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Abstract 1 Introduction

This paper reports a series of experiments to

measure TCP performance when transferring data

through an Asynchronous Transfer Mode (ATM)

switch. The results show that TCP buffer sizes and

the ATM interface maximum transmission unit

have a dramatic impact on throughput. We ob

serve a throughput anomaly in which an increase

in the receiver's buffer size decreases throughput

substantially. For example, when using a 16K

octet send buffer and ATM Adaptation Layer 5 on

a 100 megabit per second (Mb/s) ATM path, the

mean throughput for a bulk transfer drops from

15.05 Mb/s to 0.322 Mb/s if the receiver's buffer

size is increased from 16K octets to 24K octets.

This paper analyzes the perfonnance, explains the

anomalous behaviof, and describes a solution that

prevent the anomaly from occurring.

·This work was supported in part by a fellowship from
UniFomm Association.
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Asynchronous Transfer Mode (or ATM) is a

connection-oriented data communication technol

ogy that switches 53-octet data units called cells

[I, 4, 5, 20]. ATM's fixed-size cell and early

binding of routing infonnation during connec

tion setup make ATM suitable for high-speed

data communication. Thus, standards commit-

tees (e.g., ANSI TI, ITU Study Group XVIll)

have chosen ATM as an underlying transport tech

nology fOf many Broadband Integrated Services

Digital Network (B-ISDN) protocol stacks [10].

Although the standards committees are still

working to refine ATM standards, network equip

ment manufacturers have developed ATM Local

Area Network (LAN) equipment that provides gi

gabit aggregate bandwidth with connections to

desktop workstations. Many ATM LAN switches

support the widely used TCPIIP Internet proto

col suite by allowing the Internet Protocol (IF)



[16] to operate over ATM. A user who connects

to an ATM network can run existing applications

that use the Transmission Control Protocol (TCP)

[17] or the User Datagram Protocol (UDP) [15]

without modification.

Users who share a conventional network (e.g.,

a 10 Mb/s Ethernet) expect dramatic increases in

performance from a dedicated ATM connection

that operates an order of magnitude faster. How

ever, measurement of file transfers using FfP

[19] showed a surprising result: the same ftp

program that performs well over a 10 Mb/sec

Ethernet can perform worse over an 100 Mb/s

ATM path. For example, when transferring a 4.4

megabyte data file between two hosts connected to

the same Ethernet, ftp reports a mean throughput

of 1.313 Mb/s. However, using the same soft

ware and computers to transfer the lile across a

100 Mb/s ATM path produce a mean throughput

of only 0.366 Mb/s. Furthermore, the ATM net

work management software reports no cell lost.

The low throughput prompted us to investigate

the effects of TCP buffering on its performance.

Experiments revealed the sizes of the sender's and

receiver's buffers have a dramatic effect on per

formance.

The remainder of this paper is organized as

follows. Section 2 describes the ATM network

configuration used to conduct the experiments,

the tool used to measure TCP performance, and
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the experimental procedures. Section 3 presents

the results of the experiments and identilies a

throughput anomaly in which an increases in the

receiver's buffer size decreases TCP throughput

significantly. Section 4 explains the cause of the

throughput anomaly and describes a solution that

prevents the anomaly from occurring. Section 5

summarizes the paper.

2 Measuring TCP Performance Over
ATM

Figure 1 illustrates the network configuration for

conducting the experiments. Two multi-homed

Sun Microsystems' SPARCstation IPCs, A and H,

running SunOS 4.1.1 1are used to measure TCP

performance over ATM. Each host has two net

work interfaces: one connects to an Ethernet and

the other connects to a Fore Systems' ASX-lOO

ATM switch via a 100 Mb/s multi-mode fiber link.

Each host uses aFore SBA-200 ATM adapter card

to interface with the ATM switch. The adapter

card embeds a dedicated RISC processor and spe

cial purpose hardware to handle ATM Adaptation

Layer 5 (AAL5) [6, 9]. The Maximum Transmis

sion Unit (MTU) on the ATM interface and the

Ethernet interface is 9188 octets and 1500 octets,

respectively.

2.1 Measurement Tool

ISunOS 4.1.1 TCP is a version of 4.3BSD-Tahoe TCP.
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Figure 1: Configuration of an ATM network used to measure TCP throughput

Figure 2: Using ttcp to measure TCP throughput
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provided by ttcp.

