
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Authorship Analysis: Identifying the Author of a Program Authorship Analysis: Identifying the Author of a Program

Ivan Krsul

Report Number:
94-030

Krsul, Ivan, "Authorship Analysis: Identifying the Author of a Program" (1994). Department of Computer
Science Technical Reports. Paper 1131.
https://docs.lib.purdue.edu/cstech/1131

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AUTHORSIDP ANALYSIS: IDENTIFYING
THE AUTHOR OF A PROGRAM

Ivan Krsul

eSD TR·94-030
M::ty 1994

Authorship Analysis: Identifying The
Author of a Program!

Ivan Krsul
The COAST Project

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398
krsu Hilcs. purd ue.ed u

May 3, 1994
Technical Report CSD-TR-94-030

IThis paper was originally written as a Master's thesis at Purdue University.

Abstract

In this paper we show that it is possible to identify the author of a piece of
software by looking at stylistic characteristics of C source code. We also show
that there exist a set of characteristics within a program that are helpful in
the identification of a programmer, and whose computation can be automated
with a reasonable cost.

There are four areas that benefit directly from the findings we present
herein: the legal community can count on empirical evidence to support
authorship claims, the academic community can count on evidence that sup
ports authorship claims of students, industry can count on identifying the
author of previously un-identifiable software modules, and real time intru
sion detection systems can be enhanced to include information regarding the
authorship of all locally compiled programs.

We show that it is possible to identify the author of a piece of software
by collecting and identifying eighty-eight programs for twenty nine students,
staff and faculty members at Purdue University.

Chapter 1

Introduction.

There are many occasions in which we would like to identify the source of
some piece of software. For example, jf after an attack to a system by some
software we are presented with a piece of the software used for the attack,
we might want to identify the source of the software. Typical examples of
such software are Trojan horsesl

, viruses2
, and logic bomhs3 .

Other typical circumstances will require that we trace the source of a
program. Proof of code fe-engineering, resolution of authorship disputes and
proof of authorship in courts are but a few of the more typical examples of
such circumstances. Often, tracing the origins of the source requires that we
identify the author of the program.

This seems at first an impossible task, and convincing arguments can be
given about the intractability of this problem. Consider, for example, the
following short list of potential problems with the identification of authors:

1. Given that millions of people write software, it seems unlikely that,
given a piece of software, we will find the programmer who wrote it.

2. Software evolves over time. As time passes, programmers vary their
programming habits and their choice of programming languages. The

ITrojan horses are defined in [GS92] as programs that appear to have one function but
actually perform another function.

2Viruses are defined in [GS92] as programs that modify other programs in a computer,
inserting copies of themselves.

3Logic bombs are defined in [GS92] as hidden features in programs that go off after
certain conditions are met.

1

development of new software engineering methods, the introduction of
formal methods for program verification, and the development of user
friendly, graphic oriented code processing systems and debuggers all
contribute to making programming a highly dynamic field.

3. Software gets reused. In recent years, and wi th the development of ob
ject oriented programming methodologies, programmers have come to
depend on reusing large portions of codej similar to the code produced
by the GNU fFree Software Foundation\ much of it is public domain.

Commercially available prototypers, like the Builder Xcessory by In
tegrated Computer Solutions, Inc., produce thousands of lines of code
that are used to develop Motif interfaces. Similar development tools
are available for hundreds of development platforms.

Similar arguments could be given for fingerprinting: Fingerprint matching
is an expensive process and it seems unlikely that government agencies will
ever be able to classify every citizen in their lifetime. It is also unlikely that
given a fingerprint, we will be able to pick from a pool of several million
people the correct person every time.

The identification process in computer software can be made reliable for
a subset of the programmers and programs. Programmers that are involved
in high security projects or programmers that have been known to break the
law are attractive candidates for classification.

1.1 Statement of the Problem.

Authorship analysis in literature has been widely debated for hundreds of
years, and a large body of knowledge has been developed [Dau90]. Author
ship analysis on computer software, however, is different and more difficult
than in literature.

Several reasons make this problem difficult. Authorship analysis in com
puter software does not have the same stylistic characteristics as authorship
analysis in literature. Furthermore, people reuse code, programs are de
veloped by teams of programmers, and programs can be altered by code
formatters and pretty printers.

4.The Free Software Foundation is a group started by Richard Stallman to embody his
ideas of personal freedom and how software should be produced.

2

Our objective is to classify the programmer and to try to find a set of
characteristics that remain constant for a significant portion of the programs
that this programmer might produce. This is analogous to attempting to
find characteristics in humans that can be used later to identify a person.

Eye and hair coloring, height, weight, name and voice pattern are but
a few of the characteristics that we use on a day-to-day basis to identify
persons. It is, of course, possible to alter our appearance to match that of
another person. Hence, more elaborate identification techniques like finger
printing, retinal scans and DNA prints are also available, but the cost of
gathering and processing this information in large quantities is prohibitively
expensive. Similarly, we would like to find the set of characteristics within
a program that will be helpful in the identification of a corresponding pro
grammer, and whose computation can be automated with a reasonable cost.

What makes us believe that identification of authorship in computer soft
ware is possible? People work within certain frameworks that repeat them~
selves. They use those things that they are more comfortable with or are
accustomed to.

Programmers are humans. Humans are creatures of habit, and habits
tend to persist. That is why, for example, we have a handwriting style that
is consistent during periods of our life, although the style may vary as we
grow older. Patterns of behavior are all around us.

Likewise for programming, we can ask: which are the programming con
structs that a programmer uses all the time? These are the habits that will
be more likely entrenched, the things he consistently and constantly does
and that are likely to become ingrained.

1.2 Motivation.

Four basic areas can benefit considerably by the development of solid author
ship analysis tools:

1. For authorship disputes, the legal community is in need of solid method
ologies that can be used to provide empirical evidence to show that two
or more programs are written by the same person.

2. In the academic community, it is considered unethical to copy pro
gramming assignments. While plagiarism detection can show that two

3

programs are equivalent, authorship analysis can be used to show that
some code fragment was indeed written by the person who claims au
thorship of it.

3. In industry, where there are large software products that typically run
for years, and millions of lines of code, it is a common occurrence
that authorship information about programs or program fragments is
nonexistent, inaccurate or misleading. Whenever a particular program
module or program needs to be rewritten, the author may need to be
located.

It would be convenient to be able to determine the name of the pro
grammer who wrote a particular piece of code from a set of several
hundred programmers so he can be located to assist in the upgrade
process.

4. Real-time intrusion detection systems could be enhanced to include
authorship information. Dorothy Denning writes in [Den87J about a
proposed real-time intrusion detection system:

The model is based on the hypothesis that exploitation of a
system's vulnerabilities involves abnormal use of the system;
therefore, security violations could be detected from abnor
mal patterns of system usage.

Obviously, a programmer signature constructed from the identifying
characteristics of programs constitutes such a pattern. For example,
consider the student who retrieves a copy of a password cracking pro
gram and compiles it in his university account. Once the compiler
collects the identifying features of the program, the operating system
could immediately recognize the compiling of this program as an ab
normal event.

Of course we realize that it is theoretically possible for a programmer to
fool or bypass the system by altering his programming methods. The
change would have to be gradual, subtle and ingenious for the system
not to record the change. However, we expect that modifying a user's
profile to meet the characteristics of a specific program (a password

4

cracking program, for example) will be a difficult and time consuming
process.

Researchers who seriously consider this issue must also address the re
design of compilers, interpreters and operating systems to enforce the
use of these metrics at run time. A compiler is just another program.
What is to prevent someone from bringing or building his own compiler
piece by piece?

Operating systems must also prevent the installation of programs com
piled on other systems by potential penetrators. To maintain consis
tency, all executable programs in the system must be either compiled
locally, or registered with the system administrator. If this step was
not enforced, any programmer might compile source code on a privately
owned machine, importing executable programs with false identifica
tion information.

We must also consider that the data that authorized compilers generate
must be protected. If such identifying information is stored in the
binary file, what prevents someone from writing a program to change
it?

1.3 Desired Results

Our goal is to show that it is possible to identify the author of a program by
examining its programming style characteristics. Ultimately, we would like
to find a signature for each individual programmer so that at any given point
in time we could identify the ownership of any program.

The implications of being able to find such a signature are enormous. Cliff
Stoll's German hacker [St090] never feared prosecution precisely because of
our inability to identify him even after tracking him down (the hacker had to
be caught red-handed to be prosecuted). The author of the Internet Worm
that attacked several hundred machines in the evening of November 2, 1988
[Spa89] might also have been identified quickly since he was a student and
many samples of his programming style were readily available. Authors of
computer viruses might also be identified if a piece of the source code is
available.

5

1.4 Summary.

Identifying the author of a program is a difficult process. We need some
powerful tools to discover the identity of programmers who are not explicitly
named or who might simply wish to conceal themselves. These tools must
prove reliable.

In the remainder of this paper l we will put forth a methodology for iden
tifying such source code. Chapter 2 introduces much of the background
material and explores the work that has been done in related areas. Chapter
3 introduces the methodology and experimental setup. Chapter 4 details the
experiments performed and outlines the findings. Finally, Chapter 5 presents
the conclusions and details the work that must be done in the future.

6

Chapter 2

Authorship Analysis

2.1 Definitions

An Author is defined by Webster [MW92] as "one that writes or composes
a literary work," or as "one who originates or creates." In the context of
software development we adapt the definition of author to be: "one that
originates or creates a piece of software." Authorship is then defined as,
"the state of being an author." As in literature, a particular work can have
multiple authors. Furthermore, some of these authors can take an existing
work and add things to it, evolving the original creation.

A program is a specification of a computation [Set89] or alternatively,
a sequence of instructions that permit a computer to perform a particular
task [Spe83]. A programming language is a notation for writing programs
[RR83, Set89].

A programmer is a person who designs, writes and tests computer pro
grams [Spe83]. In the fullest meaning of the term, a programmer will partic
ipate in the definition and specification of the problem itself, as well as the
algorithms to be used in its solution. He will then design the more detailed
structure of the implementation, select a suitable programming language and
related data structures and write and debug the necessary programs [RR83].

Programming style is a distinctive or characteristic manner present in
those programs written by a programmer.

A predicate is a propositional formula in which relational and quanti
fied expressions can be used in place of prepositional variables. To interpret

7

a predicate, we first interpret each relational and quantified expression
yielding true and false for each-and then interpret the resulting preposi
tional formula [And91, page 201.

A complex system may be divided into simpler pieces called modules.
While writing software that is divided into modules, we can: look at the

details of each module in isolation, ignoring other modules until the module
has been tested and completed, or look at the general characteristics of each
module and their relationships to integrate them. If these two phases are
executed in this order, then we say that the system is designed bottom up;
the converse denotes top-down design.

Prototypers are programs that allow users to create automatically large
portions of code, generally for the design of user-interfaces, relieving the user
of the monotonous production of well understood and largely standard code.

2.2 Survey of Related Work

2.2.1 Authorship Analysis in Literature

In literature, the question of Shakespeare's identity has engaged the wits and
energy of a wide range of people for more than two hundred years. Such great
figures as Mark Twain, Irving Wall and Sigmund Freud debated at length
this particular issue [HH92]. Mark Twain, for example, made the following
observations about Shakespeare and his writings:

• Shakespeare's parents could not read, write or sign names.

