
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1994 

Countering Abuse of Name-Based Authentication Countering Abuse of Name-Based Authentication 

Christoph L. Schuba 

Eugene H. Spafford 
Purdue University, spaf@cs.purdue.edu 

Report Number: 
94-029 

Schuba, Christoph L. and Spafford, Eugene H., "Countering Abuse of Name-Based Authentication" (1994). 
Department of Computer Science Technical Reports. Paper 1130. 
https://docs.lib.purdue.edu/cstech/1130 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


Countering Abuse of Name-Based
Authentication

Christoph L. Schuba. and Eugene H. Spafford
Computer Sciences Department

Purdue University
West Lafayette, IN 47907

CSD-TR-94-029
April, 1994



Countering Abuse of Name-Based
Authentication

Christoph L. Schuba and Eugene H. Spafford

COAST Laboratory
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-1398

{sch uba ,spaf}@cs.purdue.edu

Abstract

Authentication for access control procedures is usually based on the iden
tity of participating entitles. In some communications systems, identities are
partially or wholly resolved using hostnames or machine addresses in the under
lying protocol sulte. Access control lists and revocation lists are often defined
on the basis of hostnames, whereby the communication subsystem at runtime
utilizes machine addresses.

After communications between two machines are established, hosts identify
each other by their protocol addresses. To map this address to a high-level
name, which can then be compared with access control or revocation lists to
grant or deny access, a resolution process is initiated. The abstraction from
protocol addresses to high-level hostnames is necessary to hide details of het
erogeneous communication subsystems, and of dynamic network configurations
from the application layer where a uniform, high-level naming scheme is de
sired.

If cryptographic capabilities are used that identify subject-object interac
tions, authentication usually does not depend on host identification. Where
host identification is part of the authentication, a crucial link in the chain of
authentication is the association between hostnames and their respective ad
dresses. The validity of the authentication can be trusted only as much as the
binding process itself.

In the Internet this name resolution is provided by a widely-implemented
distributed database system: the Domain Name System (DNS). Dynamic con
figuration behavior, system efficiency, and volume of binding requests demand
late binding between hostnames and addresses, and caching of the mappings.
Therefore, bindings are established "just in time" on a need basis and are kept
valid for a limited period of time.

This paper describes problems of name-based authentication requiring late
binding such as that provided by the DNS for hostname-to-address associa-



tions. Because forward mappings (where the address is a relation of the host
name) and reverse mappings are maintained in unrelated parts of the database,
three levels of modification are possible: modified forward mapping, modified
backward mapping, or both. The modification of associations enables the spoof
ing of hostnames in sessions that depend on the DNS.

We state the problem in an abstract way and in the concrete case of the
DNS. We analyze the conditions that facilitate the exploitation of the problem
and explain the weaknesses that are present in the DNS.

We then explore some possible solutions to the problem. All our proposed
solutions are evaluated by a number of criteria to compare effects of the so
lutions. Each of the solutions will either consist of mechanisms that enable
arbitrarily chosen policies, or it will require the implementation of a certain
policy. We emphasize the solutions to improve existing name servers by mod
ifying them in a way that they rely on less trust, and to embed crytographic
methods into the name resolution process.

1 Introduction

The Internet is a widespread conglomeration of hundreds of thousands of intercon
nected heterogeneous networks and hosts. The design of the Internet is based on a
protocol hierarchy. There exist multiple implementations of these protocols.

Computers communicate with each other on the basis of different types of ad
dresses; on the physical layer using low-level physical addresses according to the
hardware devices used, on the data link to presentation layer on a first-level abstrac
tion using host addresses such as IP addresses1

, and on the application layer on a
second-level abstraction using high-level, pronounceable hostnames.

The task of naming hosts and network domains is addressed by creating a hi
erarchical relation between domains, with hosts as the furthest descendants from an
artificial root domain. By appending the domain labels one after the other to the host
labels on the path up to the root in the hierarchical tree, a unique, memorizable, and
usually pronounceable identifier is created: the hostname. One of the management
tasks in the Internet is the mapping of lower-level addresses to these hostnames.

The mapping, or binding, of IP addresses to hostnames became a major problem
in the rapidly growing Internet. Note that this paper does not deal with the mapping
between addresses on the physical layer and transport layer, which is solved by ARp2

in the TCPlIP Internet Protocol Suite, but with the mapping between hostnames
and IP addresses.

This higher-level binding effort went through different stages of development up
to the currently used Domain Name System (DNS). The DNS is a distributed naming

1 "32-bit addresses assigned to hosts that want to participate in a TCPlIP internet" [Com91]
2 "Address Resolution Protocol - used to dynamically bind a high-level IP address to a low-level

physical hardware address" (Com91]

2



resolution system used by most network services available throughout the Internet. It
works transparently for the user who sends email, accesses another host via teInel or
rlogin, or transfers some files via ftp between hosts. The DNS provides name binding
in both directions: given a hostname, it returns the appropriate IP addresses, and
VIce versa.

Before hosts grant network services to users, an authentication process takes place,
where the users' access rights, and the identity of connecting hosts get scrutinized,
according to provider policies. There are many notions on how access rights can be
specified. Examinations can be based on identification by hostname, login name, and
login password. In some cases it suffices to provide the right names, and access is
granted without specifying any password at all.

Some Berkeley r-commands (sec [Ste90, chapter 14]) offer network services for
which it is sufficient to verify user name and hostname to gain complete access.
As the remote user name is specified by the connecting site, the authentication is
additionally based upon the name of the connecting machine. A machine that offers
services can acquire information about the socket that is used by the connecting site.
A socket is an abstraction for a network service access point (NSAP): in UNIX3 a
tuple consisting of IP address, port, and protocol used by the remote site. To verify
the hostname, it is the task of the DNS to map the IP address to the hostname.

