
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Thread Migration on Heterogeneous Systems via Compile-Time Thread Migration on Heterogeneous Systems via Compile-Time

Transformations Transformations

Janche Sang

Geoffrey W. Peters

Vernon J. Rego
Purdue University, rego@cs.purdue.edu

Report Number:
94-022

Sang, Janche; Peters, Geoffrey W.; and Rego, Vernon J., "Thread Migration on Heterogeneous Systems via
Compile-Time Transformations" (1994). Department of Computer Science Technical Reports. Paper 1125.
https://docs.lib.purdue.edu/cstech/1125

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Thread Migration on Heterogeneous Systems
via Compile-Time

Janche Sang, Geoffrey W. Peters, and Vernon Rego
Computer Sciences Department

Purdue University
West Lafayette, IN 47907

CSD-TR-94-022
March, 1994

Thread Migration on Heterogeneous Systems via Compile-Time
Transformations *

Janche Sang
Geoffrey w. Peters

Vernon Rego
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

Email: {sang,gwp,rego}@cs.purdue.edu
Contact: Prof. Rego

Phone: (317) 494-7835
Fax: (317) 494-0739

Abstract

This paper describes an alternaLive technique to provide multithreading in an enhanced
C language. In contrast to the traditional design of a thread library, which usually utilizes
a few lines of assembly code to switch control between threads, the technique we use is
based on compile-time program transformations and a run-time library. Since this approach
transforms a thread's physical states into logical forms, thread migration in a heterogeneous
distributed environment becomes practically feasible. Performance measurements of the
current implementation are reported.

Keywords: Thread mlgration, Heterogeneous computing, Process abstraction,

Lightweight process, Preprocessor, Parallel programming

• Research supported in part by PRF, NATO.CRG900108, NSF CCR-9102331, ONR-9310233, and ARO­
93G0015.

I

1 Introduction

Lightweight processes or threads have emerged as a representation of computational entities, co­

operating with each other within a single address space. In fundamental structure, alightweight

process is no different from a process; each has its own stack, local variables, and program

counter, describing the state of 1ts execution. However, as compared to a process, a lightweight

process is lighter in terms of the overhead associated with creation, context-switching, inter­

process communication, and other routine functions. This is because these primitives can be

executed within the same address space. The work required to maintain page tables, register

values, and so on, can he greatly reduced. In general, the purpose of a threads system is to

provide a cheap concurrent programrnlng environment within a process.

Spreading execution of threads over several processors can exploit parallelism and thus

achieve improved performance. However, in distributed-memory parallel systems, two factors

may degrade the performance gains of multi-threading. The first factor is load imbalance.

During program execution, there may be a dense cluster of threads resident on a single processor

while only few threads exist on other processors. Thus, lightly loaded processors have to

wait for heavily loaded processorS to complete their work. A systematic scattering of threads

across processors which allows heavily loaded processors to efficiently balance their load with

lightly loaded processors gives the executing system an opportunity to achieve a better overall

throughput.

The second factor is non-local data access. In a program execution, threads will typically

access remote data and thus require unavoidable inter-processor communication. If cross­

processor data access tends to be frequent, then relocating an accessing thread to the site

hosting the remote information can reduce inter-processor communication traffic. Therefore,

these two factors bring the need to provide threads with a dynamic migration capability.

The semantics of the thread migration function is that a mlgrant thread will resume its

execution at the statement following its point of rnlgration. To achieve this, a thread's state

must be transported from the source processor to the destination processor. In a homogeneous

environment, the task of translating the migration information can be reduced because both

the source and destination machines consist of the same hardware and software configuration.

2

For example, it is not necessary to translate a thread's execution resumption address because

the address represents the same resumption point at both source and destination processors.

However, thisls normally not true in a heterogeneous environment.

In this paper, we describe design and implementation issues of a heterogeneous thread

library with a dynamic migration capability. To migrate a thread between heterogeneous ma­

chines, we need sufficient knowledge ohhe underlying systems to generate machine-independent

information about a thread's running state. This information can be transfered to the des­

tination machine to fe-generate an equivalent state for the migrant thread. Our approach is

based mainly on compile-time program transformations which map a thread's physical states

into logical forms.