• He made a will, signed on each of the three pages. He went to great
lengths to distribute his wealth among the members of his family. This
will was a businessman's will and not a poet's.

• His will does not mention a single book, nor a poem nor any scrap of
manuscript of any kind.

• There is no other known specimen of his penmanship that can be proved
his, except one poem that he wrote to be engraved on his tomb [Nei63].

Hundreds of books and essays have been written on this topic, some as
early as 1837 [Dis37]. Especially interesting was W. Elliott's attempt to

8

resolve the authorship of Shakespeare's work with a computer by examining
literary minutiae from word frequency to punctuation and proclivity to use
clauses and compounds.

For three years, the Shakespeare Clinic of Claremont Co11eges used com
puters to see which of fifty-eight claimed authors of Shakespeare's works
matched Shakespeare's writing style [EV91j. Among the techniques used
was a modal test that divided a text into blocks, fifty-two keywords in each
block, and measured and ranked eigenvalues, or modes. Rather than rep
resenting keyword occurrences, modes measure patterns of deviation from
a writer's rates of word frequency. Other more conventional tests examined
were hyphenated compound words; relative clauses per thousand; grade-level
of writing; and percentage of open - and feminine - ended lines [EV91J.

Although much controversy surrounds the specific results obtained by
Elliott's computer analysis, it is clear from the results that Shakespeare fits
a narrow and distinctive profile. As W. Elliot and R. Valenza write in {EV91j:

Our conclusion from the clinic was that Shakespeare fit within
a fairly narrow, distinctive profile under our best tests. If his
poems were written by a committee, it was a remarkably consis
tent committee. If they were written by any of the claimants we
tested, it was a remarkably inconsistent claimant. If they were
written by the Earl of Oxford, he must, after taking the name of
Shakespeare, have undergone several stylistic changes of a type
and magnitude unknown in Shakespeare's accepted works.

2.2.2 Authorship Analysis With Programming Style

The issue of identifying program authorship was explored by Cook and Oman
in [OCS9J as a means for determining instances of software theft and plagia
rism. They briefly explored the use of software complexity metrics to define a
relationship between programs and programmers, concluding that these are
inadequate measures of stylistic factors and domain attributes. Two other
studies by Berghel and Sallach [BS84) and Evangelist [Eva84] support this
theory.

Cook and Oman describe the use of "markers" to describe the occurrences
of certain peculiar characteristics, much like the markers used to resolve

9

authorship disputes of written works. The markers used in their work are
based purely on typographic characteristics.

For collecting data to support their claim they built a Pascal source code
analyzer that generated an array of Boolean measmements based on:

1. lnline comments on the same line as source code.

2. Blocked comments (two or more comments occurring together).

3. Bordered comments (set off by repetitive characters).

4. Keywords followed by comments.

5. One or two space indentation occurred more frequently.

6. Three or four space indentation occurred more frequently.

7. Five spaces or greater indentation occurred more frequently.

8. Lower case characters only (all source code).

9. Upper case characters only (all source code).

10. Case used to distinguish between keywords and identifiers.

11. Underscore used in identifiers.

12. BEGIN followed by a statement on the same line.

13. THEN followed by a statement on the same line.

14. Multiple statements per line.

15. Blank lines in program body

To test their hypothesis, Cook and Oman collected the metrics mentioned
above for eighteen short programs by six authors, each program implementing
a simple textbook algorithm that fit on one page.

The programs were taken from example code for three tree traversal al
gorithms (inorder traversal, preorder traversal and postorder traversal) and
one sorting algorithm (bubble sort).

10

Cook and Oman claim that the results of the experiment were surpris
ingly accurate. The results are encouraging, but further reflection shows
that the experiment is fundamentally nawed. This experiment fails to con
sider that textbook algorithms are frequently cleaned by code beautifiers
and pretty printers, and that different problem domains will demand dif
ferent programming methodologies. The implementation of the three tree
traversal algorithms involves only slight modifications and hence are likely
to be similar.

Their choice of metrics also limits the usefulness of their techniques. Some
of these metrics are useless in the analysis of C code because the language is
case sensitive and it is a common occurrence that programmers use uppercase
for constants and lowercase for variables and identifiers.

A Boolean measurement is inadequate for most of the other measure
ments. Consider, for example, the metric dealing with the existence of blank
lines in a program. Most programmers tend to organize their programs so
that some structural information is readily available by simply looking at the
program. Programmers then tend to spread their code, using blank lines to
separate logically independent blocks. Hence, it is likely that all programs
would have at least some blank lines separating their logical components.

To test our theory, we constructed a simple program that counts the blank
lines in a program and used this tool on 996 C files. The smallest program
(or file) was only two lines long. The largest 6,900 lines long. Table 2.1
contains the statistics gathered. Notice how the distribution of percentages
of blank lines is clustered around the ten percent mark. Figure 2.1 shows a
graphical representation of this distribution.

Of these, only four programs had no blank lines, and these four files
were shorter than six lines of code. The rest varied significantly, from only
one blank line to 36% of the file being blank lines. Hence, we conclude
that the choice of a Boolean variable for this measurement is inappropriate.
Similar arguments can be made for the "Keywords followed by comments,"
and ('Multiple statements per line" measurements.

We also analyzed 178 C files for indentation information. The smallest
program (or file) was a few dozen lines. The largest 6,900 lines long. Figure
2.2 shows the distribution of mean indentation values. Figure 2.3 shows the
distribution of maximum indentations for a program.

Not surprisingly, most of the programs analyzed have their indentations
in the two, fOUf and eight spaces marks. What was surprising was the large

11

~ Percent blank lines I Files I Smallest file I Largest file ~

0 4 2 5
1 4 100 1037
2 3 100 797
3 14 31 1047
4 27 25 1461
5 36 58 6009
6 83 18 3617
7 112 27 2050
8 122 12 3297
9 105 34 2718
10 104 29 2151
11 91 27 2794
12 82 25 5801
13 59 16 1706
14 35 22 1642
15 24 13 719
16 20 19 963
17 12 12 1685
18 22 11 3265
19 6 21 680
20 7 20 92
21 5 29 238
22 3 32 146
23 3 31 212
24 2 38 216
26 4 27 2235
27 1 77 77
28 1 25 25
30 1 23 23
33 2 3 18
36 1 22 22

Table 2.1: Blank Line Count for C Programs

12

~ J211,lJJ

•
I
~o 100,00

i 80,00

&00

20.00

"00
I

".00

\
'\
\
\

10,1"

I ~--~--~~--

V\"
'--~~/"""'''-~ - ---

21J.(KI

Percentage or Blank Lines

Figure 2.1: Blank Line Distribution in C Programs

variation found. Some programs were overwhelmingly inconsistent, allowing
for lines to be indented up to 16 spaces. A better indentation measurement
must include a consistency value.

2.2.3 Software Forensics

Spafford and Weeber suggest that it might be feasible to analyze the remnants
of software, typically the remains of a virus or trojan horse, and identify its
author. They theorize that this technique, called Software Forensics, could
be used to examine and analyze software in any formi be it source code for
any language or executable images [WS93].

The authorship of a program might well be proven beyond any reasonable
doubt by the results of such analysis if there exists a large enough statistical

13

8 ",00 ---+---1

£ 55.00 __

£..
".Q JS.OO

~

15.00

'.00

".00
I,

J ·--i

I
• •

Averoge Indenl.alion on Program

Figure 2.2: Mean Indentation for C Programs

base to support our comparisons. If not, they might provide hints about
where more serious investigation should be performed.

An author of software cannot be directly identified by the analysis of
source code, much in the same manner as medical forensics cannot directly
identify the author of a crime. The result of the analysis will be a series
of statistics about the characteristics that are present in the piece of code,
much like the autopsy of a murder showing that the victim was stabbed by
a 20 inch long knife by a left handed criminal six feet tall.

Spafford and Weeber write in [WS93] the following of software forensics:

"...would be similar to the use of handwriting analysis by law en~

forcement officials to identify the authors of documents involved
in crimes, or to provide confirmation of the role of a suspect.
Handwriting analysis involves identifying features of the writing
in question. A feature of the writing can be anything identifiable
about the writing, such as the way the i's are dotted or aver-

14

F:---1---- 1- 1-
~"'''·1-i "00 - jl----t--

~.oo

:l.S.l1I-

20.00

JSJlO

, JO 15

Maximum Indentallon

Figure 2.3: Maximum Indentation for C Programs

age height of the characters. The features useful in handwriting
analysis are the writer-specific features. A feature is said to be
writer-specific if it shows only small variations in the writings of
an individual and large variations in the writings of different au
thors.
Features considered in handwriting analysis today include shape
of dots, proportions of lengths, shape of loops, horizontal and
vertical expansion of writing, slant, regularity, and fluency. Most
features in handwriting are ordinary. However, most writing will
also contain features that set it apart from the samples of other
authors, features that to some degree are unusual. A sample that
contains i's dotted with a single dot probably will not yield much
information from that feature. However, if all of the 0'5 in the
sample have their centers filled in, that feature may identify the
author."

15

This has a high degree of correlation with the identification of program
authors using style analysis [OC89]. However , Software Forensics is really
a superset of authorship analysis using style analysis because some of the
measurements suggested by Spafford and Weeber [WS93] include, but are
not limited to, some of the measurements made by Cook and Oman [OC89].

Among the measurements that Spafford and Weeber suggest are the pref
erence for certain data structures and algorithms, the compiler used, the level
of expertise of the author of a program, Lhe choice of system calls made by
the programmer, the formatting of the code, the use of pragmas of macros
that might not be available on every system, the commenting style used by
the programmer, variable naming convention used and misspelling of words
inside comments and variables.

The list of measurements suggested by Spafford and Weeber is compre
hensive, but the derivation of some of these are difficult to automate. Con
sider, for example, what they say about spelling and grammar measurements:

Many programmers have difficulty writing correct prose. Mis
spelled variable names (e.g. TransactoingReciept) and words in
side comments may be quite telling if the misspelling is consis
tent. Likewise, small grammatical mistakes inside comments or
print statements, such as misuse or overuse of em-dashes and
semicolons might provide a small, additional point of similarity
between two programs.

From a small set of programs, we gathered the names of variable names
and found, among others, that the following were not recognized by the
local spell checker: taILw_oracle, om....recv, oracleJIlssg, collis..service, re
sult....recv, result..send, net_coils, tcpchksum, pip, secJlOst, infoJIly...socket,
msgc, remdata, CharToInputType, StateToNextState, NoOutputChars, Er
rorType, proto, addrlen, hname.

We also extracted all the comments and strings from several programs of
a graduate student of Purdue University and found that the following words,
among others, were not recognized by our local spell checker: algo, buf,
cmd, cmdAckGet, cmdAckPut, cmdClr, cmdEnd, emdEn, cmdGet, cmdPut,
co, connectsock, cant, corrida, Entrando, Esto, Expiro, llego, mandando,
respuesta, resultado, tiempo, tion, ver.

Even when we look at the original words in their context, it is practically
impossible to determine when a word was misspelled. Some of the words the

16

spell checker did not recognize are in Spanish. This gives us some information
about the origin or educational background of the programmer 1 and this
adds to the complexity of automating these measurements.