Because the DNS is distributed among many thousands of hosts, it can be a
critical mistake to blindly trust the resolved binding. This paper investigates policies
and mechanisms to solve the problem of trust in the Domain Name System. Some of
these policies and mechanisms might be abstractable to distributed naming services
in general.

Although this problem has been known for some years now, not many publications
deal with it. [Bel90] and [Sch93] are the principal accounts that we can mention as
related work. [BeI90] demonstrates the subversion of system security using the DNS
and discusses possible defenses against the attack and limitations on their applica
bility. The paper follows suggestions from Paul V. Mockapetris, the designer of the
DNS. In [Sch93] the details of the exploitation of the weakness are worked out and
several approaches to solve the weakness in the DNS are discussed with emphasis on
hardening the name server implementations and the usage of strong cryptographic
methods for authentication.

2 The Problem

2.1 Statement of the Problem

Authenticity is based on the identity of some entity. This entity has to prove that
it is genuine. In many network applications the identity of participating entities is

3UNIX is a trademark of Novell

3



simply determined by their names or addresses. High-level applications use mainly
names for authentication purposes, because address lists are much harder to create,
understand, and maintain than name lists.

Assuming an entity wants to spoof the identity of some other entity, it is in some
cases enough to change the mapping between its low-level address and its high-level
name. That means that an attacker can fake the name of someone by modifying the
association of his address from his own name to the name he wants to impersonate.
Once an attacker has done that, an authenticator can no longer distinguish between
the true and the faked entity. This describes the fundamental problem on which this
paper is based: If the binding process between names and addresses cannot be trusted
fully, no one can rely on an authentication process on a higb-level.

2.2 The Problem in the DNS

To understand the method how to deceive the DNS we first give an example for
a valid name resolution in the DNS. The resolution is based on the client-server
paradigm. Any process that accepts a connection from another host receives from its
lower protocol layer the connecting host's IP address. The process then calls its local
resolver with this IP address as an argument and requests the according hostname.
The resolver forms a query for the given IP address and wai ts to retrieve the response
containing the answer to its query from the default name server. This name server
could be running on the same host with the resolver software, on a host in the local
domain of the resolver, or on a host outside the local domain. The selection of which
name server to contact depends on the name or address to be resolved. The decision
process about this choice is specified in [MocS7, sections 4.3.2, 5.3.3].

Queries to name servers from a resolver come in two flavors: recursive and itera
tive. In recursive resolution, a resolver sends a recursive query to a name server. The
queried name server then has the obligation La respond with the answer to that query
or an error code. If a name server cannot resolve the query locally, it calls its resolver
and queries recursively another name server. This is repeated until one queried name
server supplies the answer or an error code that then travels the reverse path. In
iterative resolution, the contacted name server returns an answer to the query to the
requesting resolver. This is a referral to another name server that is more likely to
know the answer, or an error code to signal the occurrence of an exception or error.
The repeated resolution attempts are performed by the local resolver.

Many security problems of the TCP lIP protocol suite build on the ability of the
attacker to spoof the IP address of a trusted machine, as described in [BeIS9]. As
hosts trust each other, usually on the basis of hostnames, an attacker can take the
easier approach and spoof a host's name instead of its IP address. The process is
depicted in figure 1.

Assume that user alicelDaragorn. defend. dam trusts user bablDbaromir. defend.
dom via the .1-hosts mechanism. If a host named boromir. defend. dom accesses an-

4



I
,user: -alice --

ns.:: '-:ar~gciru -.:-:--

I

alice@aragorntrusts bob@boromir

Hi! I am bobGboromir. defend. dam

defend. dam

exchange of DNS packets

n"candhr~s •.•.

I

attack.dam

I

Figure 1: Example topology of machines

other host named aragorn. defend. dam, host aragorn accepts the connection and
retrieves address information about the connecting host boromir. Host aragorn
reads host boromir's IP address and converts it into a regular hostname. To bind
the right name to the IP address, host aragorn starts a DNS query in the reverse
lookup tree, the database portion that contains the IP address to hostname mapping
information.

For a pair of machines caradhras. attack .dam and dwirnrnerlaik. attack. dam
under the power of an attacker, with caradhras running a primary name server for
a certain zone, and dwimmerlaik trying to fake boromir's identity, it is easy to make
aragorn believe dwirnmerlaik was boromir. dwimrnerlaik connects to aragorn and
claims to be boromir, aragorn retrieves dwimmerlaik's IP address 111.22.33.4 and
queries the name 4 .33.22.111. in-addr. arpafrom the DNS. One single entry in the
authoritative data for the reverse lookup tree for caradhras's zone specifies the IP
address-to-name mapping between 4.33.22.111. in-addr. arpa and dwimmerlaik.
If the attacker replaces this line by a mapping between 4.33.22.111. in-addr. arpa
and boromir, aragorn's resolution attempt will finally grant dwimmerlaik access to
aragorn.

This shows the simplicity of an attack that is based upon trust placed in the data
provided by DNS. It is based on a weakness in the DNS, not an easily fixable bug in
the implementation of a particular network service.

5



One widely accepted way of dealing with this problem is adding an additional DNS
query of the determined hostname to the server code and comparing the returned IP
addresses against the original IP address for a match. This only adds marginally
to the quality of security; it does not provide complete security. An attacker can
piggyback additional resource records to the answer packet to the first query. Doing
so, the attacker poisons the victim's cache with false information, such that the
forward lookup would not disclose the attack.