The experiments use two timestamps at the

sending ttcp to calculate throughput: one taken

at the instant before it calls the write system call

to start transmitting data, and the other taken at the

instant after it finishes the transmission. System

We used a public domain C program called tICp2

to measure TCP throughput. A ttcp running on

host A uses the BSD socket interface provided

by SunOS to communicate with another ttcp on

host B. As Figure 2 illustrates, we configured one

ttcp as a source and the other as a sink:. Once a

user has specified the amount of data to transmit,

the source ttcp continuously transmits the data to

the destination ttcp (sink) until all the data are

transmitted; the destination ttcp simply discards

the data it receives. Users also can specify the

sizes of the sending TCP's send buffer and the

receiving TCP's receive buffer by using an option

2The program nep is available for anonymous ftponhosl
gwen.es.purctue.edu in directory Ipubllin.

call gettimeofday provides the timestamps. On a

Sun !PC running SunOS 4.1.1, the timestamps

have a granularity of one microsecond. TCP

throughput is calculated as the total number of

application data transmitted divided by the inter

val between the two timestamps.

Because ATM is connection-oriented, a con

nection must be established between the sender

and the receiver before IP datagrams can be trans

mitted. Once an ATM connection between two

IP hosts has been established, the signalling soft

ware of Fore Systems provides a caching mecha

nism such that an ATM connection is only closed

when the connection is quiet for approximately 15

3



Receive Buffer Size (octet)

':::::- 16K 20K 24K 28K 32K 36K 40K 44K 48K 51K

16K 15.05 13.60 0.32. Q~ji;; ,0:319: 04~T OAW 0,,66 0"69' :OA69,

20K 15.99 14.60 15.07 14.87 15.40 14.24 ::Ui95 Ui95 ·0,548 ':0549

24K 17.71 16.79 16.74 16.32 17.40 17.31 17.42 17.12 0160 d,i~o:

28K 16.57 17.69 17.93 18.13 18.36 19.20 19.74 19.78 18.38 18.20

32K 14.63 18.96 18.42 19.23 19.14 19.74 19.96 20.31 19.69 19.17

36K 14.33 19.22 18.12 19.82 19.77 19.92 20.56 20.49 20.13 20.20

40K 15.16 19.34 18.85 19.73 20.11 20.41 20.81 20.74 20.69 20.57

44K 14.80 19.40 18.27 20.39 20.16 20.74 20.99 20.87 20.89 20.70

48K 14.62 19.46 18.34 20.48 20.26 20.41 20.85 20.83 20.93 20.83

51K 13.92 19.41 18.26 20.50 20.06 20.21 20.88 20.91 21.21 21.06

Note 1: Throughpul numbers are In megabits per second (Mb/s).
2: Shaded area indicates abnormal TCP throughput.

Table 1: TCP buffer sizes and mean throughput

minutes [2]. We artificially established an AIM

connection before each experiment. Thus, the

reported throughput does not include connection

setup time.

2.2 Experimental Procedures

We conducted 100 experiments to investigate the

effect of send and receive buffer sizes on TCP

throughput when transferring bulk data over a 100

Mb/s ATM path. The send and receive buffer

sizes range from 16K octets to 51K octets in a4K

increments. The minimum buffer size of 16K was

selected because the MTU of the AIM interface

is more than 8K octets and the SunGS kernel is

configured to use a default send and receive buffer

size of 16K when installing the driver software for

the AIM adapter cards. The maximum buffer size

of 51K was selected because SunGS 4.1.1 TCP
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restricts the buffer size to 52428 octets.

Each experiment consists of 50 independent

throughput measurements. In each measurement,

the source transmits 32 megabytes of data to the

sink. There is a delay of 5 seconds between mea

surements. All the experiments use AAL5 to en

capsulate IP datagrams.

3 Results

Table I shows the mean throughput measured for

each experiment; Figures 9 to 13 in Appendix plot

the throughput data of each experiment. As Ta

ble 1 shows, in general, TCP throughput increases

as the sender's and receiver's buffersizes increase.