Our goal in this work is to provide concurrent programming primitives for high perfor­

mance heterogeneous computing, such as numerical computation, simulations, etc.; therefore,

efficiency is our major concern. To show this, we have compared the performance of the new

Ythreads package with our homogeneous thread library Xthreads[8, 10]. The results show that

the latency of operations, such as creation, context switching, and migration, etc. in Ythreads

are close to the latency in Xthreads.

2 Related work

Multi-threaded systems can be categorized into two levels: kernel-level and user-level. Many

contemporary operating systems, such as Mach[13] and SunOS 5.0 [6], support kernel-level

threads. The kernel can directly schedule application's threads onto the available physical

processors. In a user-level multi-threaded system, all thread operations, such as creation,

synchronization, context switching, etc. require no intervention from the operating system

kernel. Invocations of threads can be as cheap as simple function calls rather than traps.

Therefore, a user-level thread library can be more efficient than a kernel supported multi­

threaded system. The major disadvantage of user-level thread packages is that a blocking

system call performed by a thread may prevent execution of other runnable threads. Examples

of user-level thread packages can be found in [3, 5].

Recent multi-threaded systems supporting dynamic thread migration for distributed mem­

ory systems include IVY[4] and Amber[2]. The IVY system was designed at the kernel level

3

to support shared virtual memory. The stack of a thread is allocated from shared virtual

memory. When a thread migrates, the current page of the thread's stack must also move to

the destination processor to avoid a page fault. The Amber system integrates several shared­

memory multiprocessors connected by an Ethernet local area network. The threads in Amber

execute in a shared object space. Thread migration is used for remote invocation of objects.

As far as we know, thread migration on these two systems appears to be limited to between

homogeneous processors.

Two approaches to heavy-weight process migration in a heterogeneous environment can be

found in [11J and [14], respectively. In the former approach, the migrant process has to issue

a request to initiate its migration. During migration, it is necessary 0 search the stack and

process control block to translate the return and resumption addresses. In the latter approach,

the authors build a machine-independent migmtion program which consists of the current code

and state of the migrant process when migration occurs. The migration program is sent,

recompiled, and then re-started at the destination site. Both approaches consider migration

an infrequent event. Therefore, efficiency is not their major concern and no performance results

are provided.

3 The Multithreaded Programming Environment

The proposed multithreaded programming model supports logical concurrency within each

processor and physical parallelism across processors in distributed-memory systems. Logical

concurrency is provided by using lightweight processes. Multiple threads of control sharing

a single address space are created within a heavyweight process. This heavyweight process

in turn is executed on aU machines in the system. Physical parallelism js realized through

distributing and executing these processes across processors.

Figure 1 depicts the structure of the programming model. A process is a logical unit which

hosts threads. It initializes the threads environment at the beginning of its execution. Threads

can be created and migrated dynamically across process and/or processor boundaries.

Thread creation is semantically equivalent to an asynchronous function call. That is, the

caller and caUee can execute in parallel. A thread is a computational entity which defines

its control flow through a set of statements. When control reaches the end of a thread body,

4

Processor Processor

~--

•••

Inlcr-procc.,wr Communication Nelwork

Process

Figure 1: The Multi-threaded Programming Model

execution of the thread terminates naturally. Hence, control will return to the thread scheduler

which selects a next thread to run.

The current environment supports a priority-based scheduling policy for threads within a

process. The scheduling principle is that the highest priority thread which is not blocked has

the right to run. If two threads have the same highest priority, the First-Come First-Served

rule is applied. The currently running thread can execute until it is terminated or suspended.

3.1 Xthreads VS. Ythreads

The multi-threaded model was originally realized by the Xthreads library[8, 10] running in a

homogeneous distributed-memory multiprocessor environment. The Xthreads library enhances

the C programming language with concurrent capability in the form of library functions and

sets of predefined data structures. It provides a simple and efficient context-switch primitive

through a few lines of assembly code. The thread migration mechanism is built on top of the

context-switch function to make a snapshot of the thread state. Since Xthreads is designed and

implemented in a homogeneous environment, the thread's state, such as the stack, resumption

address, etc., can be copied from the source to the destination without translation.