2.3 Weaknesses

In this paragraph we describe the conditions that facilitate a break-in. The DNS
is weak in several places. We examine the problems of name-based authentication
processes, trusting information that comes from an untrustworthy authority, and
accepting additional, possibly incorrect information that was not requested, but that
seems to provide advantages for runtime performance.

2.3.1 Assumptions to Facilitate Break-ins

In our setup we assume that the attacker has complete control over machine cara
dhras. attack.dom running a legitimate primary name server for a DNS zone. This
strong assumption does not always need to be satisfied. It is simply the easiest way
for an attacker if he controls a primary name server, because of its capabilities and
the fact that other machines believe name servers.

Depending on the topology of a real network it is sufficient if an attacker controls
one of the authoritative name servers for the particular zone: the one that is queried
first by the remote resolver. It is not much more difficult for an attacker to satisfy
this second assumption than the first one.

The control must include the ability to update the associated inverse mapping
tree. The attacker might have successfully subverted such a machine or simply be the
legitimate owner of it. In the following discussion we will assume that the attacker
has such access to a primary name server.

2.3.2 Authentication via Hostnames

We explained in the introduction that users need to be authorized by network service
providers before they can use the service. This authentication is usually based on
the verification of the user's login name along with the associated password and the
hostname of the machine on which the user starts his requests. Networks (as well
as systems in general) may be classified into different partitions: Closed Networks,
Open Networks, and Trusted Networks [PL91J.

Closed Networks can be accessed only within certain boundaries. Sessions are
controlled and secured in accordance with the rules implied by an organization's
policy. In a Closed Network, the locations of all resources are well known and specified.

6



Open Networks are regions separated by boundaries from their surroundings, but
the transfer of information across these boundaries is allowed. They are augmented
by publicly accessible parts or connections to networks owned by other companies or
organizations. These two extensions make this type of network vulnerable to external
threats.

Trusted Networks introduce the concept that network access is controlled at the
entry node. In the case of large international networks, maintainability and con
trollability are important issues. Adopting the Trusted Network concept allows the
decomposition of a large network, growing towards an unmanageable complexity, into
relatively small national or regional networks, each supported by local staff, and each
provided with its own network access control. The advantages are increased control
lability, maintainability, manageability, and simplification of change management. A
Trusted Network can be regarded globally as a single Closed Network, but from a local
point of view, the interconnected networks stand widely open with all the applicable
security threats.

The Internet is a system of Trusted Networks within Open Networks. This allows
the danger that once someone has falsely gained access to one machine, it is much sim
pler to subvert others. The term net-surfing describes the journey through a number
of subverted systems with the goal of subverting others. Within Trusted Networks
users are authenticated solely by their login name and connecting hostname. The
login name is specified by the connecting site, and therefore can be falsified, such
that the only reliable information left for the addressed machine is the connecting
machine's IP address. The addressed machine then maps the IP address into a host
name using the DNS. If an attacker manages to subvert this name binding call, he
can falsify the name of a machine within the Trusted Network and therefore succeed
in his attack.

2.3.3 Trusting a Not Trustworthy Source

Using the DNS to map the IP address provided by lower-level protocol layers into
the applicable hostname, the addressed host blindly trusts the information that is
provided by the DNS. Information that comes from sources outside of the trusted
area is trusted. That is a severe violation of the partitioning concept. Only truly
authoritative information should be trusted.

2.3.4 Believing Additional, Not Authoritative Information

Efficiency is one of the stated goals of the DNS. The DNS protocol packets contain
an additional answer section. Using this, name servers can provide resource records
containing information that could be useful in future requests, but that were not
explicitly requested. There are situations where these additional records aid system
efficiency. If the answer to a query is a referral to another name server, then it
is beneficial to add that name server's IP addresses to the response. That saves

7



the lookup of the name server's associated IP addresses, once its name is found.
Additional resource records are cached for future use.

As we rely on the correctness of these additional records once we use them, we
trust information that comes from a source possibly outside of the trusted scope.
That is another violation of the partitioning concept.

3 Policies and Mechanisms as Solutions

We identify policies and mechanisms that serve as solutions or that simply augment
the level of security of the authentication process. Because many factors contribute
to the security breach encountered in this paper and all of them are necessary for
the weakness to exist, it is sufficient to eliminate at least one of them. That sounds
easy to accomplish, but is a difficult task in practice, because eliminating anyone of
the factors brings with it a disadvantageous trade-off with functionality, efficiency,
or convemence.

We describe evaluation cri teria and present for each of our solutions necessary
additional background, followed by a description of the idea of the solution. We
make the distinction between mechanisms that enable the implementation of policies
and solutions that consist solely of the implementation of a certain policy. Each
solution is examined and discussed using applicable evaluation criteria.

It is important not to view these solutions as stand-alone. In different combi
nations they achieve several degrees of security. It is a good idea to implement a
combination of the presented solutions, to obtain a greater level of confidence in the
security of the DNS.

3.1 Evaluation Criteria

In solving the problem we are striving for compatibility with the original design goals.
In the case of the DNS these goals are data consistency (to provide a consistent view
of the name space to be used to refer to resources), efficiency (to handle the immense
volume of data and resolution requests), a distributed character of the implementation
(to provide fault tolerance and distributed authority and maintenance), generality (to
provide a general usefulness that satisfies pragmatic reasons like implementation costs
and administrative effort), and independence (to provide a portable system that does
not depend on underlying hardware or communication technology.) Each of these
goals represents a criterion in itself. Indeed, the ultimate goal is to guarantee data
consistency, but not only in the data base but also during the mapping process. That
means that we want to prevent the possibility of malicious software introducing wrong
associations without the data base ever seeing changes. The correctness of this run
time behavior is much harder to ensure than the integrity of the data base.