Spafford and Weeber provide no statistical evidence that might support
their theory. The following quote from the concluding remarks of the paper
illustrate the point:

Further research into this technique, based on the examination of
large amounts of code, should provide further insight into the util
ity of what we have proposed. In particular, studies are needed to
determine which characteristics of code are most significant, how
they vary from programmer to programmer, and how best to mea
sure similarities. Different programming languages and systems
should be studied, to determine environment-specific factors that
may influence comparisons. And most important, studies should
be conducted to determine the accuracy of this method; false neg
ati yes can be tolerated, but false positives would indicate that the
method is not useful for any but the most obvious of cases.

2.3 Difficulties in Authorship Analysis

We expect the programming characteristics of programmers to change and
evolve. For example, it would be unrealistic for us to expect the programming
style of a programmer to remain unaltered through several years of graduate
work in Computer Science.

Education is only one of many factors that have an effect on the evolution
of programming styles. Not only do software engineering models impose
particular naming conventions, parameter passing methods and commenting
styles; they also impose a planning and development strategy. The waterfall
model [GJM91], for example, encourages the design of precise specifications,
utilization of program modules and extensive module testing. These have a
marked impact on programming style.

The programming style of any given programmer varies also from lan
guage to language, or because of external constraints placed by managers or

ISome of these words may be in Spanish, or they might be simple contractions. The
words ver and algo fall under this category

17

tools2 . Out of the set of measurements that allow our model to identify the
authorship of a program, can we identify those that have been contaminated
and ignore them for our analysis? A good example would be the analysis of
code that has been formatted using a pretty-printer. Would it be possible for
the authorship analysis system to recognize that such a formatter has been
used, identify the pretty-printer and compensate by eliminating information
about indentation, curly bracket placement and comment placement? Con
ceptually similar would be the recognition of tools used that force onto the
programmer a particular programming style. For example, could the author
ship analysis tool recognize the usage of Motif and compensate for variable
naming conventions imposed by the tool?

Finally, among the most serious problems that must be resolved with
authorship analysis is the reuse of code. All the work performed up to date
on this subject assumes that a significant part of the code being analyzed
was built and developed by a single individual. In commercial development
projects, this is seldomly the case.

2.4 What Authorship Analysis is not

2.4.1 Plagiarism Detection

It is important to realize that authorship analysis is markedly different from
Plagiarism Detection. In [Mor91], D. Moreaux defined Software Plagiarism
as a general form of software theft, which can in turn be defined as the
complete, partial or modified replication of software, with or without the
permission of the original author.

Notice that according to this definition, plagiarism detection can not tell
if two entirely different programs were written by the same person. Also, the
replication need not maintain the programming style of the original software.

Consider, for example, a program "Xli that is a plagiarized version, by
programmer "A" of an original work done by programmer "B." After Pro
grammer "A" has copied the original program, stylistic changes are made.
Specifically, old comments are removed and new comments are added, inden
tation and placement of brackets are changed to match the style of program-

:?The use of the Motif, GL, PLOT-IO or GKS libraries generally demands that the
application be structured in some fashion or may impose naming conventions.

18

mer "A," variables are renamed to something that he feels more comfortable
with, the order of functions is altered and "for" loops are changed to "while"
loops.

While plagiarism detection needs to detect the similarity between these
two programs, authorship analysis does not. For the purpose of authorship
identification, these two programs have distinct authors.

Many people have devoted time and resources to the development of
plagiarism detection [Ott77, Gri81, Jan88, Wha86J, and a comprehensive
analysis of their work is beyond the scope of this paper. We can, however
give a simple example that will illustrate how measurements traditionally
used for plagiarism detection are ill suited to authorship analysis.

Consider the two functions shown in figure 2.4. Both are structurally and
logically equivalent. However, the second function has undergone several
stylistic changes that mask the identity of the original programmer. Plagia
rism detection systems might consider them identical. Traditional software
engineering metrics, used commonly for plagiarism detection, will yield sim
ilar values. But authorship analysis should not consider them identical. If
both authors happen to write these functions independently, and this is a
common occurrence, our system should identify them as unique.

2.4.2 Personality Profiler

Throughout the development of this document, we realized that it is a com
mon occurrence to mistake authorship analysis with the classification of pro
grammers personalities. A member of the faculty of Purdue University reo
marked that it would be ridiculous to try to derive any information about
his persona by the programming examples in his many published books or
developed systems. While this might be possible, it should be left to the
researchers in psychology departments.

We also believe that it is possible to determine something about the back·
ground of a programmer by looking at his code [WS93]. Faculty members and
teaching assistants at Purdue University agree that undergraduate students
and electrical engineers are notorious for abusing3 hashing, Lisp programmers

3 Abuse in this context refers to using a data structure that is inappropriate or unrea
sonablyexpensive. Sorting with linked lists or hashing techniques where keys have a high
degree of collisions are examples of such abuses.

19

are notorious for abusing linked-list data structures, and native Fortran pro
grammers prefer using short lines. While all this information might be useful
in forensic analysis [WS93], it is beyond the scope of our study.

2.5 A Simple Example

As a simple example of the differences in programming style among program
mers, consider the programs shown in figures 2.5, 2.6, 2.7 and 2.8. These are
variations on a program written by graduate students at Purdue University.
The specification given for the function was:

"Write a function that takes three parameters of type pointers to
strings. The function must concatenate the first two strings into
the third string. The use of system calls is not permitted."

We notice that the approach taken by all programmers was similar; all
functions work exclusively with pointers, and all loops search for the null
character at the end of each string. Three of the four programs use the
while loop and three of the four programs use auxiliary variables. AU four
programs contain two loops and all loops have the same functionality.

However, these programs are far from being identical. A closer scrutiny
of these programs will reveal that:

1. Programmer one prefers the use of "for" loops instead of the "while"
loop.

2. Only programmer two has the function header comments boxed in com
pletely, programmer one has partial boxing, and the rest have no boxes
at all.

3. Programmers one and three have chosen temporary variables with names
of the form xxxI, xxx2, xxx3, etc. Only programer two has chosen
temporary variable names that reflect the use that will be given to the
variable.

4. One of the programs has a significant bug: The return of the function
is undefined when the two input strings are empty (i.e. it fails to "do
nothing" gracefully [KP78]).

20

5. The program for programmer one has an incorrect comment.

6. Only one of the programmers has consistently indented his programs
using three spaces. The rest used only two spaces.

7. The placement of curly braces ({) is distinct for all programmers.

This is not an exhaustive list of differences. It is just an example that
illustrates the types of features that we can examine to distinguish among
programmers.

21

, .
Subr<ruH.II.. fcr cl:1ecIr.Lnl! " etr11ll! fO" !'AllS

• "."..-tor•• n,S"rill\T "0 """-IIIJ.1l.
• 1I."urD, lloolean 11ld1c."LnIl til. azJ..".......
• of • tal:> o;b.aractor..,

1.11" .t~Co;b.ar 'n),
el:ur.r 'ptrl,

p"rl • el,
1tI:li1aC'ptrl I. 0)

1f(·p"rH• •• "\"'1
:returD(1) I

roturD!O) ,

l<lafJ:oo !'IIll'I 1
'<I.fh... FALSE 0
/. l:ILIIeu 1:lIO -.t.t"""o o£ \t 1" atri,,1I' .,
1"" Cl>aek...for_"II.!:l_Ln_.trLng(.tri"l!)
cl>ar ·.trLngo,,

I' LooP w::IHl f""""'- or ... roach EOLI; '1
for Ccl>a rac tor--""11l,,.r • a triE111'I • cl>arac t 8:rJIOLnt a r,

,. el>aek "0 ... if ... f""""'- 'l'AJI ./
If!·(ch&:r"et.rJlOLntarH' •• ~,,

I' Suee..all ./
nt,,=(TIlll'l) ,

,
/. Ifo tab ./
",,,u=(I'I\LS1I.' ,

Two program modules thar
might be considered simi/ar in
plagiarism detection systems.
They would nol be considered
simi/ar in authorship analysis.

Figure 2.4: Plagiarism Detection vs. Authorship Analysis

22

..._---------------

, •••••••••••••••••••••••••••••••••••• ** •••••••••••••••••••••••••
• ~ia C~~~ion ~on~a~.nat•• the firat and .econd .t~ing into
• the third string •...,

void atrcat(char -stringl, char -strinq2, char -string3)

I

ptr2 = IItring3;
/"

e c~ first string
"/

for(ptrla atringl;*ptr1,ptrl++)
+(ptr2++) a .ptrlJ

)

/"
e c~ first string
"/

for(ptrl••tring2,·ptrlJptr12++)
+Cptr2++) = ·ptrl;

)

/"
e Null terminate the resulting Btring
"/

*ptr2 .. '\0';

Figure 2.5: Style Variations on a Program: Programmer 1

23

'* --- *'
'* IItl:ClltI81, s2, 83) *'
'* Append IItrings 81 and 82, and copy result into 113. *'
'* Requil:es that .ufficient memol:Y fOl: s3 is already allocated. *'
'* --*'
void stl:cat (al, s2, 83)
char *.1,
char *s2,
char *113;
{

<:hare IIrc sl}
char* dest 83;

"hile 1*lIrc) {
* (dellt++) * (Sl:c++)/
I,

Sl:c = 112;
whil. (*lIrcl

*lde8t++) • *llIrC++)1

"
*dest c '\0',

I,

Figure 2.6: Style Variations on a Program: Programmer 2

24

,.
IItr_cat(char *..trl, c:har tr2, == *lIt:l:'J)
concatenates String lItr! & lItr2 into .tr3.,

void str_cat(char *lItr1, char *lItr2, char *..tr3)
(

1Il;.r3;
st:r;1;

whi1.. (*a~ I .. 0)
(

*"'wtl .. *..\1><2,
auxl++;
..ux2++J

)

aux2 .. IItr2,
while (*llux2 1= 0)

(
*Iluxl .. *1lux2;
auxl++1
1lux2++;

*1l\Ul:l _ 01

'* Cloopy lItrl -> 8tr3 *1

1* End lItrJ with .. null character *1

Figure 2.7: Style Variations on a Program: Programmer 3

,.
e concatenatll 82 to III into 83 •
.. ii:QQ\1gh 1UllIO~ for 83 must already be 111l.ocated. No cbecKs III III.,
~..c(.l. 82. sJ)

char *.1, *82, *..3,
(

whil,. (*111)
*.3++ .. *81++;

whila (*..2J
*.3++ .. * ..2++;

)

Figure 2.8: Style Variations on a Program: Programmer 4

25

Chapter 3

Experimental Setup

We understand that analysis of source code can be performed at many levels.
Because programmers solve problems with regular patterns, we could analyze
the semantic structure of the code to find repeating patterns and structures.
For example, the actions that might be taken on the discovery that some
fatal error has occurred might vary considerably from program to program
and from programmer to programmer.

Formal methods for defining the semantics, or connotative meaning, of
programs and programming languages, such as axiomatic semantics! and
denotational semantics [A1l86, SetS9, Hoa69], could be used to search for
identifying patterns in program logic or semantic structure.

Also, consider a programmer who codes with a top-down approach. Rather
than testing each program module individually, his program must be robust
enough so that when it is time to test the program, errors will be quickly
spotted. In these cases, dynamic error checking might be more frequent than
when each module is tested for correctness using the bottom-up approach.

We can also search for repeating patterns by analyzing the executable
behavior of the program, searching for data flow patterns, or by looking at
user interfaces, looking for repeating patterns in the look and feel of the
program.