The design objective of Ythreads is to provide a cheap concurrent programming environ­

ment, particularly in thread migration over heterogeneous networks. In contrast to homoge-

5

The Ythreads Library Other C File(s)

1
C Program _ C CompilerTranslator

ObjectFile(s)

....R_U_U_'_i_m_._'_ib_'_O_'l'_.J- LO:d"

I
a.ont

Extended C
Program ---t-­

'-----'

Figure 2: The Ythreads Library

neaus thread migration, migration of a heterogeneous thread relies on a machine·independent

representation of the thread's state. The typical problem is the representation of the re­

sumption address. In our approach, the resumption address is represented by a pair of inte­

gers <fun.num. resume..pt>, where the variable fun.num is an index of some function in our

translator-generated function tables, and the variable resume_pt is a logical re-entry point in­

side the function, Therefore, the translation of physical resumption address from one machine

to another can be simplified to integer transformation. Note that the resumption points can

be determined at compile time because in our model the resumption will only occur during

one of the thread system function invocations (e.g. yield, wait, etc.).

In order to generate the logical state of a thread, we extend the C language with the thread

construct. The declaration of a thread has the same syntax as the function declaration, except

that the keyword thread is used in place of the function type. The translator translates the

extended C program into a normal C program (see Figure 2). This translated program is

then compiled and linked with the Ythreads run-time support library which provides routines

dealing with the thread management jssues such as scheduling, synchronization, migration,

and so on. The primitive facilities of Ythreads are shown in Table 1. In fact, the run-time

routines re-use most of the code in Xthreads.

6
,.'.

/. crcation and destruction ./

YTCALL ythread_creale(-ypld,lltlrp,func,norg,llrgI,.qrg2,...)

YTCALL ylhrend_destroy(ypid)j

,. deslroy itseIC-/

YTCALL ylhread_exilOi

'+)ield control to II lhread pointed 10 by ypfd +'
YTCALL ylhread-Yie.ld(Ypld);

,. find oul who I am +'
YTCALL ylhread_seICO;

,. find oul if a thread 15 olive or not +'
YTCALL ylhread_ping(ypid);

,. event +/

YTCALL ylhread~evenlOi

YTCALL ylhrelld_wIllE(e);
YTCALL ylhrend_seI(e);

,. message pll,'iSlng +'
YTCALL ylhread_send(ypld,msg)i

YTCALL ylhreod_recelveO;

Table 1: The Primltive Functions in Ythreads

4 Implementation Issues

The implementation involves a translator and run-time system routines. The translator con­

verts the thread construct to the C constructs, and converts some Ythreads facilities into calls

to run-time system routines and in-line code. A similar conversion technique was briefly de­

scribed in [7]. However, as far as we know, our work is a first attempt to employ this technique

to implement heterogeneous migration.

4.1 The Translator

We implemented the translator using lex and yacc. The maln task of the translator is to

convert the thread construct into a function and an associated structure declaration in C. The

structure is used to store the information which must be preserved for later resumption of

the thread. There are two kinds of information in the stmcture. One is generated from the

translator and the other is directly copied from the source code. For each thread construct, the

translator automatically inserts two variables fun.num and resume_pt into the corresponding

structure. The variable fun.num will hold the logical identifier of the function when the thread

7

is created, while the variable resume_pt will store the next logical resumption point of the

thread. Note that these two fields are represented by integers, not in the form of machine­

dependent addresses. Therefore, the work of address translation in thread migration can be

reduced if two machines use the standard integer format.

The structure also contains the user-defined data for the thread. The translator copies

the declaration of the formal parameters and the local variables of the thread from the source

program into the structure. Therefore, the structure replaces the role of the stack which is

used to store the function activation record. An instance of the structure type represents an

instance of a thread during execution. To access the translated parameters and local variables

in tht:! structure, a pointer _this is inserted into the converted function heading. In fact, the

pointer is analogous to the traditional stack pointer which indicates the current activation

frame. Whenever a thread resumes, the pointer which indicates the appropriate structure

location will be passed to the function. For efficiency, it is better to place the pointer _this

in a machine register because it will be heavily used. An example written in the extended C

language and its translated code can be seen in Figure 3 and Figure 4, respectively.