We consider the quality of a solution to be a measurement of the radius of ap
plicability of the solution. The feasibility of an implementation of a solution de"

8



termines how much effort is needed to apply the solution to an unmodified version
of a state-of-the-art name server. The complexity of its implementation denotes if
modifications in different areas are involved and how complicated their interaction
is. Solutions might not be suitable in every organizational environment. We call this
criterion applicability in an organization. The transparency of the solution involves
the software interface and the user interface to the system. A solution that does not
require changes to the DNS protocol is preferable over one that does. User approval
of any modification that is not transparent is a crucial point. We combine these as
pects in the term acceptability by the user. An important point in the introduction
of changes to systems is the transition process from the original state (before the
solution is applied) to the new stale.

3.2 The Berkeley Patch

We briefly explained the Berkeley software patch in section 1 without calling it the
Berkeley patch. This first attempted defense, developed at the University of Berkeley,
CA , consists of modifications of the r-command daemons. The idea is to validate the
inverse mapping tree by looking at the corresponding node on the forward mapping
tree. S. Bellovin describes the method used by the patch in [BeI92] as follows:

To detect this, we perform a cross-check; using lhe returned name, we
do a forward check to learn the legal address for that host. If that name
is not listed, or if the addresses do not match, alarms, gongs, and tocsins
are sounded.

The fix is easily installed and not very complex. Its compatibility with the existing
DNS protocol is another advantage. The transition process to move to services that
contain the patch is not difficult, but requires some work. Although we regard this
patch as an obligatory modification to daemons like rlogind and rshd, it is limited
in its scope. The cache of a running name server can still be poisoned by supplying
additional unrequested records as the experiments described in [Sch93, section 3.5]
prove.

The Berkeley patch utilizes a principle that can be applied outside of the UNIX
domain. The idea is to perform a cross-check of the first mapping in the reverse order.
In a consistent state, forward and backward mapping data are managed by the same
authority. Thus tampering with only one of the two directions of mapping can be
detected.

The patch is a solution if trust can be extended only within the scope of author
itative data, and if the attacker does not use the more sophisticated attack method.
If the attacker supplies the additional address record with the answer to the reverse
lookup, it means that he controls both lookup directions, and that trust is extended
to possibly untrustworthy sources.

9



3.3 Examining Berkeley r-Commands

In this paragraph we discuss the UNIX-specific way of implementing a Trusted Net
work. The Berkeley r-commands extensively use the. rhosts and jete/hosts. equiv files
to increase convenient network access. In paragraph 2.3.2, we discussed the Trusted
Network concept. R-cornmands such as remote login and remote shell offer the pos
sibility to extend trust to other machines. Users and system administrators can build
individual networks of trust. This proves dangerous in some cases. [GS91, chapter
11] discusses security problems with the UNIX trust mechanism.

The existence of these structures of trust is necessary for the break-in to happen.
Obviously, the break-in is prevented if we prohibit the usage of trusted hosts or
trusted users completely. It is technically possible to disallow the usage of trust
in Berkeley r-commands. The choice can be made by the system administrator at
compile time. However, being able to access other machines without passwords makes
the work in a networking environment easier. Once used to the comfort, not many
users agree to sacrifice their convenience for the prevention of hypothetical security
concerns. The trade-off hereby would contain the loss of convenient, and in many
cases, necessary tools for trouble free connection to hosts that are accessed frequently.

A Jess safe solution would be to limit trust to locally administered zones, i.e.
authoritative zones, where the Berkeley patch works reliably. As we discovered in
paragraph 3.2, limiting trust to certain zones :fixes the flaw. An organization could
issue the policy that only local trust is allowed. In some organizations this can be
considered a reasonable approach if hardly any remote accesses that are directed to
hosts in the local zone are originated outside of the local zone. Additional mecha
nisms would be necessary to enforce the policy, such as periodical checks of .rhosts
or a modified r-command implementation where users cannot directly modify their
database of trusted machines, but have to use a special program. The trust asso
ciations must then be kept in a protected data area of the operating system. This
program could filter out-of-zone entries at the time the user wanted to enter them. It
would also contain the possibility of managing setup changes centrally. This solution
actually proposes an automatized procedure to implement an organization's policy.

If the nature of connections allows a policy such as described above, implementing
it is a major effort. Some system scripts have to be written to ensure proper usage,
operating system code and r-command code must be modified, and a new user in
terface has to be developed. Users have to be trained on how to apply the changed
facility and have to be made familiar with the new policy and the new user interface.
Advantages of this new approach are compatibility with the existing DNS protocol
and additional benefits in further security related issues.

Although we concentrate on the Berkeley r-commands in this paragraph, we do
not forget that there are other ways to exploit the flaw. For example, intercepting
electronic mail is a target of attackersj especially electronic mail that is exchanged by
security agencies and security related organizations. Electronic mail depends on the
DNS.

10



The Massachusetts Institute of Technology, together with IBM and Digital Equip
ment Corporation developed in 1983 Kerberos, an authentication system that uses
Data Encryption Standard (see [NBS77]) cryptography to transmit sensitive informa
tion on a network, such as clear-text passwords. Although Kerberos is an excellent
solution to several difficult problems, it has shortcomings that limit its usefulness in
respect to our problem. A discussion of its shortcomings can be found in [GS91].