In our particular environment, it is not likely that we will be able to
use these methods. Formal methods like axiomatic semantics are computa-

1 Axiomatic Semantics concentrates on the predicates that must hold at every step of
the program, and deriving meaning from those predicates that hold on termination of the
program.

26

tionally expensive and difficult to automate, and work only for the simplest
programs. Analyzing the executable behavior of a program or analyzing user
interfaces is possible but, as we shall show in this paper, inappropriate for
our environment.

3.1 Choice of Programming Language

In this paper we will limit ourselves to the stylistic concerns of C source code.
Programmers are comfortable using it and the language is commonly used
in the academic community and in industry.

Although theoretically possible, it would be impractical to compare style
metrics across different development platforms. We must place some restric
tions on what must remain constant [or the authorship analysis techniques
described in this document to work.

The programming language to be used for our analysis should remain
the same. Among similar languages like C, Modula and Pascal, the same
metrics might be used successfully with similar results. This might not be
true if C++ is compared with LISP, 4th Dimension or Prolog.

Consider 1 for example, the C program shown in figure 3.2, the Prolog pro
gram shown in figure 3.1 and the Emacs-LISP program shown in figure 3.3.
These programs belong to three different programming paradigms (Struc
tured Programming, Logic Programming and Functional Programming) and
there are large differences among them. Many of the metrics we could use
for identifying authorship in one of these programming languages will be of
no use in the others.

3.2 Definition of Software Metrics

The term "Software Metric" was defined by Conte, Dunsmore and Sherr in
[SCS86] as:

Software rnetrics are used to characterize the essential features
for software quantitatively, so that classification, comparison, and
mathematical analysis can be applied.

What we are trying to measure, for establishing the authorship of a pro
gram, are precisely some of these features. Hence, the term software metric,

27

apply { eq , ArgVal , Env , Result) ,
ArgVal= [FstArg, ScnArg] ,
number { FstArg) ,number { ScnArg) ,
FstArg=scnArg, Result=t, ! .

apply (eq , Arg , Env , Result) ;
Arg={AI,A2],AI=[quote,X] ,A2=[quote,Y],
ateom(XI ,atom(Y} ,X=Y,
apply(eq, [X, Y], Env,Resulte}, ! .

apply { eq , Arg , Env , Result) ,
Arg=[AI,A2J,
not (mnnber (AI)) ,note (number (A2) } ,
eval (AI, Env, PI) ,eval (A2, Env, P2) ,
apply{ eq , [PI,P2] ,Env ,Result),!.

apply (eq , ArgVal , Env , Result) :
ArgVal= [FstArg, ScndArg] ,
FstArg=(cons,AI,A2],ScndArg=[cons,BI,B2]
apply (eq , [AI,A2], Env, RI) ,RI=t.
apply (eq, (BI,B2), Env, Result},!.

apply (eq , ArgVal , Env , Result} :
ArgVal= [FstArg, ScndArgJ,
FStArg= [HIITI] ,ScndArg=[H2IT2J,
apply (eq , [HI,H2] ,Env, RI) ,Rl=te,
append(TI, T2, Newhrg),
apply { eq , NewArg ,Env, Result),!.

Figure 3.1: Fragment of a Prolog Program

or simply metric1 is more appropriate to describe these special characteris
tics than the term "marker" used by Cook and Oman in [OC89] or the term
"identifying feature" used by Spafford and Weeber [WS93].

3.3 Sources for the Collection of Metrics

We can collect metrics for authorship detection from a wide variety of sources:

• Oman and Cook [OC91) collected a list of 236 style rules that can be
used as a base for extracting metrics dealing with programming style.

• Conte, Dunsmore and Shen [SCS86] give a comprehensive list of soft
ware complexity metrics.

• Kernighan and Plauger [KP78] give over seventy programming rules
that should be part of "good" programming practice.

28

main()
(

char ~,J;

fifo_buffer<char> ~buf;

buf ; new fifo_buffer<char>();
for{i=O;i<MAX_BUFFER_LEN;i++) {

if{!huf->enter_buffer{'A'+i»
printf ("Error; Buffer should not be full! \n") ;

if (buf->enter_buffer{' 1\.'+10»
printf{"Error: Buffer should be full!\n");

for(i=0;i<5;i++) {
if(!buf->leave_buffer{&j))

printf{"Error: Buffer should not be empty!\n");
else

printf('(%c) ",j};

Figure 3.2: Fragment of a C Program

• D. Van Tassel [Tas78] devotes a chapter to programming style for im
proving the readability of pl"Ograms.

• Jay Ranade and Alan Nash [RN93) give more than three hundred pages
of style rules specifically for the "C" programming language.

• Henry Ledgard gives a comprehensive list of "e" programming proverbs
that contribute to programming excellence [Led87].

Many other sources have influenced our choice of metrics [LC90, BB89,
OC90b, Coo87] but do not contain a specific set of rules, metrics or proverbs.

3.4 Software Metrics Categories

All these sources give us ample material to select the metrics we will use.
However, because of the large number of rules and metrics available, we have
decided to divide our metrics into three categories.

Programming style, as shown by example by Kernighan and Plauger
[KP78], Oman and Cook [OC90a] and Ranade and Nash [RN93], is a broad

29

miscellaneous short Res commands

(defun res-rlog-file ()
'Run rlog on this file.'
(interactive)
(setq this-file (if (dired-mode-pl (dired-get-filename) (buffer-file-namell)
(message "rlog %s ...• (file-name-nondirectory this-file))
(sit-for 01
(shell-command (concat "rlog • this-file) nil)
{message 'rlog %s ... done" (file-name-nondirectory this-file)))

(defun res-diff-file (arg)
"Run rcsdiff on this file with optional revision"
(interactive "pO)
(setq this-file (if (dired-mode-p) (dired-get-filename) (buffer-file-name)))
(setq res-diff-rev (rcs-get-revision arg))
(message "resdiff -r'll:s 'lI:s ... ' rcs-diff-rev

(file-name-nondirectory this-file)
(sit-for 0)
(shell-command (coneat "rcsdiff -r' rcs-diff-rev ' , this-file) nil)
(message 'rcsdiff -rts %s ... done" res-diff-rev

(file-name-nondireetory this-file}} 1

Figure 3.3: Fragment of a Lisp Program

term that encompasses a much greater universe than the one we have chosen
in this paper. Programming style generally considers all our three categories.

3.4.1 Programming Layout Metrics

We would like to examine those metrics that deal specifically with the layout
of the program. In this category we will include such metrics as the ones
that measure indentation, placement of comments, placement of brackets,
etc. We will call these metrics "Programming Layout" metrics.

All these metrics are fragile because the information required can be easily
changed using code formatters and pretty printers. Also, the choice of editor
can significantly change some of the metrics of this type. Emacs, for example,
encourages consistent indentation and curly bracket placement.

Furthermore, many programmers learn their first programming language
in university courses that impose a rigid and specific set of style rules regard
ing indentations, placement of comments and the alike [MB93].

30

3.4.2 Programming Style Metrics

Also useful are the metrics that deal with characteristics that are difficult to
change automatically by pretty printers and code formatters, and are also
related to the layout of the code. In this category we include those metrics
that measure mean variable length, mean comment length, etc. We will call
these rnetrics "Programming Style" metrics.

3.4.3 Programming Structure Metrics

Finally, we would like to examine meLrics that we hypothesize are depen
dent on the programming experience and ability of the programmer. In this
category we will find such metrics as mean lines of code per function, usage
of data structures, etc. We will call these rnetrics "Programming Structure"
metrics,

3.5 Metrics Considered

From all the sources mentioned in Section 3.3, we extracted a series of po
tentially useful software metrics. Even though we describe these metrics as
indivisible measurements, in practice we might calculate several values for
them. For example, for metric STYla we might calculate a median and a
standard error. We will examine the exad format in greater detail in later
sections.

Also, unless explicitly stated, all the metrics consider only the text inside
function bodies. We don not examine include files or type declarations be
cause there is no way of differentiating between those declarations that are
imported from external modules, and those that are native to the program
mer.

3.5.1 Programming Layout Metrics

• Metric STYl: A vector of metrics indicating indentation style [RN93,
pages 68-69]. For example, consider the styles shown in figure 3.4. Our
metrics should distinguish among them.

This vector of metrics will be composed of:

31

---- ~- ~-

if (a"''=b) (if (a'='=b)
b = 1; (b '=1;

)

if (a"''''b) (b = 1; if {a'='=bj (b 1;)
}

if (a'='=b) (if (a'='=b)
b = 1; (

) b = 1;
}

Figure 3.4: Indentation Styles and Placement of Brackets

- Metric STYla: Indentation of C statements within surrounding
blocks.

- Metric STYlb: Percentage of open curly brackets ({) that are
alone in a line.

- Metric STYle: Percentage of open curly brackets ({) that are the
first character in a line.

- Metric STYld: Percentage of open curly brackets ({) that are the
last character in a line.

- Metric STYle: Percentage of close curly brackets (}) that are
alone in a line.

- Metric STY1f: Percentage of close curly brackets (}) that are the
first character on a line.

- Metric STYlg: Percentage of close curly brackets (}) that are the
last character in a line.

- Metric STYlh: Indentation of open curly brackets (n.
- Metric STYli: Indentation of close curly brackets ({).

32

These metrles must only be calculated inside functions, ignoring state
ments and curly brackets outside them. The formatting of data struc
ture declarations and macro definitions might not represent the pro
grammer's programming style. Also, there is no automatic method for
differentiating those declarations and definitions that were created by
the user and those that are simply exported from outside modules.

• Metric STY2: Indentation of statements starting with the "else" key
word.

• Metric STY3: In variable declarations, are variable names indented to
a fixed column? Figure 3.5 shows an example of variables that are
indented to a fixed column.

'-

main()
(

int i;
char *cptr;
static float number;
short int j;

... '-

main()
{

int
char
static float
short int

...

i;
*cptr;
number;
j

..
Un-indented variable declarations Indented variable declarations

Figure 3.5: Variables Indented to a Fixed Column

• Metric STY4: What is the separator between the function names and
the parameter lists in function declarations? Possible values are spaces,
carriage returns or none.

• Metric STY5: What is the separator between the function return type
and the function name in function declarations? Possible values are
spaces or carriage returns.

33

• Metric STY6: A vector of metrics that will help identify the comment
ing style used by the programmer. The vector will be composed of:

Metric STY6a: Use of borders to highlight comments.

Metric STY6b: Percentage of lines of code with inline comments.

Metric STY6c: Ratio of lines of block style comments to lines of
code.

• Metric STY7: Ratio of white lines to lines of code [RN93, pages 70-71].

3.5.2 Programming Style Metrics

• Metric PROl: Mean program line length (characters per line) [BM85].

• Metric PR02: A vector of metrics that will consider name lengths.

- Metric PR02a: Mean local variable name length.

Metric PR02b: Mean global variable name length.

Metric PR02c: Mean function name length.

Metric PR02d: Mean function parameter length.

• Metric PR03: A vector of metrics that will tell us about the naming
conventions chosen by the programmer. This vector will consist of:

Metric PR03a: Some names use the underscore character.

Metric PR03b: Use of temporary variables2 that are named XXXi,
XXX2, etc. [KP78], or "tmp," "temp," '(tmpXXX" or "tem
pXXX" [RN93].