The behavior of a thread is defined through a few statements inside the thread body. The

preprocessor translates these statements into the body of the function with the following two

major conversions. First, if there is a local variable or formal parameter, e.g. i, it will be

converted to be _this->i since the location of the variable i is in the structure indicated by

the pointer _this.

Second, if it is a Ythreads system primitive which may lead to suspension of the current

running thread, the translator will insert at least three statements. That is, a statement which

assigns the next re-entry point (an integer value) to the variable resume_pt, followed by a

return statement to give control back to the thread scheduler, and followed by a new label for

locating the physical Ie-entry address. That is, multiple exit and re-entry points are preserved

logically in the variable resume-pt using the integer format.

When control reaches the end of a thread body, the execution of the thread terminates natu­

rally. Hence, control should return to the thread scheduler which selects the next thread to run.

To achieve this, the translator inserts an invocation ohhe Ythreads routine ythread_destroyO

into the converted function to eliminate the currently running thread, effectively a suicide op-

8

"thread fooO
{

int i;

i = 1000;
while(--i > 0) {

printf("This is foo ~d\n" ,i);
ythread_yield(bar_yid):

}

}

thread bar(k)
{

int j;

j = k;
while(--j > 0) {

printf("This is bar ~d\n" ,j);
ythread_yield(foo_yid);

}
}

thread ymain()
{

ythread_create(&foo_yid,NULL,foo.O);
ythread_create(&bar_yid,NULL,bar.l.l000);

}

Figure 3: An example in extended C

9

struct foo_act_rec {
int fun_num;
int resume_pt;
int i;

};

fooCthis)
register struct foo_act_rec * _this;
{

goto _findstate;
_sOO: ;

_this->i = 1000;
~hile(--_this->i > 0) {

ythread_yield(bar_yid);
_this->resume_pt = 1;
return;

sOl:
}

ythread_destroy(ythread_self(»;
return;

_findstate:
s~itchCthis->resume_pt){

case 0: goto _sOO;
case 1: goto _sOl;

}/* end s~itch */
}

struct bar_act_rec {
int fun_num;
int resume_pt;
int k;
int j;

}

barCthis)
register struct bar_act_rec * _this;
{

goto _findstate;
_sOO: ;

_this->j =_this->k;

}

struct ymain_act_rec {
int fun_num;
int resume_pt;

};

ymainCthis)
register struct ymain_act_rec * _this;
{

goto _find_resume_pt;
_sOO: ;

ythread_create(&foo_yid,HULL.foo,O);
_this->resume_pt = 1;
return;

_sOl: ;
ythread_create(&bar_yid,NULL.bar.l.l000);
_this->resume_pt =2;
return;

_s02: ;
ythread_destroy(ythread_self(»)j
return;

_findstate:
s~itch(_this->resume_pt){

case 0: goto _sOO;
case 1: goto _sOl;
case 2: goto _s02;

}/* end s~itch */
}

int (* _pfunc[3]){) = {
foo,
bar,
ymain

}

int _act_size [3] = {
sizeof(struct foo_act_rec),
sizeof(struct bar_act_rec),
sizeof(struct ymain_act_rec)

}

Figure 4: The translated code

10

eration.

After inserting the thread self· termination statement, the translator generates a switch

statement to realize the multiple exit and re-entry points of the thread. Each case in the switch

statement represents a re-entry point in the translated function through a goto statement and

a previously generated label. When the function is invoked, control immediately transfers to

the switch statement. Then, based on the value stored in the variable resume_pt, execution

will either start from the beginning or resume following the statement at which the thread

previously suspended.

When all of the thread constructs are converted to functions and structures, the translator

builds two tables _pfunc [] and ..act-aize [] containing the converted function addresses and

the sizes of the structures, respectively. These tables provide the necessary information for

run-time support routines, especially the thread creation and migration functions. We will

discuss the usage of these tables later.

