
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

PDELab: An Object-Oriented Framework for Building Problem PDELab: An Object-Oriented Framework for Building Problem

Solving Environments for PDE Based Applications Solving Environments for PDE Based Applications

Sanjiva Weerawarana

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John. R. Rice
Purdue University, jrr@cs.purdue.edu

Ann Christine Catlin

Cheryl L. Crabill

See next page for additional authors

Report Number:
94-021

Weerawarana, Sanjiva; Houstis, Elias N.; Rice, John. R.; Catlin, Ann Christine; Crabill, Cheryl L.; and Chui,
Chi Ching, "PDELab: An Object-Oriented Framework for Building Problem Solving Environments for PDE
Based Applications" (1994). Department of Computer Science Technical Reports. Paper 1124.
https://docs.lib.purdue.edu/cstech/1124

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Authors Authors
Sanjiva Weerawarana, Elias N. Houstis, John. R. Rice, Ann Christine Catlin, Cheryl L. Crabill, and Chi Ching
Chui

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/cstech/1124

https://docs.lib.purdue.edu/cstech/1124

PDELAB: AN ODJECf-ORIENTED
FRAMEWORK FOR BUILDING PROBLEM

SOLVING ENVffiONMENTS FOR POE
BASED APPLICAnONS

Sanjiva Weerawarana
Elias N. Houstis

John R. Rice
Ann Christine Catlin

Cheryl L. Crabill
Chi Cbing Chui
Sbabani Markus

CSD TR-94-021
March 1994

PDELab: An Object-Oriented Framework for
Building Problem Solving Environments for

PDE Based Applications

Sanjiva Weerawarana, Elias N. Houstis, John R. Rice, Ann Christine Catlin,
Cheryl L. Crabill, Chi Ching Chui and Shahani Markus

{saw,enhJrr,3cc,clc,chui,markus}@cs.purdue.edu

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907, USA.

Abstract

In this paper we present an object-oriented methodology and tools for creating
high level, high perfonnance problem solving systems (workbenches) for scien­
tific applications modeled by partial differential equations. This methodology is
validated by the creation of a scientific computing workbench for bioseparation
analysis. One of the design objectives of PDELab is to provide workbench devel­
opers and users with much the same kind of independence in software as they
have come to expect in hardware. The adopted architecture of this software plat­
fonn for creating problem solving environments for PDE applications is devoted
to "clean layering." At the bottom are the various "smart" libraries that support
the numerical simulation of various "physical" objects together with the corre­
sponding knowledge bases needed to support the computational intelligence
aspects of the various workbenches; at the top is a set of interactive tools that
allow the user to carry out his objectives using "natural" tools. Between these lay­
ers sits a piece of "middleware" called a "software bus." Its design objective is to
allow the integration of a variety of software components needed to support
"hybrid" (numeric and experimental) PDE based workbenches. Moreover, it
comes with a software tool that allow its reconfiguration for specific applications.
This paper discusses the design and implementation issues of this three layered
architecture of PDELab.

1. Introduction

The objective of this work is to design a framework for building computer environments that provide all

the computational facilities needed to solve target classes of problems "quickly", by communicating in the

user's tenns. Throughout, we refer to these systems as Problem Solving Environments (PSEs) and the

application specific PSEs as workbenches. In this paper we focus on PSEs for scientific applications

where the underlying phenomena are modeled by partial differential equations (FDEs). In general, the PSE

technology is expected to reduce the time between an idea and validation of the discovery, to get a "quick"

answer to almost any question that has a readily computed answer, support programming-in-the-Iarge, pro­

vide "knowbots" (intelligent agents) that implement various scientific problem solving processes, and

allow easy prototyping. We describe the design of a software platform (pDELab) for the development of

PSEs for PDE based applications that realize to a degree some of the above expectations. The software

architecture adopted for PDELab is characterized by the software independence of its parts. It is based on