Some experiments, however, show a decrease in

mean throughput when send and/or receive buffer

sizes increase. For example, when a sending TCP



22 r-~~------------,

21

~ 20
e 19

i :~
... 16

15

14 '---~~-~~-~~-~~---'
16 20 24 28 32 36 40 44 48 51

Buffer Size (kilooclct)

Figure 3: TCP mean throughput when sender and
receiver use the same buffer size

uses a 16K buffer, the mean throughput decreases

about 10% when the receiving TCP increases the

receiver buffer size from 16K to 20K. Also, as

Figure 3 shows, when the sender and receiver use

the same buffer size, TCP performs better with a

16K buffer than with a 20K buffer.

Surprisingly, as the shaded entries in Table 1

shows, certain combinations of unequal send

and receiver buffer sizes cause exceptional low

throughput. Furthermore, the exceptional low

throughput occurs when a receiving TCP in-

creases its receive buffer size. For example, when

llsing a 16K send buffer, TCP mean throughput

decreases from 15.05 Mb/s to 0.322 Mb/s if the

receive buffer size is increased from 16K to 24K.

The next section explains the anomalous behavior

and describes a solution to prevent it from occur

ring.

5

4 Analysis of the Results

Although network analyzers can be used to cap

ture data on a shared access network (e.g., an Eth·

ernet), the technique does not work well in a point

to-point, non-shared access AlM network. Thus,

we use kernel probing [8, 14] to study the ob

served TCP throughput anomaly over ATM. The

technique uses a data structure in the kernel ad

dress space and inserts probing code at various

locations of the TCP source modules to gather

relevant data. An application program reads the

gathered data from the kernel address space for

off-line analysis.

4.1 Analysis of the Throughput Anomaly

By analyzing the gathered data, we conclude that

the interaction of the following items causes the

dramatic throughput decrease:

1. The sender's send buffer size

2. The receiver's receive buffer size

3. The MTU of the AlM interface

4. The TCP maximum segment size (MSS)

5. The way user data is added to the TCP send

buffer

6. Sender side Silly Window Syndrome avoid

ance (Nagle's algorithm)



7. The receiver side delayed acknowledgment

algorithm

The first two items are configurnble by applica

tions in BSD derived UNIX by using sersockopl

system call. The MTU of Fore Systems' ATM in

terface card is 9188 octets for IP over AIM when

using AAL5. SunGS 4.1.1 calculates TCP MSS

as 9148 octets (i.e., 9188 minus the default TCP

and IP header sizes) in our ATM network config

uration. Items 5 to 7 are implementation related;

we describe how SunOS 4.1. I implements them

below.

4.1.1 Adding Data to TCP Buffer

The SunOS 4.1.1 implements TCP buffers as a

list of mbufs [12]. Each mbuf can store up to 112

octets of data or contain a pointer to a I K octet

memory block for storing large messages. During

bulk data transfer, if the send buffer is larger than

4K and the user has more than 4K data to sent,

SunOS adds user data in blocks of 4K octets to

mbufs, then invokes a TCP routine to transmit the

data; if the available space in the send buffer is

smaller than 4K, SunOS adds data in multiples of

1K octet block.
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4.1.2 Sender Side Silly Window Syndrome

Avoidance (Nagle's Algorithm)

Silly Window Syndrome (SWS) [7] is character

ized as a situation in which a steady pattern of

small TCP window increments results in small

data segments being transmitted. Sending small

data segments lowers TCP throughput because

TCP and IP headers consume network bandwidth.

To avoid SWS, both sender and receiver must im

plement SWS avoidance algorithm [3]. On the

receiver side, it must avoid advancing the right

window edge in small increments when it receives

small data segments. On the sender size, it must

avoid sending small data segments to the receiver

even if the receiver has space available to accept

them.

For applications that are character-oriented

(e.g., remote login, TELNET [18]), every charac

ter generated by the applications must be pushed

explicitly by the application or TCP to avoid dead

locks. If a TCP transmits every pushed data, the

result is a stream of one octet data segments. To

better utilize network resources, a TCP tries to

buffer segments that are small compared to the

size of TCP and IP headers. However, to avoid

deadlock, TCP must not buffer a data segment

that needs immediate delivery. Nagle's algorithm

[13] provides a simple solution to the dilemma:

if there is unacknowledged data, TCP buffers all

data (even if the PUSH bit is set) until TCP can



Sender's send sequence space Send buffer: 16K octets

second •
data segment data segment

__-''---__'---__-'---1 ~l~~
I. :,6 + 9148 1

D~ta sent but nOl ACKed

The offered receive window
(Receiver's available receive buffer space) B Data waiting to be transmitted