Overall, a very weak point in Berkeley derived UNIX systems is the usage of trust.
This paper exploits only one of several known flaws based upon trust. Using trust
based mechanisms requires thinking about a change in individual policies in dealing
with granting trust to others. We can conclude, by citing S. Bellovin ([Bel90]):

If a host trusts another host not named in a local zone, its name server
cannot protect it.

3.4 Restricting Public Information Access

What makes the break-in possible in the first place is gathering necessary information
about hostnames of trusting machines and user names on different systems trusting
each other.

We are not discussing random patterns of trust that might exist between hosts, but
common patterns using a systematic approach. In a cluster of time-sharing machines,
each machine is likely to extend trust to all its peers. This pattern is not common
to the general user population, but it is applicable to systems programming and
operational staff. Another typical pattern is the occurrence of file servers that trust
their clients, who serve as a source of extra CPU cycles. Dataless clients will frequently
trust administrative machines to permit software maintenance. Some systems still use
the same jete/hosts. eqlliv files on many hosts just to simplify systems administration.

Generally accessable programs can aid in discovering the desired information:
there are network monitoring and information tools (such as snmptnetstat, tmeeroute,
or the DNS itself), user information services (such as finger), and UNIX services in
general (such as ftp, smtp, or rpeinfo.) Other sources of information might include
published material describing network topology that is available for example from
some academic departments.

The mentioned collection of tools shows that it is a difficult task to limit in
formation access without sacrificing the legitimate utilization of network services.
Preventing someone from gathering information is nearly impossible. Too many ser
vices rely on address information, and we conjecture that most users would not be
happy if they were deprived of useful tools such as electronic mail or news readers.
The idea of open systems requires open access to information services and address
information. Therefore, most system administrators have decided that the benefits
of these utilities outweigh the risks.

11



3.5 Adjusting DNS Update Intervals

Some sites have connections chiefly with machines outside of their zones that stay
stable in the sense that hostname to IP address mapping will stay the same for a long
time. The idea is to enter long time-ta-live values into the resource records, values
that exceed the currently implemented threshold of 1 week. Limits could be increased
up to 6, 12 months, or even longer, depending on the situation. If this data is entered
with great care to ensure correctness of the mappings, the DNS based break-in is
prevented.

This approach is limited by its scope of applicability, but it is a solution with
many advantages. It goes with the current DNS protocol and can be implemented
without much effort by simply changing the constant in the name server code that
determines the maximum time-ta-live for cache entries and recompiling the system.
As all necessary entries are kept in the local cache, the system provides very quick
replies to queries. It hardly ever uses the network and therefore saves bandwidth on
the medium for other tasks.

This approach has the problem of validating mappings before they are cached.
How can it be ensured that the mappings are correct in the first place? Certainly,
a false entry would stay for a long time, and the attacker's address would be finally
noted. But does that really help, once mischief is done? It might aid in prosecution
efforts, but only little in prevention.

Extending TTL values to a long period of time is a safe and feasible method in
environments where the additional condition of static mappings with long lifetimes is
given. However, in this scenario the DNS seems not to be the right approach, but a
locally well-administered static mapping mechanism.

One of the original reasons La introduce the DNS was to manage the dynamic
behavior of changes in the data base. This approach fixes mappings for a long time
and uses a powerful distributed daLabase system for an infrequently occuring update
process. Although we are not talking about a static mapping in this paragraph, a
well-maintained HOSTS. TXT file or a hybrid approach would have the functionality
required with less overhead.

It could be suggested to abandon the DNS and either return to the previous
system with a static host table, or move on to another system that has yet to be
developed. We are not going to discuss possible future development of the DNS here,
but returning to the previous system.

In this approach, mappings can change frequently, but changes have to be reported
to a central authority that manages the whole DNS space in contrast to the DNS
approach of managing zones through delegated local authorities. This would not
solve the problem, because the problem is not the DNS, but inadequate methods of
host authentication. IP addresses of trusted machines could still be imitated. This
is a somewhat harder task, but Lhe techniques have been known for quite some time
(see [Mor85]).

Would it be safer to transmit updates to a central site? Electronic mail, telephone

12



calls, or conventional paper are not necessarily a reliable way to transmit mapping in
formation updates. The long time delay until centrally made changes are propagated
through the network would condemn the database to be in an inherently inconsistent
state. The system would again contain all the disadvantages which were the reasons
for developing the current DNS.

But besides these obvious, technical, and well-known reasons, there is a significant
argument why no one can possibly be in favor of reinstalling the previous system: the
sheer size of the Internet. HOSTS. TXT was abandoned because 200,000 hosts was
too much to be managed. Are currently over 2.2 million (see [Lot94J) easier to handle?
Certainly not.

Abandoning the DNS would drag the name resolution task in the Internet out of a
functioning state with a not easily exploitable security breach, into an unmanageable,
not working state of prehistoric system design. We think that would do more harm
than ignoring the problem.

3.6 Hardening Name Servers

3.6.1 Keeping Additional Information

A first idea is to extensively log remote login attempts with all associated address
and name information. Or even more: to tag cache entries with their origin. The
latter is an easily achieved modification that costs additional memory space in the
cache. This method makes it easier to track false database entries for the purpose of
debugging wrong zone data or investigating a DNS based break-in.

3.6.2 Prevention of Cache Poisoning

Preventing the cache from contamination is not feasible from within the name server
code, as there is no way of a priori determining if any given additional record is
trustworthy or not. We could start treating special cases of when to allow or disallow
additional information.