"clean layering" and object-oriented methodologies. PDELab consists of three layers. The bottom layer

involves the various meta-libraries (their modules consist of code and knowledge related to their computa­

tional behavior) for the numerical simulation of various physical objects and knowledge bases that support

the computational intelligence of the domain specific workbenches. Version of these libraries are assumed

to be available on specialized, generic and virtual machines. At the top layer a set of "natural" tools are

provided that allow the user to specify the input and to interact and observe the various facets of "hybrid"

(numerical and experimemal) models used for the simulation of various applications. These tools allow the

user to solve problems by communicating in the user's terms. This layer is currently implemented using X­

window based technologies. Between these two layers sits a piece of "middleware" called a "software bus"

whose design objective is to hook up a range of independent subsystems and tools. For the development of

customized workbenches the software bus can be customized with an attached reconfiguration tool.

This paper is organized as follows. In Section 2 we present the design objectives ofPDELab. Section 3 dis­

cusses the software architecture of PDELab. Section 4 gives a detailed view of the PDELab software bus.

In Section 5 we describe the application workbench development environment. Finally, in Section 6 we

briefly describe the application ofPDELab to the analysis ofbioseparation.

2. Design Objectives of PDELab

The advancements in high performance computing technologies have already allowed computational mod­

eling to become a third fonn of scientific inquiry with the other two being theory and experimentation. It is

expected that computational models will impact significantly both "big" and "small" science. In addition,

in the near future we will see them used as training simulators of scientific and industrial processes and

costly instruments. Their role in education will increase by using them to substitute many of the functions

supported by the current wet/dry laboratories. Despite their positive impact and potential, their introduc­

tion ha.<i significantly increased the complexity of the scientific problem solving process. Figure 1 displays

the PDELab view of the modem problem solving process for PDE based applications [7]. It includes pro-

cesses such as brain storming, trial and error reasoning, numeric and experimental data I/O and calibration,

numeric and symbolic simulation, advanced reasoning, optimization, visualization and interpretation of

results. The main design objective of PDELab is to emulate the above functionality of the problem solving

process and automate many of its logical parts. For this we need to integrate numeric, symbolic, geometric,

intelligenr, and visual computing technologies. PDELab is expected to support users with different compu­

tational objectives, background and expertise. This implies that it must be intelligent enough to interpret

high level queries whose processing will require support from scientific databases, knowledge bases, and

infonnation systems.

I Fonnulate Ideas into ..
Mmbenwtic.aI ReprcscnUllion.

Describe Vnrillbles
:md Relations----­I

-----,...::::t........a::::---.-
I Select Model's) •

I

IExperiment Design Optimiz.ation Data Acquisition I

I Evaluate Models I

I Inte!y'ret Results •
ModIfy Model(s)

FIGURE 1. The scientific problem solving process for PDE based applications.

3. Software Architecture of PDELab

The software architecture adopted for PDELab is characterized by the software independence of its pans.

It is based on the "clean layering" and object-oriented methodologies. At the highest level PDELab con­

sists of three layers. The lowest layer of this model represents the algorithmic and systems infrastructure

needed to support the numerical simulation of various "physical" objects on a variety of machines with vir­

tual, generic and specialized architectures. In addition, this layer supports a high level memory system

implemented through an object-oriented database system and various domain specific knowledge bases.

Figure 2 shows a pictorial view of this architecture. The remainder of this section describes the software

... - -_..
Specification Computational A~lication

Application
Tools Skeletons We benches

PSE
Development

• Framework
Cuslom Knowledge Visual,

Pro~ramming, Tools Sources ools.. -.... --- .. , .

Object-Oriented Pro!ilramming Intelligent
MultimediaUser Interfaces Environments Data Bases

PSE Language Graphics Machine and
Software Translalion Display Syslem

Infrastructure Systems Systems Managers

I ISoftware Bus

Geometric Numerical Symbolic
PSE Modeling Libraries Systems

Algorithms
and

Systems
Intelli~enl Memory ExpertInfrastructure Para Jel Management System
compilers Systems Engines

FIGURE 2. The layered software architecture of PDELab.

architecture of each of the layers of PDELab and illustrates it with an application problem solving environ­

ment developed with the POELab framework.