4.2 The Ythreads Run-Time System

The Ythreads library provides the mainO function. It initializes system data structures such

as the thread table, priority list, etc. and then creates the first thread which will execute the

user-supplied main function ymainO. The maine) function then plays the role of the scheduler

in the system. The scheduler selects the thread with the highest priority from the ready list

and calls the converted function for the thread by passing the location of the structure to

the pointer _this. The converted function carries out the actions of the thread. A sketch of

pseudo-code outlining the main scheduler is shown in Figure 5.

The Ythreads system forces any suspension of the running thread to return control back

to the scheduler. Each Ythreads primitive function stores a value representing the suspension

reason in the variable _prev _yat-atm. Based on the value in the variable, the scheduler will then

take appropriate action, such as invoking the yielded thread's function, sending the migration

information, etc.

A thread can be created by calling the ythread_createO function (see Figure 6). It

first allocates an instance of the thread's corresponding structure declaration and initializes

the members in the structure. The size of the structure can be obtained from the structure

11

scheduleO
{

ohile(TRUE) {
switchC-prev_yat....stm) {
case CREATE:

• if the newly created thread has a higher priority,
invoke the new thread's converted function.

else
invoke the current thread's converted function.

break;
case YIELD:

• check the yielding is legal.
• insert the current running thread into the ready queue.
• delete the designated thread _yyid from the ready queue.
• invoke the designated thread's converted function.
break;

case MIGRATE:
• send the migrant thread's state to the remote site.
• kill the migrant thread.
• if it is self-migration, select the next thread in the ready

queue to run.
break;

•••
}
check~ig~sg();

}
}

maine)
{

.initialize thread table, ready queue, etc .
•create the first user thread running ymain().
scheduleO;

}

Figure 5: Pseudo code of the main scheduler

12

YTCALL ythread_create(yid,aptr,procaddr,nargs)
{

• allocate a structure and initialize the members.
• find a free xentry in the xtab table.
if(aptr == NULL)

• initialize the ne~ thread using the default priorities, etc.
else

• initialize the ne~ thread using specified values through aptr pointer.
• insert the neg thread to the ready list.
~prev_yat..stm = CREATE;

}

YTCALL ythread_yield(yid)
{

_yyid = yid;
_prev_yat..stm = YIELD;

}

Figure 6: The function ythread_crcate() and ythread_yield()

size table _act-size []. Next, the member resume_pt jn the structure is initialized to be

zero. This setting will let control start from the first labelled statement (i.e. -sao) in the

converted thread's function. As discussed before, the member fun...num is set to the converted

thread's function identifier which is the index of the converted function in the function address

table _pfunc D. The creation function then finds a free entry in the thread table for the new

thread. The entry stores the thread's unique identifier, priority, and the pointer to the allocated

structure. Note that creation of a new thread may cause a suspension of the currently running

thread if the new thread has a higher priority.

A thread can yield control to another thread if they have equal priorities. The control

transfer must go through the scheduler. If we allow a thread to transfer control by directly

invoking the converted function for another thread, the system stack may overflow when two

threads yield control to each other recursively. The principle of our approach is to let the

resumption and suspension of a thread be realized by a pair of call and return operations.

Therefore, the stack will return to its original state when the currently running thread suspends

itself through a return statement. The scheduler then invokes the function for the designated

thread. Figure 7 depicts a run-time state of the system.

To implement the thread migration primitive, we need to send a thread state from one

13

foo: this

scheduler

stack

Cune. table

_pfunc[3] = (
roo,
bar,
ymaio

)

Scheduler

•••

•••

8
fun_Dum: 1
resume_pt: 0
parameters &

local vars.

•

•••

e··
fun_num: 0
resume_pf: 0
paramefers &

local vars.

fUD_Oum: 0
resume_pt: 1

parameters &

local vars.

•••

(res~~1
r n
uspeod)

e
fuo_oum: 2
resume-pt: 3
parameters &
local vars.

