
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

A Software Platform for Integrating Symbolic Computation with a A Software Platform for Integrating Symbolic Computation with a

PDE Solving Environment PDE Solving Environment

Sanjiva Weerawarana

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
94-031

Weerawarana, Sanjiva; Houstis, Elias N.; and Rice, John R., "A Software Platform for Integrating Symbolic
Computation with a PDE Solving Environment" (1994). Department of Computer Science Technical
Reports. Paper 1132.
https://docs.lib.purdue.edu/cstech/1132

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A SOFrWARE PLATFORM FOR
INTEGRATING SYMBOLIC

COMPUTATION WITH A PDE
SOLVING ENVIRONMENT

Sanjiva Weerawarnna
Elias N. Houstis

John R. Rice

CSD TR·94-031
May 1994

A SOFTWARE PLATFORM FOR INTEGRATING SYMBOLIC
COMPUTATION WITH A PDE SOLVING ENVIRONMENT

Sanjiva Weerawarana, Elias N. Houstis and John R. Rice 1
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-1398, USA.

Tel: +1 3174949992, Fax: +1 3174940739, E-mail: (saw,enhjrr)@cs.purdue.edu

1. INTRODUCTION

It has been widely recognized that integrating symbolic computation with numeric computation is beneficial to the process of
solving partial differential equations (PDEs). In spite of this, most PDE solving software does not apply symbolic computation
as an integral part of the solution process. The primary reason for this lack of interaction between tllese two computing meth·
odologies is the difficulty in achieving Ihis interaction in practice. In this repon, we describe our experience wilh developing a
software environment that supports the convenient and ubiquitous interaction of !.hese two (and olher) computing melhodolo­
gies. The next section provides a broad overview of lhe PDELab project [I], !.he larger context to which this work belongs.
Section 3 highlights the integrated use of symbolic computation in PDELab and the following section describes the software
environment that facilitates this.

2. THE PDELAB PROJECT

The objective of the POELab project is to design a framework for building software environments !.hat provide all the compu­
tational facilities needed to solve target classes of problems "quickly", by communicating in !.he user's tenns. We refer to !.hese
environments as Problem Solving ETlvirollmellfs (PSEs) and the application specific PSEs as workbenches. POELab focuses
on lhe development of PSEs for scientific applications where lhe underlying phenomena are modeled by POEs.

In general, PSE technology is expected to reduce the time between an idea and validation of !.he discovery, to get a "quick"
answer to almost any question that has a readily computable answer, to support programmlng-in-!.he-Iarge, to provide "know­
bots" (intelligent agents) thal implement various scientific problem solving processes and to allow easy prototyping. PDELab
is a software platfonn which supports lhe development of PSEs for POE based applications and il realizes, to a degree, many
of !.he above expectations.

Software Architecture. The software architecture adopted for POELab is characterized by the software independence of its
parts. It is based on "clean layering" and object-oriented me!.hodologies. PDELab consists of three layers. The lowest layer of
the POELab architecture consists oflhe libraries. knowledge bases and other similar computational agents that drive !.he simu­
lation process. For POE computing, these components manipulate a certain collection of meta-objects (consisting of code and
knowledge) that are involved in PDE computations, including POE equations, geometric domains, boundary and initial condi­
tions, grids and meshes of the POE geometric regions, matrix equations, and discrete functions. The software architecture of
this layer is therefore based on the structure and assumed interactions of these POE objects.

The software infrastructure layer is the "middleware" that facilitates much of the functionality of POELab. This layer is
responsible for the integration of various software components to fonn integrated workbenches and facilitate the development
of these components as well. The communication fabric mat supports component integration is based on the so/ovare bus
model [2]. The software bus concept is an attempt to emulate the hardware bus mechanism that provides a standard hardware
interface to attach additional capabilities to a machine. In a hardware bus, new units describe !.heir capabilities to the bus con·
troller, which lhen passes the infonnation along to other units in the bus. In the POELab software bus, POEBus, software com­
ponents register lheir "exported" services with the software bus and rely on the software bus to invoke these services when

1. Work reported herein was supported in part by AFOSR grant F49620-92-J-0069, NSF grants 9202536-CCR and 9123502­
COA and Purdue University.

requested by interested clients. The software bus is responsible for the application of any representation translators as required
for the valid invocation of the service. Thus, the software bus provides a mechanism where two tools can interoperate without
having explicit knowledge about each other.

The upper layer of the PDELab architecture provides application PSE developers with a collection of tools and services
required to build such PSEs. The tools at this level include visual programming tools that supportprogrammillg-in-llze-large or
megaprogrammillg using PDELab components. computational skeletons for template based programming, tools for editing
various PDE objects and support for building custom tools that deal with application dependent aspects of a PSE. These tools
are organized into a toolbox available to the application PSE developer and appear as a collection of building tools integrated
by the software bus.