Algorithms and Systems Infraslructure

The lowest layer of the POELab architecture consists of the libraries, knowledge bases and other similar

computational agents that drive the simulation process. For POE computing, these components manipulate

a certain collection of meta-objects (consisting of code and knowledge) that are involved in POE computa­

tions, including POE equations, geometric domains, boundary and initial conditions, grids and meshes of

the POE geometric regions, matrix equations, and discrete functions. The software architecture of this

layer is therefore based on the structure and assumed interactions of these POE objects. Each module of

each library has a certain type signature using these objects. Internal to a module, the data structures and

representations can be arbitrary, but that must be packaged into a standard fonn that uses the POELab

objects before a module can be integrated to POELab.

The PDE objects are designed to be unifying representations of the POE components; l.e., each object is

expected to have sufficient flexibility to represent any instance of that type. This is achieved by following

the mathematical behavior in the definitions and by studying the needs of various software packages and

then defining the object to satisfy their needs. As software components are implemented in a multitude of

languages, representations for the objects are defined in several languages. Currently, C, FORTRAN and

Common LISP are supported. Functional representations (in addition to the data structure representation)

are also defined when appropriate. As certain objects have multiple "standard" representations, alternate

fOnTIS and conversions between them are also supported. The representation internal to a module is consid­

ered "private," but if the private representation is common, then a convertor to/from a public form can be

registered for it. Convertors can be compiled-in functions or filters applied via pipes.

Sofh¥arelnfrastructure

The software infrastructure layer is the "middleware" that facilitates much of the functionality ofPDELab.

The task of this layer is to facilitate the integration of various software components to form integrated

workbenches and also facilitate the development of these components as well. The communication fabric

that facilitates component integration is based on the software bus model and is described in detail in Sec­

tion 4. Other software infrastructure needed to build the upper layer components include graphical display

systems and user interfaces as well as object management and database functionality. The PDELab tool

development kit, PDEKit, provides this functionality in the form of library utilities that component and

custom application tool developers can use.

PSE Development Framework

This upper layer of the PDELab architecture provides application PSE developers with a collection of tools

and services required to build such PSEs. The tools at this level include visual programming tools that sup­

port programming-in-rhe-targe or megaprogramming using PDELab components, computational skele­

tons for template based programming, tools for editing various PDE objects and support for building

custom tools that deal with application dependent aspects of a PSE. These tools are organized into a tool­

box available to the application PSE developer and appear as a collection of building tools integrated by

the software bus. The tools themselves are built using the functionality provided by the lower layers and

generate some form of configuration scripts. The software architecture of a tool is generally in the form of

an event-driven process that is implicitly invoked by the software bus. Section 5 provides an overview of

the tools provided by this layer.

Application Problem Solving Environments

The architecture of application PSEs developed using the PSE development framework views a PSE as a

collection of distributed tools that collaborate with each other to solve some problem. This architecture is

supported by the same software bus methodology and the collection of objects representing various PDE

components that drives the PSE development framework. However, at the end-user level, the PSE devel­

oped using PDELab appears as a centralized system with the custom user-interface controlling all the com­

ponents executing underneath. The custom interface communicates with the user in application domain

terms (and not in mathematical PDE terms) by translating domain terminology to/from the appropriate

mathematical representations.

4. The PDELab Software Bus

The underlying communication fabric for PDELab is based on the software bus [12] model. The software

bus concept is an attempt to emulate the hardware bus mechanism that provides a standard hardware inter­

face to attach additional capabilities to a machine. In the hardware bus, new units describe their capabili­

ties to the bus controller, which then passes the information along to other units in the bus. In the PDELab

software bus, PDEBus, software components register their "exported" services with the software bus and

rely on the software bus to invoke these services when requested by interested clients. The software bus is

responsible for the application of any representation translators as required for the valid invocation of the

service. Thus, the software bus provides a mechanism where two tools can interoperate with each other

without having explicit knowledge about each other and also provides the infrastructure for managing a set

of distributed tools.