Figure 4: Illustration of a sender's usable window

send an MSS segment or until all the outstanding

Segment I data: 4096-
Segment 2 data: 9148- (Condition S1)
Segment 3 - ACK 1,2
Segment 4 data: 3140- (Condition S2)

data has been acknowledged [3, 13]. Note that

Nagle's algorithm also provides sender side SWS

avoidance. SunOS 4.1.1 TCP uses the following

Note: Receiver's receive buffer is 24K octets_

Figure 5: Illustration of how a TCP determines
when to send data over an ATM path

two conditions to avoid sending small data seg-

ments:

81: Ifmin(D,U) >= 1 *MSS, then transmit

a segment with 1*MSS octet of data. D is

the amount ofdata to be transmitted, U is the

usabLe window [7] (Le., the available receive

buffer space in the receiver) as illustrated in

to transmit buffered data when the peer acknowl

edges all the outstanding data. When there is

unacknowledged data, conditions 81 and 82 al

low TCP to buffer small data segments until it

can send an MSS segment or all the unacknowl

edged data have been acknowledged. Note that

when the connection is idle (i.e., there is no un-

Figure 4.

82: If an ACK from the peer acknowledges all

the outstanding data and there are X octets of

data waiting in the send buffer, then transmit

a segment with min(X, U) octets of data.

acknowledged data), TCP immediately transmits

data added the send buffer even the amount ofdata

is less than 1*MSS.

Figure 5 illustrates how a sending TCP with

16K send buffer uses conditions S1 and 82 to de-

7

has space to receive an MSS segment, TCP trans- because the connection was idle. Because TCP

mits an MSS segment. Condition S2 requires TCP MSS is 9148 octets, after SunGS finishes adding

In condition S1, if a sender has at least 1*MSS

octets of data to be transmitted and the receiver

cide when to transmit data segments over an ATM

path to a receiver with 14K receive buffer. SunGS

4.1.1 TCP transmits 4K octets in the first segment

I
I



the fourth 4K octet block, TCP transmits a sec

ond data segment with 9148 octet of data leaving

3140 (12K - 9148) octets of data queued in the

send buffer (condition 51). When the peer ac

knowledges all the unacknowledged data in the

third segment, TCP transmits a 3140 octet data

segment (condition 52).

4.1.3 Receiver Side Delayed ACK

A receiving TCP can increase TCP throughput,

reduce protocol processing at both ends, and gen

erate less traffic by using delayed ACK [7]. A

receiving TCP implements delayed ACK by gen

erating fewer than one ACK per data segment

received. A TCP should implement delayed ACK

[3], but should not excessively delay an ACK be

cause TCP uses ACKs to estimate packet round

Lrip time and detennine how much more data to

transmit [3,11]. RFC-1122 recommends that in a

stream of full-sized segments there should be an

ACK for at least every second segment. SunOS

4.1.1 TCP implements delayed ACK and uses it

by default. The following two conditions deter

mine when a SunOS 4.1.1 TCP should transmit

an ACK if delayed ACK is used:

RJ: If the receive sequence space has advanced

at least 2*MSS octets and receive buffer is

empty, then transmit an ACK.
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R2: If the receive sequence space has advanced

at least 35% of the total receive buffer space,

then transmit an ACK.

Note that the receive sequence space advances

as an application extracts data from the receive

buffer, and TCPchecks condition RJ before condi

tion R2. Condition RJ guarantees TCP acknowl

edges the peer after every two MSS segments re

ceived by an application. For a receiving TCP

with a small receive buffer, as compared to TCP

MSS, condition R2 generates ACKs to allow the

sending TCP to transmit more data.

RFC-1122 mandates that a TCP must ACK the

peer within 500 milliseconds (ms) after receiv

ing data. Observe that the above two conditions

do not guarantee lhat a receiving TCP will meet

the requirement. For example, if an application

extracts data from the receive buffer too slowly,

TCP can delay sending an ACK for more than SOD

ms. Therefore, SunOS 4.1.1 TCP schedules a de

layed ACK timer event every 200 ms to check for

possible delayed ACKs [12]; an ACK is transmit

ted when the timer expires and ACKs have been

delayed.