Metric PR03c: Percentage of variable names that start with an
uppercase letter.

2lt can be argued that all local variables arc temporary and no global variable is tem
porary. However, in this paper we will follow the convention that a variable is temporary
if it there is no direct association between its name and its semantic meaning.

34

Metric PR03d: Percentage of function names that start with an
uppercase letter.

• Metric PR04: Global variable count to mean local variable count ratio.
This metric could potentially tell us something about the programmer's
propensity to use global variables.

• Metric PR05: Global variable count to lines of code ratio. This varia
tion of the previous metric might give us a better metric for measuring
the frequency of usage of global variables.

• Metric PR06: Use of conditional compilation. Here we would specif
ically search for the "#ifdef" keyword at the beginning of code lines.

• Metric PR07: Preference of either "while," "for" or "do" loops. All
three can be used for the same purposes [KRS5].

• Metric PROS: Does the programmer use comments that are nearly an
echo of the code [KP78, page 1431 [RN93, page 82]?

• Metric PR09: Type of function parameter declaration. Does the user
use the standard format or the ANSI C format? This metric is only
significant if the user has access to an ANSI C compiler.

3.5.3 Programming Structure Metrics

• Metric PSMl: Percentage of "int" function definitions.

• Metric PSM2: Percentage of "void" function definitions.

• Metric PSM3: Program uses a debugging symbol or keyword3
. We

would specifically be looking at identifiers or constants containing the
words "debug1

' or "dbg" [RN93, pages3S-53]. Figure 3.6 shows three
common debugging styles in C.

3Debugging is difficult. Many non standard techniques have been developed [RN93],
and we cannot hope to identify all forms of debugging symbols. However, there are some
techniques that are widely used and we will concentrate on these.

35

~define DBG{x) printf{x}

mainO {
DBG{'main\n"};
Parse_Input{};
DBG{"Finished\n") ;

~define DEBUG 1

mainO (
~ifdef DEBUG

printf{"main\n");
~endif

Parse_Input{};
#ifdef DEBUG

DEBUG{"Finished\n") :
~endif

)

main {argc. argyl
int argc:
char *argv[]:
(

iff s trcmp(argv [1] 0)
debug" 1;

else
debug" 0;

if {debug} printf("main\n'):
Parse~Input{};

if{debug) printf{"Finished\n"):

Figure 3.6: Examples of Debugging Styles

• Metric PSM4: The assert macro is used.

• Metric PSM5: Lines of code per function [KP78, BM85J.

• Metric PSM6: Variable count to lines of code ratio. This metric could
identify those programmers who tend to avoid reusing variables, creat
ing new variables for each loop control variable, etc. Alternatively, it
could also help identify differences such as

root = (-1 * b + sqrt (b*b - 4*a*c)) I (2*a)

versus

left = -1 * b
right = b*b - 4*a*c
sqright = sqrt (right)
bottom = 2*a
root = (left + sqright) I bottom

in which the second programmer has taken 5 lines of code to do what
the first programmer did in 1 line of code.

36

We can define variable count by either looking at each of the statements
and counting variables as they are used, or simply by looking at the
variable declarations and counting the number of variables declared.
The former ignores variables declared and not used and includes global
variables. The latter counts all local variables declared and ignores
global variables. We have chosen to gather our variable counts by
looking at the declarations, ignoring global variables. This allows us
to ignore in our calculations those global variables that are imported
from external modules like Motif and GKS.

• Metric PSM7: Percentage of global variables that are declared static.

• Metric PSM8: The ratio of decision count to lines of code. To simplify
the computation of this metric, we have chosen to modify the definition
of decision count as given in [SCS86]. We do not count each logical
operator inside a test as a separate decision. Rather, each instance of
the if, for, while, do, case statements and the? operator increases our
decision count by one.

• Metric PSM9: Is the goto keyword used? Surprisingly, software design
ers and programmers still rely on these [BM85].

• Metric PSM10: Simple software complexity metrics offer little infor
mation that might be application independent [OC89]. The metrics
that we could consider are: cyclomatic complexity number, program
volume, complexity of data structures used, mean live variables per
statement, and mean variable span [SCS86].

• Metric PSMll: Error detection after system calls that rarely fail. Some
programmers tend to ignore the error return values of system calls that
are considered reliable [GS92, page 164]. Thus, a metric can be ob
tained out of the percentage of reliable system calls whose error codes
are ignored by the programmer. Also, some programmers tend to over
look the error codes returned by system calls that should never have
them ignored (like "maUoc"). We can define this metric as a vector of
the following items:

- Metric PSMlla: Are error results from memory related system

37

calls ignored? Specifically, we would be looking at malloc(), cal
locO, reallocO, memalignO, vallocO, allocaO and freeO.

Metric PSMllb: Are error results from I/O routines ignored?
Specifically, we would be looking at openO, closeO, dupO, lseekO,
readO, writeO, fopenO, fcloseO, fwriteO, freadO, fseekO, getcO,
putcO, getsO, putsO, printfO and scanfO·

Metric PSMllc: Are error results from other system calls ignored?
We would be looking at chdirO, mkdirO, unlinkO, socketO, etc.

• Metric PSM12: Does the programmer rely on the internal representa
tion of data objects? This metric would check for programmers relying
on the size and byte order of integers, the size of floats, etc.

• Metric PSM13: Do functions do "nothing" successfully? Kernighan
and Plauger in [KP78, pages 111-114] and Jay Ranade and Alan Nash
in [RN93, page 32] emphasize the need to make sure that there are
no unexpected side effects in functions when these must "do nothing."
In this context, functions that "do nothing" successfully are functions
that correctly test for boundary conditions on their input parameters.

Consider the case of the function in figure 2.S where the program has
that type of bug. The result of the program is undefined when both
input strings are empty.

However I we must note that it is an undecidable problem to determine
the correctness of an arbitrary function[HU79].

• Metric PSM14: Do comments and code agree? Kernighan and Plauger
write in [KP7S] that "A comment is of zero (or negative) value if it
is wrong". Ranade and Nash [RN93, page S9J devote a rule to the
truth of every comment. Even if the comments were initially accu
rate, it is possible that during the maintenance cycle of a program they
became inaccurate. Because we cannot determine the stage of devel
opment where the incorrect comment was introduced, we will consider
all incorrect comments"" in this metric.

4Deciding that a comment is wrong can only be done manually by carerul examination
of the source code. Because it involves the semantic analysis of English sentences, it is
unlikely that this process will be automated soon.

38

• Metric PSM15: More than any other type of software metric, those that
deal with the development phase of a project would help to identify the
authorship of a program. Consider, for example, whether comments are
placed before, during or after the development of a program, the choice
of editor, the choice of compiler, the usage of revision control systems,
the usage of development tools, etc. Unfortunately, this information is
not readily available. Test programs, intermediate versions, debugging
code and the alike are discarded after the final version of the program
is finished .

• Metric PSM16: Quality of software. We could use software metrics
that deal with the quality of software to assess the level of experience
of the programmer. Typically, software quality metrics are related to
software development standards and try to measure the reliability and
robustness of software.

These metrics will not be useful. In the worst case, we would be mea
suring the care that the programmer has taken to develop a piece of
code as well as the level of expertise of the programmer. Furthermore,
it is possible for an experienced programmer to get low software quality
scores and for a beginner to get high scores (if he followed a textbook
algorithm for his program).

3.6 Computation of Metrics

To find the most accurate metrics we need a series of tools that can collect
the subset of metrics mentioned in Section 3.5. Because the tools available
calculate only software complexity metrics, we developed a series of pro
grams designed specifically for our purpose and ran them through a series of
controlled experiments.

3.6.1 C Source Code Analyzer

Although languages such as Awk can be used for extracting all the necessary
metrics [BM85], we avoided the Awk and Perl[WS90] programming languages
for calculating most of the metrics dealing with programming structure be
cause existing tools in compiler construction make it easier to write C code,

39

and our programs benefit from the reuse of code that was already tested.
At the heart of the software tools is a software analyzer built for the lcc

C compiler front-end developed by David R. Hanson of the University of
Princeton [HanglJ. An early version of the software analyzer was written by
Goran Larsson. This software analyzer collects whatever information it can
from the program being analyzed after it passed through the C preprocessor
(cpp) and produces an auxiliary list of semantic indentation levels used by
other programSj mainly by those programs that calculate metrics regarding
indentation.

This list of semantic indentation levels is needed because some C con
structs are indented by users following rules different to what the compiler
expects. For example, consider the programs in figure 3.7. The semantic in
dentation generated are the indentation levels according to the compiler. A
separate program will later produce from these levels the correct indentation
information corresponding to the program as viewed by the user.

3.6.2 Lexical Analyzers

Once the calculation of the programming structure metrics using the modified
version of the lec C compiler have been performed, a series of Perl programs
are used to collect the metrics that depend on the information that was
discarded by the C preprocessor. Indentation, commenting style and line
lengths are examples of the measurements collected by these scripts.

3.6.3 Statistics Collection

Because the information produced by the above mentioned programs is de
tailed and numerous, we need a separate series of Perl programs to collect
this data, summarize it and generate the statistics mentioned herein. These
programs will also generate the formatted data necessary to run statistical
analysis and graphic visualization tools.

3.7 Experimental Stages

The experimental data for this paper was gathered in three distinct stages:
a preliminary stage, a pilot experiment and a full experiment.

40

3.7.1 Preliminary Stage

The first stage, or preliminary stage, helped us determine the proper methods
for calculating the metries and coexisted with the tool development phase.
For this phase we considered the following subset of the metries defined in
Section 3.5.

We considered the following Programming Layout Metrics defined in Sec
tion 3.5.1: mean and standard error for STYla, STYlb, STYle, STYld,
STYle, STYlf, STYlg, mean and standard error for STYlh, mean and
standard error for STYli, mean and standard error [or STY2, STY3, STY4,
STY5, STY6a, STY6b, STY6c and STY7.

Also considered were the following Programming Style Metrics defined in
Section 3.5.2: mean and standard error for PROI, mean and standard error
for PR02a, mean and standard error for PR02b, mean and standard error
for PR02c, mean and standard error for PR02d, PR03a, PR03b, PR03c,
PR03d, PR04, and PR05, PR06, PR07, PROS and PR09.

Finally, we considered the following Programming Structure Metrics de
fined in Section 3.5.3: PSM1, PSM2, PSM3, PSM4, PSM5, PSM6, PSM7,
PSMS, PSM9 and PSM14. We chose to exclude all metrics dealing with soft
ware complexity (metric PSMIO) because there is evidence that these are ill
suited for our purpose [OCS9j.

Metrics PSMlla and PSMllb were excluded because we cannot guaran~
tee that all programs tested use such system calls and because it is impossible
to detect if the error result of most system calls is being ignored without trac
ing the execution of the program.

For example, all three program fragments of figure 3.S check the result
of the "malloe" system call for a NULL value (the error code). This can be
verified easily for fragment 1. It is more difficult in segment 2 as we have to
assume that the routine "fill-buffer" does indeed check for NULL pointers.
However, the verification for fragment 3 is complex. This routine, designed
to append nodes to an existing linked list, checks for NULL values returned
by l'malIoe" inside the recursive step.