4.1 Requirements: Clients, Protocols and Services

The requirements of the PDELab communication system can be stated in terms of three parameters: The

types of clients it needs to service, the client communication protocols it supports, and the services pro­

vided to clients.

In the PDELab context, there are many types of clients (in tenns of their execution nature) that must be

supported. These include reactive (or event-driven) clients that register services that they provide and then

asynchronously receive requests and service them. An example of this is a client that provides a simple dif­

ferentiation service. Another type of client is a command-driven client; given some command, it responds

with an "answer." Other clients are off-line clients which require no input, but some other client may be

interested in its output. The software bus must provide tools and mechanisms to interact with all these

types of clients as often we (as the developer of a problem solving environment) do not have the option of

adapting them to any preferred interaction model.

PDEBus must support protocols for at least three different client interactions: the software bus' own client

interaction protocol (for clients built with the software bus client library), raw byte-streams (for arbitrary

communication) and a line-oriented protocol (for interacting with command-oriented clients).

The services provided by PDEBus to clients can be categorized into three groups: location services, pro­

cess management services and messaging services. For client/object location purposes, a global naming

scheme based on unifonn resource locators (URLs) [1], a highly flexible emerging standard for naming

arbitrary resources, is being developed. The software bus will provide various directory services with

URLs being the naming standard. The process management facilities provided by PDEBus include facili­

ties to invoke and control both local and remote processes and facilities to set up pre-wired configurations

of clients and facilities. PDEBus' messaging services range from low-level byte stream messages to com­

municating arbitrary data structures via self-describing or network-transparent representations to remote

procedure calls.

4.2 Bus Architecture

The PDEBus architecture reflects the problem solving environment architectural model described earlier.

Clients are built using the PDEBus client library and, at run-time, connect to a "manager" process. A man­

ager process exists for each user, application and machine (an "access domain") and serves as the clearing­

house of inter-client messages and client requests. While inter-client messages travel via the manager by

default, it is possible to establish direct, point-to-point links when necessary. The manager processes them­

selves are connected to each other via multiple I/O channels. Interprocess communication occurs via TePI

IF sockets, pipes, shared memory or pseudo-terminals, depending on what the two components can sup­

port. In order lo avoid being a bottleneck, the manager process generally uses shared memory to communi­

cate wilh its clients and is multithreaded. Figure 3 shows a schematic of this architecture.

Ko,

@ PDEBuo; Manager Process

(:.:','::) Client

D Access Domain

FIGURE 3. A view of the PDEBus 8l'Chitecture.

The PDEBus implementation respects all the standard access controls supported by the underlying operat­

ing environment and guarantees security. This is affected by following the usual mechanisms for getting

access to a machine (to run a manager process) and by using a Kerberos-like security mechanism for

authenticating and validating clients once a manager process is active.

Communication of arbitrary data types is SIlpported in two ways. First, a self-describing data format can be

used to inform the underlying communication medium of the types of data being communicated. Second,

PDEBus allows clients to register their own convertors to/from the data structure and the transport repre­

sentation. Using this latter mechanism, one can transmit and receive data in the eXternal Data Representa­

tion (XDR), The software architecture ofPDEBus is a layered architecture with the lowest level providing

a packet-based messaging system implemented over a reliable byte-stream protocol such as TCPIIP. The

next layer provides SUppOI1 for messaging and arbitrary data type communication. The highest layer pro­

vides remote procedure calls and event-driven messaging.