The default safe behavior would be to disallow the caching of unrequested infor
mation, and to allow it only in cases where the information is necessary, and then
only for the current resolution.

3.6.3 Context Cache

There are other, more sophisticated approaches possible: if some additional or author
itative records are returned together with a resource record, they could be interpreted
only in the context of that resource record. The difference between the default safe
behavior approach and this one is that in the former, resource records are only cached
when they were requested or necessary additional information, whereas in the latter
approach the new entries get cached, but can be retrieved from the cache only in the

13



same context in which they were entered. For example, an address record in the
additional section of a response to a mail exchange record request should only be
used for delivering mail. The information would not be acceptable for a remote login
to another host, or generally usable for other services. A glue address record coming
along with a name server record would only be used for follow-up queries, because
that is the context in which it was supplied. Address records along with pointer
records should never be cached, because there is no legal context in which they have
to be returned in a single response.

This whole approach leads to the question of whether we still need the addi
tional section at all. If only certain combinations of resource records are allowed as
a response to a query, why not consequently eliminate the idea of additional, un
requested information completely, and adapt the protocol to accommodate the new
ideas, namely a certain limited number of types of associations?

First of all, that would require a protocol change, which is something we try to
avoid. Some of the original design goals of the DNS also imply that eliminating
the additional section would not be a good approach. The system would lose some
of its generality, because the additional section might become very useful in future
applications of the DNS without containing any security threats. The system would
certainly lose efficiency. Here we see again an important trade-off that we have already
mentioned in previous sections: an increase in systems security and a decline in system
performance vs. good system performance and a possible lack of security.

It is therefore justifiable to take the approach of hardening the name server by
treating more special cases, and by increasing the complexity of the internal data
bases, instead of hardening it by implementing the same ideas accepting protocol
changes.

3.6.4 Authority Cache

A further approach would be to cache data only if the source of a record is known to
be authoritative for that zone. We give an example for that: If a name server ara
gorn. defend. dam receives a pointer record from some host caradhras .attack. darn,
and the DNS message also contains an address record in its additional section, then
the name server aragorn would believe and cache this information only if it already
knows that the source name server caradhras is authoritative for the according zone.
A name server following this strategy would create its own tree of authoritative name
servers. This tree would have to lose subtrees according to the expiration of the
lifetime of some node (name server).

This approach however has a serious flaw in it. Servers determine if DNS mes
sages are genuine by checking a certain flag in the header of the DNS message: the
authoritative answer bit. This flag is only valid in responses and specifies that the
responding name server is an authority for the domain name in question. Nothing
prevents any attacker who supplies specifically manufactured packets in the first place
from setting this bit regardless of its validity.

14



3.6.5 Conditional Cache Use

The Berkeley patch (see paragraph 3.2) can fail in the case that the cache is already
poisoned. An idea to strengthen the Berkeley patch is to provide the possibility to
resolve queries without using the cache. That could be used by the Berkeley patch.
The system call executing the forward lookup would for example set a flag to indicate
that the cache contents should not be used for the following resolution. This method
again decreases the efficiency of the system, but it prevents the exploitation of the
weakness. One could also think of a system call to flush the cache followed by a reload
of the database, similar to the signal SIGHUP that a system administrator can send
to the BIND implementation of the name server to achieve the same.

3.6.6 Discussion

A very thorough analysis of the protocol is needed to determine the cases in which
additional resource records are legal and cannot do any harm, or have to be stored
in different contexts.

One of the design goals of the DNS is hereby in danger: generality. The DNS
should not contain any unnecessary restrictions regarding its purpose or applications.
If the implementor of the DNS were to decide which combinations of resource records
would be allowed, the DNS might be constrained in a way that it is no longer useful
for certain applications. A decline in system performance would result from the fact
that name servers would believe and therefore cache less data - data that might be
needed later.

Hardening name servers consists of several possible modifications, some of which
seem promising, even though their application decreases the system's performance
and increases its complexity.

3.7 Cryptographic Methods for Authentication

In this paragraph we describe the architecture of an authentication system embed
ded into the DNS. Note that the algorithms and methods described in the following
paragraphs yield as much security as possible. However they are not perfect. Most of
the algorithms rely at some point on conjectures in number theory that are neither
proven nor contradicted, or on the fact that brute force attacks are computationally
infeasible. For a discussion of this see [Den82].

We have to meet the requirements of data integrity of the message and of orig
inator authentication. In the following we will elaborate on these two requirements
and present techniques for their possible implementation. The algorithms and cryp
tosystems that we chose are typical representatives of the class of algorithms that are
applicable. They are by far not the only possible choice.

15



3.7.1 Data Integrity

Data integrity in a communication system prevents against active wiretapping, that
means a recipient is provided with the assurance that the content of a received message
is identical to the content of the message sent by its originator.

We want to ensure the integrity of transmitted DNS messages along with a time
stamp to protect against replay attacks. We concentrate on a certain technique to
detect unauthorized message alteration that is efficient and considerably secure.

In case of alteration detection, recovery actions could be to ignore the received
DNS message and issue an additional query. Our approach is based on message
digest algorithms. Message digests, or synonymously fingerprints or signatures, are
the result of the application of a one-way hash functions that computes a checksum
of its input data.

MD5 and the Snefm algorithm are examples for message digest algorithms (see
[Riv92, Mer89].) Message digest algorithms are easy to compute, are only a few bytes
per message, are computationally hard to invert, and usually require a certain size of
input data.