This three-layered architecture is realized by seven components: PDEKit, PDEVpe, PDESpec, POEBus, POEPack, PDEView
and PYTHIA. In the remainder of this section, we briefly describe these components.

PDESpec. The POESpec POE language is a high-level symbolic language that can be used to specify POE problems and
solution schemes. This language is based on the POE meta-objects described earlier and is defined in terms of these objects.
Each object represents a component of the POE problem or the solution process and is designed to be sufficiently flexible to
allow the specification of a wide range of POE problems. The syntax of PDESpec is defined using the MACSYMA computer
algebra system's syntax. The implementation of PDESpec is also based on MACSYMA, allowing one to easily apply sym­

bolic transformations at the language level. I

PDEKit. POEKit is the development environment that is used to build various components of the POELab environment and
also to build application specific components when generating application PSEs with POELab. This toolkit defines and imple­
ments representations for the POE objects in several forms (including C. FORTRAN, LISP and XOR) and also provides repre­
sentation convertors to translate between various representations of each object. A set of tools for building graphical user
interfaces using the OSFlMotif widget set is also provided. Other services available in POEKit include distributed file I/O
mechanisms (implemented using the POEBus described below) and a generic object management utility to manage collections
of objects.

PDEVpe. This is a Virtual Parallel Environment for Building parallel PDE solvers. The tools and services provided by
POEVpe include parallel BLAS. machine independent communication libraries, parallel language support, template-based
parallelizing methodologies, skeletons for implementing parallel methods. (geometry based) matrix partitioning tools and
instrumentation and visualization tools.

PDEBus. The PDELab Software Bus is the underlying communication fabric which provides the vital glue that facilitates the
operation of PDELab. PDEBus allows one to interconnect various types of clients that communicate in various communica­
tion protocols. PDEBus also provides location services, process management services and messaging services.

PDEPack. POEPack is the collection of numerical simulation facilities that forms the backbone of PDELab. It consists of
sequential and parallel equation discretizers for both finite element and finite difference methods, sequential and parallel linear
system solvers, nonlinear solvers, solution evaluators and error and performance estimators. In addition, PDEPack is a frame­
work for integrating existing PDE solvers, libraries, model-specific solvers and entire POE solving systems.

PDEView. PDEView is the intelligent user interface environment created within the PDELab framework. PDEView is a col­
lection of editors and tools that allow users to create, edit and manipulate POE objects. Each editor is a separate tool that can
exist either on its own, or as an integral part of a problem solving session involving a collection of tools. Each editor also func­
tions as an integration framework for functionality related to that editor. A notebook editor serves as the central interaction
environment for users; it provides mechanisms for invoking other editors and behaves as a session log. The user interfaces of
all the PDEView tools support the common and consistent look and feel supported by the user interface development facilities
ofPDEKit.

I. While the definition of POESpec is based on MACSYMA, the actual implementation is based on MAXIMA, an AKCL­
based, publicly available version ofMACSYMA.

PYTHIA. In a problem solving environment. there are many situations where intelligent reasoning rather than algorithmic
logic is necessary. PYTIllA is the environment that provides these computational intelligence facilities in PDELab. PYTHIA
currently provides assistance in selecting a solution scheme to solve a given PDE problem using the previous perfonnance of
various solution methods on similar problems as a basis for its reasoning.

3. SYMBOLIC COMPUTATION IN PDELAB

As mentioned above, the PDESpec language is defined using MACSThlA. The PDESpec parser that is invoked when users
textually enter PDE objects is implemented within MACSYMA. Symbolic rransformations on PDESpec objects (for example,
linearizing a nonlinear equation or discretizing a PDE operator) are also supported. When a PDESpec program is to be exe­
cuted, a lranslator in MACSYMA symbolically analyzes the program and generates the target code using the GENCRAY code
generation system [3]. Execution time discretizations (for example, discretizing continuous boundary conditions to generate
discrete values at boundary points) are done using MACSThlA as an evaluation server.

Within PDEPack, direct symbolic operations are nOL feasible due [0 the difficulty of efficiently integrating the run-time mech­
anisms of languages such as C and FORTRAN with that ofa symbolic computing environment. Instead, PDELab allows appli­
cations to statically specify the symbolic operation to be perfonned, but have it invoked dynamically. The static specification
allows us to allocate necessary storage and control mechanisms while the dynamic invocation provides all the necessary flexi­
bility to applications. Jacobian generation is an example of this type of usage.