4.3 Configuring a New PSE

Building an application problem solving environment requires one to develop application specific modules

and then interconnect those modules with a subset of PDELab tools. Since inter-component communica­

tion is transparently achieved via URLs and PDEBus' messaging system, one only needs to have PDEBus

initiate and manage those components. This is achieved via the session initiation script mechanism of

PDEBus. This script (implemented using Tel [101) instructs PDEBus to initiate the components required

for the session. Graphical development tools at the upper layer of PDELab assist in developing these ses­

sion initialization scripts.

5. PSE Development Framework

The highest layer of the POELab environment is the problem solving environment development frame­

work. At this level, application PSE developers compose new PSEs by combining together components

from PDELab and the application specific components they implement using PDELab provided develop­

ment tools. This framework consists of several subsystems: PDE object editing tools, a graphical work­

sheet editor, the PDESpec language and associated tools, the PYTlllA [6J reasoning environment, the

composer, and of course the developer's kit described earlier. We discuss the object editing tools, the work­

sheet editor, PDESpec, PYTIllA and the composer here.

PDE Object Editors.

The PDEView object editing environment consists of a collection of tools that allow users to create, edit

and manipulate POE objects. For example, PDEView includes tools for editing domains, equations,

boundary and initial conditions, generating meshes and visualizing data. The two·dimensional domain edi­

tor, for example, allows users to define a domain by specifying the boundary (graphically andlor textually)

and any holes. The resulting domain object can be transmitted to another editor (to the mesh editor for

meshing, for example) or can be saved in a file or in a session editor.

Several of PDEView's object editors are frameworks for integrating specific functionality relevant to the

tasks supported by the editor. That is, an editor is not merely a user interface supporting certain built-in,

fixed functionality. Instead, the editors support a process whereby libraries and systems that perfonn

related operations can be installed in the editor. Thus, foreign systems and libraries can be integrated to

PDELab with little effort and foreign software can take advantage of the complex PDE machinery built

into the POELab environment. As an example, let us consider the two-dimensional mesh editor.

The 20 mesh editor requires a 2D domain object as input and produces a mesh object as output. Given the

vast array of 20 mesh generators that are available, it would be restrictive indeed to build in a fixed library

of mesh generators. Instead, the mesh editor provides some basic functionality which includes loading in

and displaying 20 domains of various fonnats, displaying and saving 20 meshes in various fonnats and

converting meshes from one fonnat to another. The actual mesh generation capabilities are "loaded in" to

the mesh editor via Tel scripts. A mesh generator installer uses the embedded script language to instruct

FIGURE 4. Examples of graphical editors from PDELab.

the mesh editor where the mesh library is, what top-level function to call, what the user-specifiable param·

eters are and what data the mesh generator produces. Fonnat conversions can also be specified in this

script. Adaptive mesh generators requiring multiple calls to the generators are also supported. Figure 4

shows instances of the PDELab 2D mesh editor, visualization controller, the 2D mesh visualizer and the

worksheet editor described below.

Worksheet Editor.

Application PSEs can use the graphical worksheet editor as the central access point for the PSE or as a ses­

sion log containing all the objects created during the session. This editor provides standard editing capabil­

ities (delete, cut, paste, etc.) and also allows users to convert between the text and data structure

representations of objects.

PDESpec Language.

The PDESpec language is PDE specification language that allows the user to specify the PDE problem

using textbook type notation and to direct the PDE solution using a high level pseudo-code to combine

existing computational modules or PDE parts in a serial or nested fonn. The language is also defined in

terms of the PDE objects and the language fonn of an object is generally viewed as an alternate representa­

tion fonnat for objects. PDESpec supports both a compile-execute model and an interpreted execution

model and is defined as an extension of the MACSYMA [8] language. The MACSYMA parser is used to

parse a PDESpec program and the compiler (implemented in MACSYMA, Common LISP and C) gener­

ates a program in FORTRAN using the GENCRAY [15] code generation package. For interpreted pro­

grams, a parsed version of the program is handed over to the PDESpec interpreter for execution. By

implementing the language as an extension of the MACSYMA computer algebra system's language,

PDELab supports direct symbolic transfonnations at the language leveL

PYTHIA Environment.