An originator would calculate the message digest of a DNS message immediately
before it is sent out. The recipient would recalculate the message digest and compare
the resulting value with the one calculated by the originator. In case of a mismatch,
the receiver would conclude that he received a modified DNS message. He would
discard it.

But how does the message digest calculated by the originator reach the receiver
without modification? The message digest algorithms are publicly known and any
one tampering with a message could easily modify the associated message digest
accordingly. To show how this can be prevented we discuss a method for originator
authentication in the following paragraph. Message digests together with originator
authentication give a very strong guarantee for the detectability of active wiretapping.

3.7.2 Originator Authentication

Originator authentication permits the recipient of a message to reliably determine
if the originator of a message is who he claims to be.

We explain briefly a procedure that guarantees the originator's authenticity. In an
asymmetric cryptosystem a pair of distinct but mathematically related keys is used for
encryption and decryption. One key is private and kept secret by the sender, the other
one is publicly known. Data encrypted with a sender's private key can be decrypted
using his public key, and vice versa. These keys are usually large integer numbers,
several hundred decimal digits long with special, mathematical properties. Pohlig
Hellman and RSA are examples of asymmetric cryptosystems (see [PH78, RSA78]).

Figure 2 depicts digital signature generation and validation; a more detailed ex
planation can be found in [Sch94, section 17.6]. The sender digitally signs data m
by encrypting the hash value s of the data using his private key component J(pril1

16



Sender:

message m

message digest algorithm

message digest s

asymmetric encryption

m
--------;...

Receiver:

received message m

message digest algorithm

message digest s

-?-.
hash value s"

"encrypted message digest s' - - - - - - - -;... received encrypted digest sJ

Figure 2: Digital signature generation and validation

and sends (EJ(p~jJs),m). The receiver validates the data in a three step process. He
computes the hash value s of the data m, decrypts the hash s' that arrived using the
signer's public key Kpv.b and compares the results D[(pub (s') and s.

Why do we calculate a message digest at all and not simply encrypt and then
transmit the whole message? The main point here is the difference between the
runtime costs of creating a message digest and encrypting a message, depending on
the length of the original message.

Runtime costs for public key encryption are rather high. Many CPU cycles are
needed. Therefore we want to reduce the size of the data portion that has to be
encrypted: in our case the output of the message digest algorithm.

Runtime costs for the hash functions are rather small compared to those of public
key encryption. It is therefore important to note that it is more efficient to pad a short
DNS message, calculate its fingerprint, and then encrypt the fingerprint, than simply
to encrypt the whole DNS message. Message digest lengths are generally shorter than
typical DNS messages.

3.7.3 Passing Credentials to Prove Authority

The crucial point in the previously described protocol is the importance of the public
key of the sender. If an attacker can convince the receiver to use key I<;v.blic instead of
Kpv.bliCl whereby the attacker possesses the related K;rivate, the attacker can subvert
the protocol such that the receiver will be fooled into accepting the integrity and
origin of the message. This demonstrates that it is important to devise a scheme
that protects against this threat. We solve this problem by the implementation of a

17



distributed scheme for the validation of public key component certificates.
The name server sending the DNS message has to provide credentials signed by its

parent domain, to convince the recipient of its authority over the domain for which
it just resolved a mapping.

The use of such a certificate transforms the problem of establishing the credibility
of one entity into the problem of establishing the credibility of the entity issuing
the certificate. This problem is very closely related to the problem of distributing
public key certificates. The CCITT recommendation X.509 shows a way to solve this
problem. In X.509, a certificate binds a public key to a directory name and identifies
a party that vouches for the binding.

We can adopt this mechanism, such that a certificate binds all name servers that
are authoritative for a certain zone to this zone of authority and identifies the zone
that vouches for the binding. X.509 imposes no constraints on the semantic or syntac
tic relationship between a certificate issuer and a subject. However, in our approach,
the certification system takes the form of a single rooted tree. Each node represents
a zone. Several name servers serve as certification authorities for each zone, because
all servers that were introduced to increase the reliability of the database system are
capable of valid and authoritative referrals.

A certificate for a zone consists of all IP addresses of authoritative name servers
for that zone, signed with the private key of the name servers for the parent domain.
Any resolver that receives a DNS message receives as part of it this certificate. After
obtaining the public key for the parent zone of the queried zone, the resolver can then
verify the validity of the referral. But to verify the authority of the parent zone, the
resolver has to ask this zone for credentials.

This validation process for certificates is done recursively up the zone hierarchy
tree that coincides with the certification hierarchy, starting at the name server that
provides the queried mapping. The recursion will stop at some point, either at the
root, or at some intermediate node that was certified before. The certificates that a
name server holds are subject to timeouts, just like the resource records that specify
bindings of this name server. The certificate for the root must be transmitted by some
trusted, out-of-band mechanism. For example, the root certificate could be published
in an international newspaper.

Even if an attacker manages to get a valid certificate of a name server it wants
to impersonate, and has the capability to also spoof this name server's IP address, it
is still not possible for the attacker to impersonate another host. As we saw in the
previous paragraph 3.7.2, a DNS message is encrypted with the name server's private
key before it is sent out. The credentials are part of the message and are therefore
also encrypted. An attacker cannot construct the correctly encrypted message without
breaking the asymmetric cryptosystem used.

18



3.7.4 Discussion

The validation of integrity and originator of the message, and its underlying pattern
of certifications stating trust, are the features that make this approach secure. The
following discussion shows its disadvantages. Some of them are serious enough to
restrain from an implementation of this approach at the current time.