Metric PSM12 was also excluded from our analysis because the notion of
"internal representation of data objects" is not well defined and because the
metric cannot be extracted without extensive data flow analysis. Consider,
for example, the programs shown in figure 3.9. Detecting that the first pro
gram relies on the internal representation of the character data type (ASCII

41

in this case) is simple. More complex analysis must be performed to detect
that the second example relies on a long integer being 32 bits or longer.

For reasons explained in Section 3.5, we have also chosen to exclude from
our analysis metrics PSM13 and PSMI5.

The tool that calculates these metrics was applied to a few programs writ
ten by graduate students at Purdue University. Other than showing that the
metrics were properly calculated, little information can be extracted from the
results. The programs were of different lengths, addressed problems in differ
ent domains and were sometimes developed over several years. Furthermore,
they were not part of a controlled experiment.

3.7.2 Pilot Experiment

To test the metrics chosen in the Preliminary Stage, a pilot experiment was
performed with a small number of programmers, each of whom wrote three
short and simple programs. To determine the effect of problem domains on
our analysis, the programs were oriented to the thl'ee areas where we thought
we could have the greater variations in style: computationally intensive pro
grams, I/O intensive programs and data structure intensive programs.

The programmers who volunteered to code these programs were members
of a security seminar that met regularly at Purdue University during the
summer and fall of 1993. The description of the problem, and the resulting
programs were distributed and collected electronically. The descriptions of
these programs were:

Program 1 This program must fill a one dimensional array (or vector) of
size 1000 with random integer numbers in the range 0-100 and then
perform the following actions:

1. Sort the elements in ascending order. The sorting method is not
important.

2. Compute the sum of the numbers in the array.

3. Compute the median (or mean) of the numbers in the array.

4. Calculate the frequency of each of the 101 digits (i.e. the number
of zeroes in the array, the number of ones in the array, the number
of twos in the array, etc.)

42

5. Print out this information to the screen.

Program 2 The program should store internally the following list:

Age Weight Stretch Muscle Time
17 140 Neck Trapezius 5
17 150 Back Latissimus 6
17 160 Chest Pectorals 7
17 170 Arm Tricep 8
17 180 Side Obliques 9
17 190 Thigh Quadriceps 10
18 140 Neck Trapezius 6
18 150 Back Latissimus 7
18 160 Chest Pectorals 8
18 170 Arm Tricep 9
18 180 Side Obliques 10
18 190 Thigh Quadriceps 11
19 140 Neck Trapezius 7
19 150 Back Latissimus 6
19 160 Chest Pectorals 7
19 170 Arm Tricep 8
19 180 Side Obliques 9
19 190 Thigh Quadriceps 9
20 140 Neck Trapezius 4
20 150 Back Latissimus 6
20 160 Chest Pectorals 8
20 170 Arm Tricep 9
20 180 Side Obliques 10
20 190 Thigh Quadriceps 9

The program should then proceed to give the user a menu with the
following choices:

1.- Enter your name
2.- Enter your weight
3.- Enter your age

43

4. - Check time
5.- Check muscle
6.- Quit

Option 1 enters the name of the user for future reference. Option 2
enters the user's weight (used as index to the table). Option 3 enters
the user's age (used as index to the table). Option 4 prompts the user
for a body "part" (i.e. Neck, Back, Chest, Arm, Side or Thigh) and
prints the time corresponding to the age, weight and body part entered.
Option 5 prompts the user for a body "part" (i.e. Neck, Back, Chest,
Arm, Side or Thigh) and prints the muscle group corresponding to the
body part. All responses from the program should include the name of
the user, his age and weight.

Program 3 The program must read from a file a series of integer numbers
and print them in reverse order by using an integer stack. The stack
must be implemented using a linked list. You must create routines
for pushing elements into the stack, popping elements from the stack,
creating a stack and deleting a stack. The program must print out the
reverse stack right after every element read. For example, the following
is a sample run:

Read element (1)
Reverse stack is:

1

Read element (2)
Reverse stack is:

2
1

Read element (4)
Reverse stack is:

4

2
1

44

3.7.3 Preliminary Analysis

AU metrles dealing with global variables were useless in our analysis of the
programs as none of the programs examined made use of such variables. Fur
thermore, subsequent informal polls and the examination of several hundred
system utilities and archived programs revealed that it was not likely that
many of the programs we would examine in the next stage of our experiment
would make heavy use of global variables. Hence, metries PR02b, PR04,
PR05 and PSM7 were ignored in subsequent analysis.

Not surprisingly, metric PSM5, lines of code per fundioD, shows large
variations in all our test cases. We do note that this metric appears to be
in direct correlation with the problem domain. Program 3 has low values
for this metric (two of these are the lowest values for the programmer) and
this is to be expected. The routines needed to do the job in this application,
create stack, pop, push and delete stack, are naturally short as can be seen
in [Coo87, pages 374-3751 and [NS86, page 100]. Program 2 has the highest
values for this metric, which is logical because this program deals with I/O
and user interaction.

Metrics PSMI and PSM2 also show large variations. However, for one
programmer it gives useful information: programmer 3 never uses "void"
function definitions. All other programmers do. Hence, metric PSM2 might
prove valuable in the future. Metric PSMI might not be valuable because
it might also be correlated to the domain of the application. Consider, for
example, program 3. Most of the functions required for the program must
use a return type different from "int". Program 2, however, is more likely to
have "int" or "void" function definitions.

Surprisingly, metric STY6c, ratio of lines of block style comments to lines
of code, shows large variations, but the magnitude of the numbers observed
remain constant. Hence it is likely that this metric can be reformulated to
consider ranges. (i.e. 0% - 20%, 20% - 30%, etc.) Less variation can be seen
in metric STY6b, and this might prove useful in further analysis.

Because the use of goto statements has been virtually banned from the
academic community [Dij68, SCS86, RN93, Set89], and because faculty mem
bers oppose their use in programming courses, we have chosen to eliminate
metric PSM9 from further analysis. The probability of finding these state
ments in students code at Purdue University is negligible.

Metrics STYlb through STYlg, dealing with placement of curly brackets

45

({}), are stable. Metric STYlh, however, has proven to be unstable because
it is significant only if the curly bracket is consistently the first character
in the line. Similar arguments can be made for metric STYlj. Hence, we
eliminated these metrics from further analysis.

In this experiment, only a small number of small programs were con
sidered and hence, the statistical base is not large enough to make further
observations and little else can be inferred from the results gathered.

46

main ()
(

int ii

for(i=Oii<3ii++) (
if(i == 0)

statement;
else if(i == 1

statement;
else if(i == 2

statement;
else

statementi

main()
(

int ii

for (i=O i i<3; i++) (
if(i==O)

statement;
else

if(i == 1
statement;

else
if (i == 2

statement;
else

statement;

... ...
The user's perspective
of the indenration of the
"I 'C' Ie se {t cause.

..
¥

The compiler's perspective
oIthe indentation oflhe
"else if' clause.

Figure 3.7: Differences on Indentation Levels

47

if { (ptr =: malloc(sizeof(struct test»)) ==: NULL) (
fprintf(stderr,'Error allocating memory\n");

ptr =: malloc(MAX_SIZE);
iff fill_buffer (ptr) =:= SYSERR

paniel"Can't fill buffer!');

int add_to_list{ptr,nurn}
struct node *ptr;
int num;

struct node *p;

if(ptr =:=: NULL)
panie("Null pointer! Panic"):

if(nwn <= 1)
return;

p =: malloc(sizeof(struct nodel);
ptr->next = Pi
add_to_list(p,num-l);

}

}
1

2

3

Figure 3.8: Error detection After System Calls - An Example

main()
char c;

c =: getchar();
iff (e >= 'A') && (e <= °Z'))

c=c+('a'-'A');

main() (
long int i,j;
for(i=O,j=1:i<32;i++)

j = j«l:

Figure 3.9: Dependency on the Representation of Data Objects

48

Chapter 4

Full Experiment

4.1 Introduction

Once the preliminary experiment showed that the desired set of metrics could
be analyzed, we designed and executed a larger, more formal experiment in
which to test our prototype.

4.2 Experiment Setup

For this experiment, a series of programs were collected from a total of 29
students, staff and faculty members at Purdue University. The distribution
for the programs are shown in table 4.l.

We included programs from a wide variety of programming styles and
for different problem domains. Roughly one third of the student programs
were programming assignments from a graduate level networking course, one
third of the programs were programming assignments from a graduate level
compilers course and one third of the programs were from miscellaneous
graduate level courses, including data bases, numerical analysis and operating
systems

We collected several hundred programs by undergraduate students, but
almost all were either too small to be useful in our analysis, relied heavily
on tools like LEX and YACC, which our software analyzer rejects because
they do not conform to ANSI C specifications, were modifications to ex
isting compilers and operating systems, or provided only one program per

49

Table 4.1: Distribution of Programs for the Complete Experiment

I Number of Programs I
Students I(Projects for the
Fan 1993 term) 57
Students 2 (Programs developed for
other terms) 6
Pilot 1 (Programs developed by
students for the pilot experiment) 18
Pilot 2 (Programs developed by
experienced programmers for the
pilot experiment) 6
Faculty (Miscellaneous programs
by faculty members) 7
TOTAL 88

I Group Identification

programmer.
Of the programs submltted by the faculty members, half are oriented

towards numerical analysis and half oriented towards complIer construction
and software engineering.

4.3 Statistical Model Used for the Analysis

There are two statistical methods that could be used to analyze the metrics
gathered. Cluster analysis, as used by Oman and Cook in [OC89] can only be
used if we discretize the values for our metrics. Unfortunately, it is difficult
to find ranges for each of the metrics that could be used for any group of
programmers without loss of accuracy.

The second statistical analysis method we can use, and the one chosen for
our analysis, is discriminant analysis. This method, described in [SAS, JW88]
is a multivariate technique concerned with separating observations and with
allocating new observations into previously defined groups.

50

4.4 Preliminary Analysis and Elimination of
Metrics

Not all metrles calculated proved to be useful in further analysis. As men
tioned in Section 3.7.2, all metries dealing with global variables were elimi
nated because most programs submitted did not use these variables. Like
wise, those metries dealing with "gota" statements and "assert" macro use
were eliminated because none of the programs submitted used them.

We want to keep those metries that show little variation between pro
grams (for a specific programmer) and those metries that show large varia
tions among programmers. Unfortunately, analysis of the metries collected
show that these two criteria are not necessarily correlated.

Initially, we calculated the standard error by programmer for every met

ric, and eliminated those that showed large variations because they identify
those style characteristics where the programmer is inconsistent.

Surprisingly, most of the metrics that showed large variations among pro·
grammers were eliminated as well. The performance of our statistical analysis
with the remaining metrics was discouraging, with only twenty percent of the
programs being classified correctly.

The step discrimination tool provided by the SAS program [SAS] should
theoretically be capable of eliminating bad metrics from the statistical base.
Unfortunately, this tool was not helpful because it failed to eliminate any of
the metrics from our set.

To resolve this issue, we decided to build a tool that would help us vi·
sualize the metrics collected using Matlab version 4.1. The resulting tool
presented for each continuous metric (i.e. real valued metric) two graphs
that showed the variation of the metric within programs for each program·
mer and the distribution of values for each metric for all programmers.

For each discrete metric (i.e. boolean metrics and set metrics), the tool
produced a graph that showed the consistency of each programmer for each
metric. In these figures, vertical lines represent a programmer "jumping"
from one value to the next in two consecutive programs. Hence, a good
discrete metric is one that shows variations in values and no "jumps."