Several PDEView tools apply MACSYMA as a dynamic evaluation mechanism. For example, the domain editor uses it to
generate a display representalion of a boundary defined in a piecewise parametric form: the parametric expressions are evalu­
ated at various parameter values to produce a piecewise linear representation that can be displayed. The domain editor also
uses this mechanism to allow users to specify arbitrary interpolation schemes. The same mechanism is used to generate piece­
wise linear representations of the boundary needed by certain mesh generators. In lhe visualization environment interpolation,
differentiation, smoothing and function overlays are supported by using MACSYMA.

PYTHIA, the computational intelligence environment uses MACSYMA to determine various properties of the equations and
boundary & initial conditions in order to provide advice on solution methods. Properties derived using MACSYMA include
easily identifiable propenies such as coefficient properties, dimensionality, boundary condition types and also more subtle
properties such as singularities within the coefficient space.

The above uses of symbolic computation are all within the PDE solution environment itself. However, symbolic computation
also forms an integral part of the overall problem solving process that is supported by the problem solving environments
developed using PDELab. The PDELab system also provides a general environment where one can perform symbolic manip­
ulation independent of the PDE processes involved and incorporate these results into the notebook editor as well.

4. AN ARCIDTECTURE FOR INTEGRATED NUMERIC-SYMBOLIC COMPUTATION

The abstract view of problem solving environments is as a collection of tools collaborating together to solve some problems.
These tools are all connected together via the software bus. Figure I illustrates this conceptual view.

FlGURE 1. The Conceptual View of PSEs.

In PDELab. symbolic computation facilities musl be available to all interested lools. To satisfy this requirement. a special tool
behaves as the symbolic computation server and exports certain services that are accessed by interested clients. This tool itself
is implemented by front-ending the MACSYMA computer algebra system. In addition, this tool provides program generation
services using GENCRAY. Figure 2 illustrates the architeclure of the symbolic tool of PDELab.

.....-.-­.......- GENCRAY
PDELab­

Functionality

FIGURE 2. The architecture of the symbolic tool.

When a symbolic computation service is requested via the software bus, this request is transformed into one or more MAC­
SYMA calls by the symbolic tool. The MACSYMA calls may be native calls or calls provided by the functionality specifically
implemented for PDELab. Argumenls to these calls may be arbitrary PDE objects and are transmitted to MACSYMA via a
communication link in a textual form. The normal output produced by MACSYMA (for example, status and warning mes­
sages) are caplured by the symbolic tool and displayed to the user. The communication protocol used in these inpuEioutpur
channels is the text command language used by MACSYMA. The results of the request. however, are sem to the symbolic tool
via a special channel using lhe normal software bus communication protocol. The symbolic tool may further process these
requests (for example. the message may be a program in an intennediate form that needs further processing by GENCRAY) or
directly forward the reply to the original requestor. Program lranslation services of GENCRAY are provided by directly
embedding GENCRAY in the symbolic tool.

To illustrate this scenario. let us consider an example. Suppose that PYTHIA wants to detennine the properties ofa PDE oper­
ator. PYTHIA sends the request "operator properties" to the symbolic tool with the operator object as an argument. The sym­
bolic 1001 translates lhe operator to a text fonn and calls lhe PDELab specific function thaI provides this service. This funClion
detennines lhe properties it can detennine via various symbolic transfonnations and sends a reply to lhe symbolic tool. In this
case no further processing by the symbolic tool is necessary; hence it simply forwards the list of properties (in the fonn of an
object lhat the requestor can understand) to the original service requestor.

5. CONCLUSION

We have described the software environment that we have developed for integrating symbolic computation and numeric com·
putation in the context of solving partial differential equation problems. This environment uses the MACSYMA computer
algebra system as the symbolic computation engine to provide the various symbolic computing services needed by PDELab.

6. REFERENCES

1. Sanjiva Weerawarana, Elias N. Houstis, John R. Rice, Ann Christine Catlin, Cheryl L. Crabill, Chi Ching Chui and Shah­
ani Markus, "PDELab: An Objecl-·Oriented Framework for Building Problem Solving Environments for PDE Based
Applications," Proceedings ofthe Second Annual Object-Oriented Nflmerics Conference, Rogue-Wave Software, Corval­
lis, Oregon, 1994, pp. 79-92.

2. James M. Punilo, "The Polylith Software Bus," ACM Transactions on Programming Languages alld Systems, 16(1),
1994, pp. 151-174.

3. Sanjiva Weerawarana and Paul S. Wang. "A Portable Code Generator for Cray FORTRAN," ACM Trallsac/ions Oil Math­
ema/ical Software, 18(3), 1992, pp. 241-255.

	A Software Platform for Integrating Symbolic Computation with a PDE Solving Environment
	Report Number:
	

	tmp.1307986960.pdf.WAah2