Figure 7: The Ythreads run-time system state on a single processor

14

machine to another. In our proposed programming model, an instance of a structure, including

the logical identifier fun..num, the next re-entry point resume_pt, and local variables, represents

a thread state. Note that we do not need to send code because the translated program has been

compiled on all machines. Each processor has its own compiled code and its own _pfunc []

and ..act-sizeO tables. The destination site only needs the identifier fun...num to find out the

corresponding function from the previously generated function table _pfunc D. Furthermore,

because the resumption point has been translated to an integer value, there is no need to

translate the resumption address at migration time. Hence, migration can be realized in an

efficient way.

Synchronization between processes can be achieved through two distinct coordination mech­

anisms. One mechanism is through events. A thread is suspended and put in a waiting queue

for an event e if it waits for event e while event e has not yet occurred. Event e is said to occur

when it is set by some other thread. At this point, aU threads waiting for event e are reactivated

simultaneously and put back on the ready list. The other mechanism for thread synchroniza­

tion is through message-passing. The non-blocking send and blocking receive operations are

provided.

4.3 Limitations and Current Work

Our current implementation restricts the Ythreads primitives to be used within the thread

construct. This limitation sacrifices flexibility, but is desirable for efficiency. Without such

a restriction, we would have to keep an activation chain which preserves the function calling

sequence for a suspended thread. When the thread resumes, we call reach the previous sus­

pension point through the activation chain. Of course, the chain must be transfered with the

thread to be migrated. This will undoubtedly increase the context-switch and migration costs.

Note that the Xthreads library does not have this limitation. A thread can be suspended

in any function invoked by the thread. The function calling sequence which is stored on the

stack can be sent across processors without translation for thread migration in a homogeneous

environment.

In a heterogeneous environment, data conversion is always the major problem. Our current

implementation is on the Sun SPARC IPC and IBM RS6000 workstations. These two machines

15

use the IEEE standard format to represent integer and floating-point numbers. The C compilers

on both machines also generate the same arrangement for the members in a structure. This

greatly reduces the migration cost. However, it 1s not always true that the source and the

target machines use the same format, byte order, and data alignment. To solve this pro1>lem,

the translator needs to generate more information about the structure, such as the number of

members and the data type of each member, for the run-time migration routines. Therefore,

the source machine can translate the members in the structure one by one using either an XDR

protocol or even a string of ASCII numbers. The destination site can decompose the message

in the reverse manner. Fortunately, there is a well-known package PYM[12] that provides such

functions for many different kinds of machines. We are currently integrating the Ythreads

library with PVM.

Pointers conversion also makes thread migration complicated and inefficient. For this rea­

son, our current system prohibits a migrant thread from carrying pointers. To alleviate tIllS

constraint, it is necessary to build our own heap allocation mechanism. Each machine allocates

a piece of memory and exchanges the starting address with each other at initialization stage.

Instead of returning a physical address, the memory allocation routine returns an logical offset

to the starting address. In fact, thread migration can be fully transparent if a heterogeneous

shared memory environment[15J is supported.

5 Performance Measurements

The Ythreads library has been ported successfully on the nCUBE2 distributed-memory mul­

tiprocessor, the Sun SPARC IPC workstation, and the IBM RS6000 machine. In our environ·

ment, the nCUBE2 hypercube contains 64 nodes and each node has a 7 MIPS peak perfor­

mance, while the Sun SPARC IPC and the IBM RS6000 workstations have the vendor-claimed

peak performance rate of 15.7 MIPS and 28.5 MIPS, respectively.

5.1 Cost of Operations

We have conducted a few experiments to evaluate the operation costs of thread creation, thread

switching, and thread migration. For measuring the thread switching cost, we created two

threads which yield to one another. For measuring the creation plus deletion time, we created

16

ICre + Del I Ctx Switch IMigration I
nCUBE2 Xthreads 87 30 259
nCUBE2 Ythreads 96 36 278

RS6000 Xthreads 15 6 1200
RSS600 Ythreads 25 13 1200

IOperations

[Sp",dPC Ythreads I 43 29 940

Table 2: Comparison of Operation Latency (in J-Ls) between Xthreads and Ythreads

a thread which will terminate immediately after starting to execute. Note that the times

presented here also include the overhead resulting from priority-based scheduling. To evaluate

the migration cost, we created a thread which travels back and forth on two processors. Each

operation was executed for a large number of Limes. The cost per operation was obtained by

dividing the elapsed time by the number of times the operation was performed. Also included

in Table 2, for the purpose of comparison, are the corresponding overheads of the Xthreads

operations on the nCUBE2 and the IBM RS6000 machines. We have not ported the Xthreads

library on the Sun SPARC IPC workstation yet.