With this analysis, we chose a small subset of our metrics for the final
statistical analysis. Specifically, metrics PROIM, mean for PR02a, mean for
PR02b, mean for PR02c, PR03d, PR05, PSM1, PSM6, mean for STY1a,

51

Table 4.2: Classification by Programmer

1 100.00 16 100.00
2 100.00 17 100.00
3 33.00 18 0.00
4 100.00 19 71.00
5 100.00 20 100.00
6 nOD 21 100.00
7 noD 22 33.00
8 100.00 23 100.00
9 100.00 24 75.00
10 100.00 25 20.00
11 noD 26 0.00
12 100.00 27 100.00
13 100.00 28 100.00
14 100.00 29 25.00
15 50.00

IProgrammer I% Classified IProgrammer I% Classified I

STYlb, STYle, STYld, STYle, STYlf, mean for STYli, mean for STY2,
STY6b, STY6c, STY7, PR08, PSM3, STY4 and STY5.

4.5 Experiment Results

4.5.1 Success Rate

The success rate of our experiment is 73%. This means that of all the pro
grams analyzed, 73% were correctly assigned to their original programmers.
Individual percentages of correctly classified programs are shown in table 4.2.

When colleagues were shown this table for the first time, the first ques
tion asked was: "Are all the programmers that the system identified correctly
100% of the time related? Are the backgrounds of these programmers simi
lar?" Table 4.3 shows the classification of those programmers whose programs
were always identified. Initially we were surprised to see that the programs

52

for seasoned programmers (programmers 10 and 13)1 a faculty member (pro
grammer 16), and graduate students of Computer Science were all mixed in
this category. Also, we notice that:

1. The programs for the faculty member (three programs averaging 300
lines of code each) were developed over several years and address dif
ferent problem domains.

2. Three of the six programmers who helped with the development of
the programs for the pilot study were correctly classified 100% of the
time. As stated in Section 3.7.2, the three programs each programmer
developed addressed different problem domains.

3. The programmers who were correctly classified have different back
grounds. This result was unexpected because from our experience grad
ing projects l electrical engineering students are less consistent in their
programming style than computer science students and these in turn
are less consistent about their programming style than faculty mem
bers. One could expect thus to find a greater percentage of matchings
among faculty members and computer science students.

4.5.2 Success Rate by Programmer

A small number of programmers were misclassified 30% of the time or
less (see Table 4.4. In this category we have the programmer who provided
the most programs (seven programs: three for the pilot study, a multi-user
chatting program, a lexical analyzer, and two database tools). The rest of
the programmers in this category had between three and four programs.

For the programmers who were classified less than 50% of the time (see
Figures 4.6 and 4.5,) we looked at their code to find out why we failed to
classify them (two programmers were never classified correctly). We were
surprised to find that they had varied their programming style considerably
from program to program in a period of only two months.

As an example of how inconsistent these programmers are l consider the
indentation patterns for programmer 18 as shown in Figure 4.1. Not only
does the indentation style vary wildly, but sometimes the indentation style
has no relationship with the semantic indentation levels as seen in the pro
gram fragments 4 and 5.

53

Table 4.3: Programmers Classified with 100% Accuracy

1 Students 1 Graduate student in Computer Science
2 Pilot 1 Graduate student in Electrical Engineering
4 Students 1 Graduate student in Computer Science
5 Students 1 Graduate student in Computer Science
8 Students 1 Graduate student in Computer Science
9 Students 1 Graduate student in Electrical Engineering
10 Pilot 2 System administrator and security guru
12 Students 1 Graduate student in Electrical Engineering
13 Pilot 2 Graduate student in Computer Science
14 Students 1 Graduate student in Computer Science
16 Faculty Faculty member of the department of computer

sciencej area of research is numerical analysis
17 Students 1 Graduate student in Electrical Engineering
20 Students 1 Graduate student in Electrical Engineering
21 Students 1 Graduate student in Computer Science
23 Students 1 Graduate student in Mathematics
27 Students 1 Graduate student in Computer Science
28 Students 1 Graduate student in Computer Science

IProgrammer ICategory IProgrammer Class

Table 4.4: Programmers Classified with 70% - 100% Accuracy

Programmer ICategory IProgrammer Class

6 Students 1 Graduate student in Electrical Engineering
7 Students 1 Graduate student in Electrical Engineering
11 Pilot 1 Graduate student in Computer Science
19 Pilot 1 Graduate student in Computer Science

Students 2
24 Students 1 Graduate student in Computer Science

54

Table 4.5: Programmers Classified with 20% - 50% Accuracy

IProgrammer I Category IProgrammer Class

3 Students 1 Graduate student in Electrical Engineering
15 Students 1 Graduate student in Computer Science
22 Students 1 Graduate student in Computer Science
25 Pilot 1 Graduate student in Computer Science

Students 2
29 Faculty Faculty member of the department of computer

science. Area of research is software engineering
and compiler construction

Other misclassified programmers showed a consistent programming style.
This fact is a clear indication that the metrics chosen for our experiment
were not comprehensive enough to distinguish among them. But their pro
grams are far from identical as posterior inspection of their code revealed.
For programmer 26, for example, we could find several characteristics that
remained consistent throughout:

1. The programmer used the RCS revision control utilities on all his pro
grams, which of course show his login id.

2. All his comments are unindented one-line comments

3. For every system call that resulted in error, an error message was
printed to the standard error using either the fprintf or perror system
calls.

4.5.3 Consistency of Classification

Our experiment also helped us predict the performance of the metrics when
a program not included in the original database is considered. For each pro
gram, we removed it from the database and later told SAS to classify it. As
expected, the results average 73 %. However, this stage of our experiment

55

Table 4.6: Programmers Classified with 0% Accuracy

18 Students 1 Graduate student in Computer Science
26 Students 1 Graduate student in Computer Science

IProgrammer ICategory IProgrammer Class

shed some light as to the consistency of the misclassification. Mainly, some
programmers are misclassified consistently. Programer 18 was misclassified
consistently as programmer 12, programmer 19 as programmer 17, program
mer 11 as programmer 18, and programmer 26 as programmer 9. We can
conclude that even though the metrics are not good enough to classify these
programmers correctly, the misclassification is not random. A more refined
set of metrics could help distinguish among these programmers.

4.5.4 Performance of Metrics

The statistical analysis tools used provide little support for ranking the per·
formance of individual metrics. The removal of anyone metric from the
analysis can have negative or positive effects, independent of the quality of
the metric. We can illustrate this point using a simple example. Consider
the metrics shown in Figure 4.2, where the results of two metrics are plotted
for three programs for each of four users.

The attentive reader might notice that both metrics show large varia"
tions for users three and four and the general usefulness of these metrics
individually is limited. However, the combination of these metrics provides
unequivocal information to the authorship of the programs tested because
both measurements are clustered together, with low or high values, or dis
persed.

56

while(condition)
(

if(condition)
(

while(condition)
(

if (condition)
(

statements;
)

}

}
}

Fragment 1

while (icondition) {
if (condition) {

while(condition)
if (condition)

statements;

)

Fragment 2

if (condition)
(

statements;
)

else if(nargs == 2)
(

statements;

Fragment 3

statements;
while (condition)
(

statements;
statements;
)

statements;

Fragment 4

for(assignment;condition;increment)
statement;
statement;
statement;
return (value) ,

Fragment 5

Figure 4.1: Indentation Style Change for Programmer 18

57

User 2 User 4
I I I I()
I I 1'< I
,~ I e)1 ,", 1 I 'r-

cl 1 I 1
10 1 I I

01,./ I I (I)
IA I 1 Iv X Metric 1~ 'I I 1 I
1 I ,I >~:1 I -'{
1 I 10 I 0 Metric 2
I I I I
I I I I
I 1'/ I 1"'
I ,!o I 1 '

I T I !
I ~~9 ' I I
I '" 1 0'I , (i-) I
I -------+
1 I
I I,

User I User 3

Figure 4.2: Interdependency of Metrics

58

Chapter 5

Conclusions

5.1 Conclusions

5.1.1 Quality of the Experiment

The first issue that must be resolved is about the quality of the data collected
for our experiment. Is the data collected representative of the programming
methodologies we are likely to see in real production environments? As stated
in section 2.2.2, we noted that the experiment performed by Cook and Oman
was fundamentally flawed because the programs analyzed were most likely
cleaned and beautified and the algorithms considered addressed the same
problem domain.

5.1.2 Existence of Identifying Patterns

The experiments we have performed for this paper support the theory that it
is possible to find a set of metrics that can be used to classify programmers
correctly. Close visual examination of the source code provided by all the
programmers involved in our experiment reveals that programmers tend to
show repeating patterns in their programs.

Clearly it is possible to identify ownership of a program by examining
some finite set of metrics. As expected, programmers are skillful with a
limited set of constructs, mainly those that are well known to them and
that allow them to write programs faster and more reliably. It would be
unrealistic to assume that any programmer can develop programs efficiently

59

Table 5.1: Experimental Metrics Subset

Programmer
Metric 10 10 10 11 11 11 16 16 16

PR02b 0 4 0 0 0 0 1 0 0
PR02c 4 8.3 9 4 4 7.2 8 14 6.5
PR03d 0 0 0 0 0 0.33 0.5 1 1
PSM1 50 0 0 100 100 66.67 100 100 100
STY1aM 8 7.76 8 1. 72 2.41 1.79 4 4 3.97
STY1d 100 100 100 0 0 0 23.81 41.67 93.75
STYle 100 100 100 100 100 100 23.81 41.67 87.5
STY2M 0 0 0 0 2.5 1 0 0 2.78
STY6b 0 0 0 9.09 16.85 6.32 10.53 10.34 1.83
STY5 2 2 2 1 1 1 1 1 1

and correctly using an unfamiliar programming style. This does not only
apply to the structure of the programs, but also to the look and feel of
it; such metrics as, for example, average blank lines over lines of code can
indeed remain surprisingly constant. Programmers organize information on
the screen such that logically independent portions of the code can be easily
recognized.

Consider, for example the subset of the metrics collected for our exper
iment that are shown in table 5.1. Even a first glance at these figures will
show the repeating patterns that have allowed our statistical analysis to
classify most of the programs considered. Programmer 10 has, for example,
consistent patterns on metrics STYlaM, STYld, STYle, STY6b and STY5.
Programmer 11 is also consistent with the same metrics, showing lower values
for metrics STYlaM and STY5 and higher values for metric STY6b.

5.1.3 Performance of the Metrics Chosen

Even though we are satisfied with our choice of metrics, the results presented
in this paper clearly show that we will not be able to correctly classify aU
possible programmers successfully with this set of metrics. Experience and

60

logic tell us that a small and fixed set of metrics are not sufficient to detect
ownership of every program and for every programmer.

By no means do we claim that the set of metrics examined is the only one
that might yield stable metrics. During the data collection and analysis of
the experiment, we noted that the following metrics might be of considerable
use in future experiments:

1. Use of revision control system headers. We were surprised to see that a
considerable portion of the programmers examined used the automatic
identification and log features of the RCS Revision Control System. As
an added bonus, such identification strings will provide the login name
of the programmer in question l

.

2. Another metric that could have been used successfully is the use of
literals in code versus the use of global constants.

