Architecture-independent Model for Coarse-Grained Parallel

Machines", Technical Report, Purdue University, West Lafayetle, TN, December H193.

[9] High Performance Computing and Communications: Towards a National Information Infrastruc
ture, A Report by the Committee on Physical, Mathematical and Engineering Scienccs, Federal
Coordinating Council for Science, Engineering and Technology, Office of Science and Technology
Policy, Washington DC, 199>1.

(10] Information Infrastructure Technology and Applications, Report of the IITA Task Group, National
Coordination Office of HPCC, Office of Science and Technology Policy, Washington DC, February
1994.



[11] L. H. Jamieson, et al., "A Library-Based Program Development Environment for Parallel Image
Processing," Proceedings of the Scalable Parallel Libraries Conference, pp. 187-194, October 1993.

[12] M. T. O'Keefe et aI., "The Fortran-P Translator: Towards Automatic Translation of Fortran 77
Programs for Massively Parallel Processors," AHPCRC Preprint #93-021, Minneapolis, MN, to
appear in The Journal of Scientific Programming, 1994.

[13J V. Kumar and A. Gupta, "Analyzing Scalability of Parallel Algorithms and Architectures," Tech
nical Report TR 91-18, Department of Computer Science, University of Minnesota, Minneapolis,
MN 1991.

[14] S. Lillevik, "The Touchstone 30 Gigaflop DET,TA Prototype," Proceedings of 6·th Distn'buted Mem
ory Computing Conference, pp. 671-677, 1991.

[lS] J. Mundy et aL, IUE Overview Document, Image Understanding Environment (IUE) Program,
October 1992.

[16J J. N. Patel and L. H. Jamieson, "Evaluating Scalability of the 2-D FFT on Parallel Computers,"
Computer Architecluresfor Machine Perception, pp. 109-116, December 1993.

[17] C. D. Polychronopoulos and U. Banerjee, "Speedup Bounds and Processor Allocation for Parallel
Programs on Multiprocessors," 1986 Int'l Conf. Parallel Processing, pp. 961-968, August 1986.

[18] Q. Stout, "Mapping Vision Algorithms to Parallel Architectures," Proc. IEEE, Vol. 76, pp. 982-99S,
August 1988.

[19] L. G. Valiant, "A Bridging Model for Parallel Computation," Communications oj the ACM, Vol.
33, No.8., August 1990.

[20] C.-C. Wang and L. H. Jamieson, "Xdoner: An Interactive Multiplatform Parallel Tmage Processing
Development Environment," Proceedings oj ihe 1992 IEEE Signal Processing Society Workshop on
VLSI SigflGl Processing, pp. 287-296, October 1992.


	The Roles of Models, Software Tools, and Applications in High Performance Computing
	Report Number:
	

	tmp.1307986960.pdf.cGGpA