4.1.4 Anomalous Behavior

TCP experiences low throughput while a sending

TCP (A) has a buffer of 16K octets and a receiving

TCP (B) has a buffer of 24K octets. As Figure 6



s,~ TePA TePB
C.I (Sender) (Receiver) Commenl

I data: 4096 -
2 data: 9148 - 51 (3140 octets waiting in buffer)- ACKl,2 R2 (13244 > 035 * 24K)
3 data: 3140 - 52 (3140 = 12K· 9148)

"• 4 data: 9148 - 51 (3140 octcts lefLin buffer)
V5 - ACK3.4 R2 (12288 > 0.35· 14K)

"e (repeat 8 times)
0
Z 21 data: 3140 - 52 (3140 = 12K - 9148)

22 data; 9148 - 51 (3140 octets waitin in buffer)
Al - ACK21 ACK enerated b dela cd ACK timer

A2 - ACK22 R2 (7236 octets wailing in buffer)
23 data: 7236 - 52 (7236 = 3140 + 4096)

§ (200 ms later) R1, R2 (7236 < 0.35· 14K)

'" - ACK23 ACK generated by delayed ACK timer

" 24 data: 8192 -e (200 IDS later) RI, R2 (8192 < 0.35· 14K)0c
~ - ACK24 ACK gcncr.Jted by delayed ACK timer
."

(repeallill the end of lIabsmission)

Note: I. The send and receive buffer sizes arc 16K and 14K, respectively.
2. S I, 52, RI, and R2 are condition labels.

Figure 6: lllustration of the segment exchange between two TCP that leads to a deadlock state

illustrates, after A sends segments] and 2 to B,

it reaches a steady state consists of two data seg

ments from A and an immediate ACK from B.

In segment Ai, the delayed ACK timer generates

an ACK for segment 2J; the ACK allows SunOS

to add 4K octets of data to the send buffer. Af

ter A receives segment A2 that acknowledges all

the outstanding data, by condition 82, it immedi~

ately sends adata segment with 7236 (3140+4096)

octets to B. Because 7236 is less than 2*MSS and

also less than 35% of24K, B delays acknowledg

ing A and expects A to send more data.

In the mean time, A adds only 8K octets of data

to the send buffer even although the send buffer

has 9148 octet space available. Because 8K is less
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than 1*MSS and does not satisfy condition 82, A

waits for an ACK from B before transmitting the

8Kdata.

A circular-wait situation has occurred: A is

waiting for an ACK from B before it sends more

data, and B is waiting for more data from A be

fore it sends an ACK. Finally, B's delayed ACK

timer expires and causes B to send an ACK that

breaks the circular-wait. After A responds to the

ACK from B by sending an 8K data segment,

the circular~wait situation occurs again. Thus, a

lockstep interaction in which a circular-wait fol

lowed by an ACK that breaks the circular-wait

has established. Because the delayed ACK timer

generates one ACK per 200 ms, the sender expe-



riences unnecessarily long delay before sending

additional data. Therefore, two hosts connected

via a high~speed network waits to send data while

the ATM network remains idle. As a result, TCP

throughput decreases dramatically.

4.1.5 Discussion

When a sender with 16K octet buffer communi

cates with a receiver with 24K buffer, as Figure 6

illustrates, an ACK segment (segment AI) from

B that acknowledges a data segment with 3140

octets causes A to enter a circular-wait and then

a steady state of lockstep transmissions that low

ers TCP throughput significantly. Because the

delayed ACK timer generates the ACK, the time

at which the first circular-wait occurs depends on

when the delayed ACK timer will generate such

an ACK. The longer the data transfer takes, the

more likely a transition to the steady state oflock

step transmissions becomes. Once in the steady

stare of lockstep transmissions, TCP throughput

is approximately 8K octets per 200 ms (orO.3125

Mbls).

Certain combinations ofsend and receive buffer

sizes cause the circular-wait situation to occur

shortly after connection establishment. For ex

ample, when a sender with 16K buffer commu

nicates with a receiver with a 36K buffer, the

first circular-wait occurs after the sender transmits

the fourth data segment (see Figure 6) because
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12288 (3140+9148) is less than 18296 (2*MSS)

and 12903 (35% of 36K). Then, a steady state of

lockstep transmissions that yields a throughput of

12288 octets per 200 ms (orO.46875 Mb/s) occurs.

However, if the delayed ACK timer generates an

ACK for segment 3, a different lockstep pattern

of transmissions that yields a throughput of 8K

octets per 200 ms (or 0.3125 Mb/s) occurs.