3. One programmer's idea of debugging statements was commenting out
the print statements. This was done consistently and it might provide
another useful metric.

We have not found any experimental evidence of a relation between a
program's data structures, length of code, and its efficiency. If software
metrics that measure this relationship do exist, they are most likely limited
in value for our purposes. As stated before, we are convinced that the analysis
of the software complexity metrics, including the analysis of the complexity
of data structures, will not yield interesting results.

5.1.4 Evolution of Programming Style

As mentioned in section 2.3, we do not expect that the metrics calculated
for any given programmer would remain an accurate tag for a programmer
for a long time, even though in our experiment we have correctly identified
the only programmer who provided code developed over a number of years
(programmer 16). Further research must be performed to examine the effect
that time and experience has on the metrics examined on this document.

I It is easy to alter the user name in the ReS automatic identification feature, and as
such, excessive confidence must not be placed on its accuracy

61

It would be logical to conclude that for the authorship analysis techniques
to work, the metrics would have to be gathered continually over time. As
mentioned in Section 1.2, compilers and operating systems would have to be
enhanced and significant research would have to be done in the development
of operating systems to enforce the use of these metrics.

5.1.5 Classification of Programmers

As mentioned in Section 1.1, we have shown that there exists a mechanism
that can be used to ease the recognition of authorship in computer programs.
We would like to quote, from Section 1.3, the paragraph that most accurately
describes the purpose of the development of this paper:

Our goal is to show that it is possible to identify the author of
a program by examining its programming style characteristics.
Ultimately, we would like to find a signature for each individual
programmer so that at any given point in time we could identify
the ownership of any program.

From the results presented in this paper, it is clear to us that the au
thorship analysis tools that can be constructed by the examination of source
code with the metrics chosen herein might never give a precise identification
of the author of the program.

There is a clear parallel between this and the identification of people
based on physical descriptions involving weight, height, hair coloring, facial
expressions, etc.; certainly many people will match a specific description.

However, much like in courtrooms around the world, a description of
a programmer using the metrics presented might be sufficient evidence, or
supporting evidence, to prove the identity of a person.

At this stage, we can only classify our metrics as rudimentary and we are
now convinced that it is possible for more than one programmer to have the
same basic programming style. So, it might not be possible to find a set of
metrics that might uniquely identify this programmer.

The results of tills paper, however, support the conclusion that within
a closed environment, and for a specific set of programmers, it is possible
to identify a particular programmer and the probability of finding two pro
grammers that share exactly those same characteristics should be small.

62

5.2 Future Work

In literature, observations are made about the writer's environment to con
clude that an author could not have written some literary work. It is un
doubtedly true that in computer science, such observations would also be
useful. Section 2.2.1 mentions that Mark Twain makes such observations
about Shakespeare. Similar observations could be made about a program
if we have previous work by a programmer. For example the preference of
revision control systems, integrated development environments and the edu
cational background of a programmer might all be used to show that it would
be unlikely for the programmer to develop a specific piece of code.

Also, a larger and more comprehensive set of metTies needs to be exam
ined. Many of the metrics that may provide good statistical evidence of the
authorship of a program were not calculated in this paper. It would also
be interesting to see if a system can be built that would use a different set
of metrics for each programmer. Most likely, artificial intelligence or expert
systems to search for repeating patterns on the metrics calculated will be
needed rather than using discrimination analysis.

During the development of this document, it became apparent that other
statistical methods can be used for the analysis of some, or aU of the rnetrics
considered herein. In particular, the use of cluster analysis and Bayesian
analysis should be investigated, as well as weighting of metrics and the use
of prior probabilities.

Finally, if we would like to use programmer identifying characteristics
to enhance real-time intrusion detection, more work must be performed in
compilers and operating systems. The identifying characteristics must be
preserved in binary executables and this information must be protected to
prevent al teration.

5.3 Closing Remarks

It was mentioned in Section 1.2 that there are four areas that motivated our
research. We recapitulate briefly with supporting evidence as follows:

1. We are convinced that the results presented herein have demonstrated
that authorship analysis techniques could be used in courts as support-

63

ing evidence. However, further research must determine if the metrics
considered herein are general enough.

2. In the academic community, unethical copy of programming assign
ments is a problem that we might partially solve. For one case in our
experiment, the authorship analysis tool we developed failed to iden
tify one of the programmers in our data set. We closely examined
the programs of this particular programmer and we question that this
particular student was the author of all the programs involved.

3. In industry, the techniques presented herein might be used to guaran
tee that the programmers involved in a project are indeed following a
programming methodology.

4. Real-time intrusion detection systems could be enhanced to include au
thorship information. In environments where rigid programming rules
are imposed, the incorporation or compilation of code that was not
developed by the user in question might constitute an abnormal use of
the systemj therefore, security violations could be detected.

Also, if the authorship information can be incorporated into the exe
cutable version of the program, and this information can be protected
from tampering by applying digital signatures, the author of executable
programs could be traced.

64

Bibliography

[A1l86] L. Allison. A pmctical introduction to denotational semantics.
Cambridge University Press, first edition, 1986.

[And91] G. R. Andrews. Concurrent Programming. The Ben-
jamin/Cummings Publishing Co., first edition, 1991.

[BB89] A. Benander and B. Benander. An empirical study of COBOL
programs via a style analyzer: The benefits of good programming
style. The Journal of Systems and Software, 10(2):271-279, 1989.

[BM85] R. Berry and B. Meekings. A style analysis of C programs. Com
munications of the ACM, 28(1):80-88, 1985.

[B884] H. Berghel and D. Sallach. Measurements of program similarity in
identical task environments. ACM SIGPLAN Notices, 19(8):65-76,
1984.

(CooS?] Doug Cooper. Condensed Pascal. W. W. Norton and Company,
1987.

[Dau90] K. Dauber. The Idea of Auth01"ship in America. The University of
Wisconsin Press, 1990.

[Den87] D. Denning. An intrusion detection system. IEEE Transactions on
Software Engineering, 13(2):222-232, 1987.

[Dij68] E. Dijkstra. Goto statement considered harmful. Communications
of the ACM, 11(3):147-148, 1968.

[Dis37] B. Disraeli. Venetia. New York and London, 1837.

65

[EV91] W. Elliot and R. Valenza. WO$ the Earl of Oxford the true Shake
speare? Notes and Queries, 38:50l~506, December 1991.

[Eva84] M. Evangelist. Program complexity and programming style. In
Proceedings of the International Conference oj Data Engineering,
pages 534-541. IEEE, 1984.

[GJM91] C. Ghezzi, M. JazayeI'i , and D. Mandrioli. Fundamentals of Soft
ware Engineering. Prentice Hall, first edition, 1991.

[Gri81] S. Grier. A tool that detects plagiarism in Pascal programs. ACM
SIGCSE Bulletin, 13(1):15-20, 1981.

[GS92] S. Garfinkel and E. Spafford. Practical Unix Security. O'Reilly &
Associates, Inc., 1992.

[HangI] D. Hanson. Code generation interface for ANSI C. Software
Practice and Experience, 38:963-988, September 1991.

[HH92] W. Hope and K. Holston. The Shakespeare Controversy. McFarland
& Company, 1992.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576-580, 1969.

[HU79] John Hopcroft and Jeffrey Ullman. Introduction to Automata The
ory! Languages} and Computation. Addison~Wesley, first edition,
1979.

[Jan88] H. Jankowitz. Detecting plagiarism in student Pascal programs.
Computer Journal, 31(1):1-8, 1988.

[JW88] R. Johnson and D. Wichern. Applied Multivariate Statistical Anal
ysis. Prentice Hall, second edition, 1988.

[KP78] B. Kernighan and P. Plauger. The Elements of Programming Style.
McGraw-Hill Book Company, second edition, 1978.

[KR85J B. Kernighan and D. Ritchie. The C Programming Language. Pren
tice Hall, 1985.

66

[LC90] A. Lake and C. Cook. STYLE: An automated program style ana
lyzer for Pascal. ACM SIGCSE Bulletin, 22(3):29-33, 1990.

[Led87] Henry Ledgard. C With Excellence: Programming Prove1'bs. Hay
den Books, 1987.

[MB93] R. Madison and M. Beaven. FORTRAN F01' Scientists and Engi
neers: Laboratory Manual. McGraw-Hill, Inc., 1993.

[Mar91] D. Moreaux. A formalism for the detection and prevention of illicit
program derivations. Master's thesis, Dept. of Computer Science,
University of Idaho, 1991.

[MW92] Merriam-Webster. Webster's 7th collegiate dictionary, 1992.

[Nei63] C. Neider. The Complete Essays oj Mark Twain. Doubleday, 1963.

[NS86] T. Naps and B. Singh. Introduction to Data Structures with Pascal.
West Publishing Company, 1986.

[OC89] P. Oman and C. Cook. Programming style authorship analysis. In
Seventeenth Anual ACM Computer Science Conference Proceed
ings, pages 320-326. ACM, 1989.

[OC90a) P. Oman and C. Cook. A taxonomy for programming style. In
Eighteenth Anual ACM Computer Science Conference Proceedings,
pages 244-247. ACM, 1990.

[OC90b] P. Oman and C. Cook. Typographic style is more than cosmetic.
Communications of the ACM, 33(5):506-520, 1990.

[OC91] P. Oman and C. Cook. A programming style taxonomy. Journal
of Systems Software, 15(4):287-301, 1991.

[Ott77) K. Ottenstein. An algorithmic approach to the detection and pre
vention of plagiarism. ACM SIGCSE Bulletin, 8(4):30-41, 1977.

[RN93] J. Ranade and A. Nash. The Elements of C Programming Style.
McGraw-Hili Inc., 1993.

67

The internet worm program. Technical Report
Department of Computer Science. Purdue Univer-

[RR83] A. Ralston and E. Reilly. Encyclopedia of Computer Science and
Engineering. Van Nostrand Reinhold Co., second edition, 1983.

[SASI The SAS Institute. SAS/STAT User's Guide. Volume 1, ANOVA
FREQ, fourth edition.

[SCS86] H. Dunsmore S. Conte and V. Shen. Software Engineering Metrics
and Models. The Benjamin/Cummings Publishing Company, 1986.

[Set89] R. Sethi. Programming Languages Concepts and Constructs.
Addison-Wesley Publishing Company, 1989.

[Spa891 E. Spafford.
CSD-TR-823,
sity, 1989.

[Spe83] D. Spencer. The Illustrated Computer Dictionary. Merrill Publish
ing Co., first edition, 1983.

[St090] C. Stoll. The Cuckoo's Egg. Pocket Books, first edition, 1990.

[Tas78] Dennie Van Tassel. Program Style, Design, Efficiency, Debugging,
and Testing. Prentice Hall, 1978.

[Wha86] G. Whale. Plague: Detection of plagiarism using program struc
ture. In Proceedings of the Ninth Australian Computer Science
Conference, pages 231-241, 1986.

[WS90] Larry Wall and Randal Schwartz. Programming Perl. O'Reilly &
Associates, Inc., first edition, 1990.

[WS93] Stephen A. Weeber and Eugene H. Spafford. Software foren
sics: Can we track code to its authors? Compule1's & Security,
12(6):585-595, December 1993.

68

	Authorship Analysis: Identifying the Author of a Program
	Report Number:
	

	tmp.1307986960.pdf.K2UKb