It is not surprising to see that the Ythreads system exhibits slightly larger overheads than

its Xthreads counterpart, most likely due to its lack of assembly code for thread context­

switching. A thread switch in the Ythreads system also needs to return to the scheduler which

requires one more function call/return as compared to the direct switch in Xthreads. On an

nCUBE processor, a null function call and return requires approximately 1.5 J-LS.

The mlgration overheads presented in Table 2 were performed on two homogeneous pro­

cessors. That is, they were measured on two of the nCUBE2 processors through its internal

interconnection network, and on two IBM RS6000 workstations (or two Sun Spare IPC ma­

chines) through an Ethernet. The communication facilities in Ythrearls are implemented on

top of UDPlIP, the Internet Universal Datagram Protocol. The cost on two workstations is

higher than on the nCUBE2 because passing a message through inter-processor communication

networks is usually three to five orders of magnitudes cheaper than on an Ethernet. Note that

the latency of the migration operation is highly sensitive to machine workload and network

traffic. Therefore, the timings may vary under different workloads.

17

Local data (in bytes)
Migration Cost

16 64 256 512
5.6 6.0 6.5 7.2

1024

Table 3: Heterogeneous Thread Migration Latency (in ms) with Different Size of Local Data

5.2 Cost of Heterogeneous Migration

We also performed an experiment to evaluate migration cost between the Sun Spare IPC and

IBM RSGOOO workstations. Table 3 shows the results obtained by varying the size of local

data (in bytes) defined inside a thread. The more local data used in a thread, the larger the

converted structure that is needed, the longer transmission overhead there is, and therefore the

higher a migration cost that is incurred. Because the two workstations are located on different

local area networks, the migration cost is higher than the cost shown in Table 2. Passing

migration information through gateways undoubtedly increases the overhead.

5.3 Simulation Benchmark Measurements

Based on the proposed multithreaded paradigm, a novel mobile-process approach has been pro­

posed for parallelizing process-oriented simulation systems (i.e., systems consisting of active

lightweight processes and passive objects). This approach entails the migration of a requesting

process with its timestamp to the remote site hosting the requested passive object. As a result,

the migrant process can make subsequent accesses of the object locally and continue execution

transparently, as if on its original host. The advantages of one-time transmission, fixed commu­

nication topology and increased data locality make the mobile-process approach more effective

than corresponding send-reply based remote-procedure-call paradigm. A detailed description

of the mobile-process approach and related experiments can be found in (9].

We have implemented two versions of the parallel simulation systems, PSix and PSi}"

based on the Xthreads and Ythreads libraries, respectively. We used the Cluster Queueing

Network (CQN) as a benchmark to evaluate and compare the systems performance. An M X N

cluster queueing network consists of M tandem queues, each containing N FIFO servers. A

job wmch arrives at a queue is served by the N servers sequentially. After completing service

at the last server in a queue, the job is routed back to the front of any queue based on a given

18

-
PSix (4x64) 469 357 209 99 46 22 11

PSiy (4x64) 522 374 217 104 48 23 11

PSix (4x256) 1872 1235 671 315 143 64 30
PSiy (4x256) 1925 1285 700 325 147 67 32

I No of proes I 1

Table 4: Times (in seconds) for simulating cluster queueing networks

probability.

In the simulation exercise, each server is modelled by a passive pre-defined object in PSi,

and each job is represented by a dynamic process (Le. a thread) traveling around the network

to access the servers. We executed a 4 X64 network model and a 4 X256 network model, each

initialized with a total of 1024 jobs. We distributed the servers equally between the processors.