Figure 7 summarizes the behavior of lockstep

transmissions that reduces TCP throughput sub

stantially for various combinations of send and

receive buffer sizes; it shows the segment ex

change pattern to be repeated till the end of the

transmission, the throughput achieved when the

steady state of lockstep transmissions occurs. It

also indicates whether the delayed timer triggers

the transition to the steady state of lockstep trans

missions or not.

4.1.6 Preventing Anomalous Behavior

If an implementation of TCP that uses delayed

ACKs follows the recommendation of RFC-1122

to generate an ACK each time it receives at least

two MSS segments, then a sending TCP can pre

vent the anomalous behavior from occurring, re

gardless of the receiver buffer size, by using a

send buffer no smaller than 3*MSS octets. When

the send buffer contains 3*MSS octets, TCP ei

ther allows at least 2*MSS octets of data to be

outstanding (in case the receive buffer can hold



ACK

Send buffer size: 16K

R
. b a . 24K, 28K, 32K, 36K

ecelve uuer Size: 40K, 44K, 48K, 51K

Lockstep pattern of transmissions:

data: 8192 
(200 ms later)

- ACK
(repeat till the end of transmission)

Triggered by delayed ACK timer? Yes
Throughput lower bound: 0.315 Mb/s

Send buffer size: 20K

Receive buffer size: 40K, 44K
Locksteo oattern of transmissions:

data: 7236 
data: 9148 -

- ACK
data:3l40 -
data: 9148 -
(200 ms later)

- ACK
(repeat till the end of transmission)

Triggered by delayed ACK timer? No
Throughput lower bound: 1.094 Mb/s

Send buffer size: 24K

Receive buffer size: 48K, 51K

Lockstep pattern of transmissions:

data: 7236 
data: 9148 

(200 ms later)
- ACK

(repeat till the end of transmission)

Triggered by delayed ACK timer? Yes

Throughput lower bound: 0.625 Mb/s

Send buffer size: 16K

Receive buffer size: 36K, 40K, 44K, 48K, 51K

Lockstep pattern of transmissions:

data: 3140 

dala:9148 
(200 InS later)

- ACK
(repeat till the end of transmission)

Triggered by delayed ACK timer? No

Throughput lower bound: 0.469 Mb/s.

Send buffer size: 20K

Receive buffer size: 48K, 51K
Locksten nattern of transmissions:

data: 7236 
data: 9148 -

(200 ms later)-data: 3140 -
data: 9148 -
(200 ms later)

- ACK
(repeat till the end of transmission)

Triggered by delayed ACK timer? No
Throughput lower bound: 0.547 Mb/s

Figure 7: Summary of the lockstep transmission behavior that decreases TCP throughput dramatically
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Send buffer: 16K, receive buffer: 16K

n) data: 4096 - I~ n) dat.a: 8192 -n+I) dat.a: 8192 - - ACK n-I
(wait for ACK) n+1) dat.a: 8192 -- ACKn, n+1 ~

---
- ACKn

(repeal for many times) (repeat for many limes)

Slale (a) (i) Slate (b)

Send buffer: 16K, receive buffer: 20K

n) dat.a: 3140 - ~ n) dala: 8192 -
n+l) dat.a: 9148 - (wail for ACK) _

ACKn
(wail for ACK) n+l) dat.a: 8192 -- ACK n, n+1 ~~/

(wail for ACK) _
ACKn+1

(repeal for many times) (ceneat for manv times)

Slate (e)
(ii)

Slate (d)

Figure 8: illustration of main states observed during a data transfer

3*MSS octets or more), or allows at least 35% of

the receive buffer size to be outstanding (in case

the receive buffer is smaller than 3*MSS octets).

Thus, the receiver will always acknowledge the

sender promptly (conditions RJ and RZ).

4.2 Other Observation

Table I and Figure 9 (a) in Appendix show that

a sending TCP with 16K buffer achieves better

performance if a receiver reduces its buffer size

from 20K to 16K. The main reason for the ob-

served unintuitive result is because SunOS 4.1.1

TCP uses the following condition, in addition to

conditions 51 and 52, to determine when to send

a data segment:

12

53: If L >= max~ndwnd/2, then transmit a

segment with L octet of data, where L is

min(D, U), D is the amount of data to be

transmitted, U is the usable window, and

max..sndwnd is the largest receive window

the peer has offered.