The whole procedure is time and space consuming. Many rather long public
keys have to be stored (at least 200 decimal digits long each to make the public key
encryption reasonably strong.) Obtaining memory for them, as well as additional
cache memory for larger resource records, is not a problem in current architectures.
The keys must be obtained before they can be used. S. Kent describes in [Ken93]
certificate based key management for usage in Privacy Enhanced Mail (PEM).

We will not go into more detail regarding the key distribut.ion process. The regis
tration process that has to occur out-of-band is rather cumbersome. The calculations
to encrypt and decrypt message digests may take too long to support the efficiency
goal of the DNS. The additional data that has to be transmitted would not degrade
performance too badly, especially if faster transmission media becomes broadly avail
able, but the calculation overhead [or encryption and decryption cannot easily be
amortized. However, the RSA cryptosystem is available in hardware and a dramatic
performance increase can be observed, compared with a software implementation of
the same algorithms.

The implementation of such a solution is a major effort. The whole key man
agement problem is complex and it also requires additional administrative effort.
Resolver routines and name server routines have to be modified, along with the DNS
protocol. The implementation is feasible, though very complex. Another drawback is
the transition phase that is necessary because of protocol changes. Decreased perfor
mance because of calculations necessary to sign, encrypt and decrypt messages would
be noticeable by users and real-time applications.

Currently, the method seems to be infeasible, because of its large computational
overhead. Further drawbacks are the necessary protocol changes and the complexity
of proper key and certificate management. However with further advances jn processor
speed and some reasonable relaxation on requirements for strong encryption (i.e.
shorter keys increase performance of RSA dramatically) this approach can become
very attractive in the near future.

4 Conclusions and Outlook

Where host identification is part of the authentication between communicating en
tities the validity of the authentication process can only be trusted as much as the
resolution process that supplies the bindings between high-level hostnames and low
level host addresses.

This is a significant problem, because it exposes probably hundreds of thousands

19



of hosts that are currently connected to the Internet to the threat of break-ins.
We discussed solutions to the problem with the concrete instance of the Domain

Name System. We stressed hardening current implementations of the name servers
and put emphasis on the development of a future scheme that uses cryptographic
methods to give a strong guarantee for detection of spoofed bindings.

Acknowledgements

We would like to thank COAST sponsors BNR, Trident Data Systems, and the US
Air Force, and the Fulbright Commission for support that aidedI in part , this work.
Thanks to Steven Bellovin whose valuable comments are most appreciated, Dan Trin
kle who showed us how to master some ofthe subtle difficulties of the DNS , and J.R.R.
Tolkien whose fantasy provided the hostnames.

References

[BeI89] Steven M. Bellovin. Security Problems in the TCPIIP Protocol Suite. AT&T
Bell Laboratories, Murray Hill , New JerseYI April 19S9.

[BeI90] Steven M. Bellovin. Using the Domain Name System for System Break
ins. AT&T Bell Laboratories, Murray Hill, New Jersey, 1990. (unpublished
technical report).

[BeI92] Steven M. Bellovin. There Be Dragons. In UNIX Security Symposium III
Proceedings, pages 1-16, Baltimore, MD, 1992.

[Com91J Douglas E. Comer. Internetworking with Tep/IP. Prentice-Hall, Englewood
CliffsI New Jersey, second edition, 1991.

[DenS2J Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley
Publishing Company, Inc., 1982.

[GS91] Simson Garfinkel and Gene Spafford. Practical UNIX Security. O'Reilley &
Associates, Inc. Sebastopol, CA. , 1991.

[Ken93] Stephen T. Kent. RFC-1422 Privacy Enhancement for Internet Elec
tronic Mail: Part II: Certificate-Based Key Management. Network Working
Group, February 1993.

[Lot94] Mark Lottor. Internet Domain Survey Jan 94. SRI International, January
1994.

[MerS9] Ralph C. Merkle. Snefru. Xerox Corporation, Palo Alto, CA, 19S9.

20



[Moc87] Paul Mockapetris. RFC-I034 Domain Names - Concepts and Facilities.
Network Working Group, November 1987.

[Mor85] R. T. Morris. A Weakness in the 4.2BSD UNIX TCP(IP Software. Com
puting Science Technical Report No. 117, AT&T Bell Laboratories, Murray
Hill, New Jersey, February 1985.

[NBS77] NBS. Data Encryption Standard. National Bureau of Standards, Washing
ton D.C., Jan. 1977. FIPS PUB 46.

[PH78] S. Pohlig and M. Hellman. An Improved AlgoriLhm for Computing Loga
rithms over GF(p) and its Cryptographic Significance. iEEE Transactions
on Information Theory, IT-24(1):106-10, January 1978.

[PL91] R. Paans and H. de Lange. Auditing the SNAjSNI Environment. Computer
& Security, 10(3):251-61, May 1991.

[Riv92] Ronald 1. illvest. RFC-1321 The MD5 Message-Digest Algorithm. Network
Working Group, April 1992.

[RSA78] R. Rivest, A. Shamir, and 1. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. Communications of the ACM,
21(2):120-6, February 1978.

[Sch93] Christoph L. Schuba. Addressing Weaknesses in the Domain Name System
Protoco1. Master's thesis, Purdue University, West Lafayette, IN, August
1993.

[Sch94] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., 1994.

[Ste90] Richard W. Stevens. UNIX Network Programming. Prentice-Hall, Engle
wood Cliffs, New Jersey, 1990.

[To165] John R. R. Tolkien. The Lord oj the Rings. Houghton Mifflin, Boston,
second edition, 1965.

21


	Countering Abuse of Name-Based Authentication
	Report Number:
	

	tmp.1307986960.pdf.v1YCk