In a problem solving environment, there are many situations where intelligent reasoning rather than algo­

rithmic logic in necessary. For example, when selecting a solution scheme to solve a given PDE problem,

it is necessary to apply various rules of thumb, heuristics and experience rather than a simple fonnula.

PYTIllA supports this type of "soft" reasoning by providing an environment where one can integrate rule

and knowledge bases and associated reasoning systems. PYTIllA is accessed as a tool in the PDELab

environment and is implemented with an embedded version of CLIPS [3].

Component Composition.

A major step in building an application PSE with PDELab is combining a set of components together into

a PSE using PDEBus. The composition editor supports this activity by providing a graphical environment

for selecting components (editors) and "wiring" them together appropriately. The resulting data flow graph

is transformed into PDEBus scripts that can be used to represent the composed application PSE.

6. BioSoftLab: The Bioseparation Workbench

A major objective of PDELab is to provide a methodology for building application-specific problem solv­

ing environments. This methodology allows users with very specialized requirements to wire together

components of PDELab to create an environment exactly suited to the solution of the PDEs that model

their scientific application. The Bioseparation Workbench, referred to throughout as BioSoftLab, is a pro­

totype of such a specialized environment which is currently being developed using PDELab. Bioseparation

is a process for separating components by passing a solution mixture through an absorbent column, so that

each component adsorbs to the surface differently from the others, and thus eludes at difference times [2].

This process is used in the purification of proteins and biochemicals, in the manufacture of pharmaceutical

products, in water treatment, and in many other bio-chemical processes. The process is modelled by a sys­

tem of 10 and 20 nonlinear, time-dependent POEs.

BiosSoftLab models the bioseparalion process, and its target users are chemical engineers who perform

bioseparation experiments and who run numerical simulations of the bioseparation process using custom­

ized code.

The Bioseparation Workbench provides a powerful and flexible environment for simulating the experiment

numerically, using all the editors, techniques and solvers from PDELab that are appropriate to the model

for this process. This workbench supports the specification, solution, and analysis of the bioseparation

model using many different schemes, including the original customized code.

The POELab methodology was first used to integrate the original solution method into BioSoftLab, so that

the engineers could continue to simulate the process as they have done in the past. PDEKit development

tools were used to build a template for entering numerical input data specific to their customized solver.

The template is an abstraction of the PDE model, and communicates in terminology that is familiar to the

engineer. The original solution software was integrated into the PDEPack library of solvers, and is now

accessed through the BioSoftLab interface. Simulation results are generated in various formats, and

PDELab visualization tools are used for viewing time slices, data slices or animations of the results. This

procedure for solving the bioseparation problem used the POELab template builder, PDEPack solver inte­

gration techniques, and the PDELab visualization tools. The engineers have gained a graphical interface

for problem specification and solution, and visualization tools for viewing and analyzing the simulation

results. However, a much broader implementation of POELab functionality within BioSoftLab is planned.

Since PDELab provides numerous tools and methods for defining and solving PDE problems, it is natural

to investigate other solution schemes for the bioseparation process. Instead of specifying the model via a

set of customized parameters, PDELab editors can be used to specify the mathematical model in terms of

objects such as equations, domains, boundary conditions and initial conditions. Algorithm objects in con­

junction with existing PDEPack solvers can be used to solve the model via many different solution paths.

More accurate, more flexible or more efficient methods for solving this model may be found using alter­

nate problem solving procedures available through the Bioseparation Workbench. Prototypes for the

required PDELab editors already exist, and the editors will be configured together for BioSoftLab using

PDEBus.

7. Acknowledgments

The work of Elias N. Houstis, John R. Rice, Chi Ching Chui, Shahani Markus and Sanjiva Weerawarana

was panially funded by AFOSR grant F49620-92-J·OO69 and NSF grant 9202536-CCR. The work of Ani"!