Because SunOS 4.1.1 TCP checks conditions

5J and 52 before condition 53, L is always less

then 1*MSS. When a receiver's buffer space is

small (less than 2*MSS), condition S3 allows

TCP to send data segments that are smaller than

1"'MSS. To see how SunOS 4.1.1 TCP uses con

dition S3 to send data, consider a sending TCP

with 16K buffer communicates with a receiving

TCP with 16K buffer over an ATM path. Because

the receiving TCP uses a 16K buffer, the largest



receive window it offers to the peer is 16K (Le.,

sender's max.sndwnd is 16K). Assuming that

the receiver has buffer space at least 8K to accept

the incoming data and the sender's buffer con

tains more than 8K data ready to be transmitted,

by applying condition S3, the sender can transmit

an 8K data segment to the receiver because 8K

>= max--sndwnd/2.

Figure 8 (i) illustrates two main states observed

during a data transfer between a sender with 16K

bufferand areceiver with 16K buffer, and Figure 8

(ii) illustrates two main states observed during a

data transfer between the same sender and a re

ceiver with 20K buffer. States (a) and (c) consist

of a steady state of lockstep interaction in which

the sender repeatedly transmits two data segments,

waits for an ACK, then receives an ACK from the

receiver. Notice that two segments in state (a) car

ries the same amount of data as the two segments

in state (c). State (b) consists of a steady flow of

8K data segments from the sender mixed with the

corresponding ACKs from the receiver. State (d)

consists of a steady state oflockstep interaction in

which the sender repeatedly transmits a 1*MSS

data segment, waits for an ACK, then receives an

ACK from the receiver. Comparing states (b) and

(d) reveals the cause for the observed throughput

difference.

State (b) occurs because sender and receiver

both use a 16K buffer, hence the sender can apply
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condition 83 to transmit two 8K data segments

before waiting for an ACK. Furthermore, because

the receiver consumes the incoming 8K data seg

ments fast enough, it generate ACKs in time for

the sender to send additiona18K segments. Thus,

a continuous flow of 8K data segments between

sender and receiver establishes.

In State (d), because receiver's buffer space is

larger than 2*MSS, the sender does use condition

83 to send data. After the sender sends an 8K

segment, it waits for an ACK before sending an

other 8K segment because 8K is less than 1*MSS.

The repeated waiting for an ACK before sending

additional data causes TCP to perform worse than

a continuous flow of 8K data segments observed

in state (b).

5 Summary

The results of the performance measurements

show that TCP protocol software that perfonns

well in a conventional LAN environmentmay suf

fer poor perfonnance in a high-speed ATM LAN

environment. The large MTU used by ATM cre

ates a circular-wait situation not previously ob

served on a conventional LAN. The circular-wait,

which can only be broken by the receiver's de

layed ACK timer, creates a lockstep interaction in

which the sender repeatedly experiences unneces

sarily long delay before sending additional data.

Thus, the network remains idle while data is wait-



ing to be transmitted. As a result, TCP throughput

decreases dramatically.

We observed a throughput anomaly in which

an increase in the receiver's buffer size reduces

throughput substantially. The anomaly is par

ticularly annoying and surprising to users of a

high-speed ATM LAN when they discover that

the same ftp program they use to transfer files

on an 10 Mb/s Ethernet can perform much worse

on an ATM connection with 100 Mb/s interface

hardware.

Large MTU size, as compared with the TCP

buffer sizes, and mismatched TCP send and re-

ceive buffer sizes are the main cause of the anoma-

lous behavior. We conclude that a TCP can pre-

vent such a behavior from occuning, regardless

of the receiver buffer size, by using a send buffer

size no smaller than 3*MSS. The solutionis espe

cially effective in a heterogeneous distributed en

vironment because a sending TCP does not have

control over the receive buffer size chosen by the

peer. However, a sending TCP knows the TCP

MSS and has control over its send buffer size.

Finally, it is worth noting that the significant

throughput decrease observed in this paper is not

restricted to ATM. Any environment with anal

ogous combinations of TCP send and receive

buffer sizes can experience poor throughput. For

example, two hosts attached to the same Ether

net running a standard 4BSD-derived TCP (e.g.,
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SunaS 4.1.1 TCP) will experience poor perfor

mance when the sending TCP uses a 3K octet

send buffer and the receiving TCP uses a 6K octet

receive buffer.3
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