Table 4 shows the performance figures (in seconds) obtained on the nCUBE2 machine. As

compared with PSix, PSiy typically performs less than 5% slower in most cases. However,

both systems can achieve good speedups. Note that superlinear speedup occurs because our

current system uses a heap [1] to maintain the event calendar, where both inserting an event

and deleting a minimum timestamp event have a time complexity of log(q), where q is the size

of the event calendar. When running on p processors in parallel, the simulation calendar on

each processor has an average of q/p events, and thus an insertion/deletion cost oflog(q/p),

resulting in super-linear cost reduction.

5.4 Code Length Measurements

In addition to slightly larger overheads, our thread transformation also imposes a penalty on

code expansion. The more threads declared, the more translated code inserted. Also, the

more synchronization between threads, the more re-entry points that will be generated. We

measured the sizes of the source code and the translated code for each of the context-switch

benchmark program, the M/M/! program in PSi, and the CQN benchmark program. Each

program is evaluated in terms of lines of C statements and the size in bytes of its compiled

object me, respectively. Table 5 shows the results.

19

Program Ctx. Switch M/M/1 CQN
C Obj. C Obj. C Obj.

Source 63 1340 99 2304 172 3944
Translated 124 1836 168 3436 236 5224

Table 5: Comparison of Code Length

6 Conclusion

We have delineated a prototype multi-threaded system that permits rapid development of

process-based descriptions of computations, allowing for migration of computations, via threads,

across heterogeneous wide-area networks. We have implemented the system successfully on

various machines and demonstrated applications in parallel simulation. The experimental re­

sults show that the performance of heterogeneous threads is comparable to performance of

homogeneous threads.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Mass., 1974.

[2] J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Littlefield. The Amber

System: Parallel Programming on a Network of Multiprocessors. In Proceedings of the

Symposium on Operating System Principles, pages 147-158, 1989.

[3] T. W. Doeppner Jr. Threads - a system for the support of concurrent programming.

Technical Report CS-87-11, Computer Sciences Department, Brown University, 1987.

[4] K. Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Proceedings of

the International Conference on Parallel Processing, pages 147-158, 1988.

[5] F. Mueller. A Library Implementation of POSIX Threads under UNIX. In Proceedings of

the Winter USENIX Conference, 1993.

20

[6] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks. SunOSmulti­

thread Architecture. In Proceedings of the Winter USENIX Conference, 1991.

[7] T. W. Pratt. Programming Languages Design and Implementation. Prentice-Hall, Engle­

wood Cliffs, NJ 07362, second edition, 1984.

[8] J. Sang, F. Knop, V. Rego, J. K. Lee, and C.-T. King. The Xthreads Library: Design,

Implementation, and Applications. In Proceedings of the COMPSAC, 1993.

[9] J. Sang, E. Mascarenhas, and V. Rego. Process Mobility in Distributed-memory Simula­

tion Systems. In Proceedings of the Winter Simulation Conference, 1993.

[10] J. Sang and V. Rego. Thread Migration on Distributed-memory Multiprocessors. In

Proceedings of High Performance Computing Symposium, 1994.

(11] C. Shub. Naive code process-originated migration in a heterogeneous environment. In

Proceedings of the ACM 18th Annual Computer Science Conference, pages 266-270, 1990.

[12] V. S. Sunderam. PVM: a Framework for Parallel Distributed Computing. Concurrency:

Practice and Experience, 2(4):315-339, Dec. 1990.

[13] A. Tevanian, R. F. Rashid, D. B. Golub, D. 1. Black, E. Cooper, and M. W. Young. Mach

Threads and the UNIX Kernel: The battle for control. In Proceedings of the summer

USENIX Conference, 1987.

[14J M. M. Theimer and B. Hayes. Heterogeneous Process Migration by Recompilation. In

Proceedings of the International Conference on Distributed Computing Systems, pages

18-25, 1991.

[15J S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous Distributed Shared Memory.

IEEE Trans. on Parallel and Distributed Systems, 3:540-554, Sep. 1992.

21

	Thread Migration on Heterogeneous Systems via Compile-Time Transformations
	Report Number:
	

	tmp.1307986960.pdf.GKr8f