Christine Catlin, Cheryl Crabill, the equipment and other support for the project was provided by NSF

grant 9123502-CDA and Purdue University.

8. References

[1] T. Bemers-Lee, "Unifonn Resource Locators: A unifying syntax for the expression of names
and addresses of objects on the network," (Draft) Internet RFC, 1993, <http://info.cern.ch!
hypertextIWWW/AddressingIURLlOverview.html>.

[2] J. A. Berninger, R. D. Whitley, X. Zhang, N.-H. L. Wang, "A Verstile Model for Simulation
of Reaction and Nonequilibrium Dynamics in Multicomponent Fixed-Bed Adsorption Pro­
cesses," Computers in Chemical Engineering, 15(11), 1991, pp. 749-768.

[3] 1. C. Giarratano, "CLIPS User's Guide, Version 5.1," NASA Lyndon B. Johnson Space Cen­
ter, 1991.

[4] D. E. Hall, W. H. Greiman, W. F. Johnston, A. X. Merola, S. C. Loken and D. W. Robertson,
''The Software Bus: A Vision for Scientific Software Development," Computer Physics
Communications, 57,1989, pp. 211-216.

[5] C. M. Hoffman, E. N. Houstis, J. R. Rice, A. C. Catlin, M. Gaitatzes, S. Weerawarana, N-H.
L. Wang, C. Takoudis and D. G. Taylor "SoftLab R A Virtual Laboratory for Computational
Science," Proceedings ofthe 3rd Intemational Conference on Expert Systems for Numerical
Computing, 1993, to appear.

[6] E. N. Houstis, J. R. Rice, S. Weerawarana and C. E. Houstis, "PYTHIA: A Computationally
Intelligent Paradigm to Support Smart Problem Solving Environments for PDE Based
Applications," to appear, 1994.

[7J G. J. MacRae, "Role of High Performance Computing in Environmental Modeling," Pro­
ceedings ofVery Large Scale Computations in the 21st Century, SIAM, 1991, pp. 41-72.

[8] Macsyma Reference Manual, Version Nine, The MATHLAB Group, Laboratory for Com­
puter Science, Massachusetts Institute of Technology, 1977.

[9] H. S. McFaddin, "An Objeet-hased Problem Solving Environment for Collaborating PDE
Solvers and Editors," PhD Thesis, Department of Computer Sciences, Purdue University,
1992.

[10] J. Ousterhout, "Tel: An Embeddable Command Language," Proc. USENIX Winter Confer­
ence, January 1990, pp. 133-146.

[11] V. Paxson, C. Aragon, S. Peggs, C. Saltmarsh and L. Schachinger, "A Unified Approach to
Building Accelerator Simulation Software for the sse," Proceedings a/the 1989 IEEE Par­
ticle Accelerator Conference, Part I, 1989, pp. 82-84.

[12] J. PurtiIo, R T. Snodgrass and A. L. Wolf, "Software Bus Organization: Reference Model
and Comparison of Two Existing Systems," ARPA Module Interconnection Formalism
Working Group, TR-8, 1991, <file://thumper.cs.umd.edu/fiJesidocs/refmodel.ps.z>.

[13] J. M. Purtilo, "The Polylith Software Bus," ACM Transactions on Programming Languages
andSystems,16(1),1994,pp.151-174.

[14] K. Sayre and M. A. Gray, "Backtalk: A Generalized Dynamic Communication System for
DAI," Software-Practice and Experience, 23(9), 1993, pp. 1043-1057.

[15] S. Weerawarana and P. S. Wang, "A Portable Code Generator for CRAY FORTRAN," ACM
Transactions on Mathematical Software, 18(3), 1992, pp. 241-255.

	PDELab: An Object-Oriented Framework for Building Problem Solving Environments for PDE Based Applications
	Report Number:
	
	Authors

	tmp.1307986960.pdf.JVdBN

