
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

The Parallel Envelope The Parallel Envelope

M.G. Rossmann

M. A. Cornea-Hasegan

D. C. Marinsecu

Z. Zhang

Robert E. Lynch
Purdue University, rel@cs.purdue.edu

See next page for additional authors

Report Number:
94-018

Rossmann, M.G.; Cornea-Hasegan, M. A.; Marinsecu, D. C.; Zhang, Z.; Lynch, Robert E.; Muckelbauer, J.;
McKenna, R.; Munshi, S.; and Dai, J-B., "The Parallel Envelope" (1994). Department of Computer Science
Technical Reports. Paper 1121.
https://docs.lib.purdue.edu/cstech/1121

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Authors Authors
M.G. Rossmann, M. A. Cornea-Hasegan, D. C. Marinsecu, Z. Zhang, Robert E. Lynch, J. Muckelbauer, R.
McKenna, S. Munshi, and J-B. Dai

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/cstech/1121

https://docs.lib.purdue.edu/cstech/1121

THE PARALLEL ENVELOPE

M.G. Rossmann!, M.A. Cornea-Hasegan2 , D.C. Marinescu2 ,

Z. Zhang2, R.E. Lynch2 , A. Hadfield!, J. Muckelbauerl,
R. McKenna!, S. MUTIshll , J·B. Dai l

Biological Sciences and Computer Sciences Departments
Purdue University

West Lafayette, IN 47907

CSD-TR-94-018
March 1994

I Biological Sciences Department
2 Department of Computer Sciences

THE PARALLEL ENVELOPE

M.G. Rossmann l , M.A. Cornea-Hasegan2 , D.C. Marinescu2 ,

Z. Zhang2 , R.E. Lynch2, A. Hadfield!, J. Muckelbauer1 ,

R. McKenna!, S. Munshi1 , J-B. Dail

Biological Sciences and Computer Sciences Departments
Purdue University

West Lafayette, IN 47907

The Envelope program was developed by M.G. Rossmann and others (1] in the late
1980's. This document describes the parallel version of this program written for dis­
tributed memory Multiple Instruction Multiple Data (MIMD), systems like the Intel
iPSCj860, the Touchstone Delta and the Paragon. It contains:

E1 Envelope User's Guide
E2 Envelope File Format
E3 The Precedence of the Control Information
E4 Envelope Urnplementation Notes

The load balancing and data distribution algorithms for the parallel version of the
program are described in [2] and [3].

I Biological Sciences Department
2Department o[Compuler Sciences

2

El ENVELOPE USER's GUIDE

Related documents
E2. Envelope - File Formats
E3. Envelope - Control Information Precedence
E4. Envelope - Internals

Last update: clem, January 11, 1994
ENVELOPE - Real Space Molecular Replacement and Molecular Envelope Finder Program

Authors:

Michael G. Rossmann (b4p@mace.cc.purdue.edu)
Dan C. Marinescu (dcm@cs.purdue.edu)
Marins A. Cornea·Hasegan (cornea@cs.purdue.edu)
Zhongyun Zhang (zz@cs.purdue.edu)
Robert E. Lynch (rel@cs.purdue.edu)
plus Liang Tong, Rob McKenna, Hac Wu, and others.

Function: to carry out calculations related to real space averaging.
The input to the program includes crystallographic and non-crystallographic symmetry op­

erators, spatial and cell parameters, and values of electron density at points of a 3-dimensional
grid (a 'map'). Output includes a map of the density which has been averaged at all of the
non-crystallographic symmetrically related points and 'flatten' (or left unchanged) elsewhere. The
program can determine a 'mask', a code which indicates the grid points at which the density is to
be averaged. This mask possesses the non-crystallographic symmetry.

Two cells are defined: the p cell and the h cell. The p cell is the actual cell which is being
studied and wnose density is to be averaged

The h cell is a cell (lisually with orthogonal axial directions) with respect to which the non­
crystallographic symmetry can be defined. It can also be used to transpose the molecule(s) from
the p cell into a standard orientation in the h cell.

A fuller explanation and description is given by Rossmann et al. in J. App!. Cryst. [1].

Program versions:

The parallel version of the program executes on the Intel iPSC/860, Touchstone Delta and the
Paragon. It is a major revision of a program developed by Rossmann and others for execution on
the Control Data Cyber 205. A sequential version executes on IBM 6000 RISC workstations.

We describe the January 1994 version of the Envelope program. Its executable files are located
at the Purdue University Computing Center file system for its Intel hypercube in

nyst/Pwg/i860/Envelope/Vl/l.3/ENVELOPE

3

(UNIX file)

(CFS file for the i860 and PFS .file for the Paragon)

(UNIX file)
(CFS or PFS file)

and in the California Institute of Technology's file system for its Intel Paragon in

crystfProgfParagonfEnvelopefVlfl.3fENVELOPE

These versions of the program for the i860 and Paragon produce identical results.

Input and Output Files:

Most options of the Envelope program use:

Input files:
a problem description .file
(control input file)
a data input file
possibly other input data .files

and produce:

Output files:
a summary (a control output) file
a data output file
possibly other output files

CFS stands for Concurrent File System and it is a special file system which strips data for
parallel I/O. A file is spread across several I/O devices (disks) and across several I/O nodes. CFS
allows fast access to a large file from all the nodes. The CFS is available on the iPSC/860 and the
Delta.

PFS stands for Parallel File System. It is a special file system for the Paragon.
CAUTION: There is no automatic backup of the CFS files. The summary output file is the

UNIX standard output file, and it can be redirected to a UNIX file. At the end of the job, this
output contains all the information generated on node 0 or the other nodes. This output contains
the crystallographic output.

In addition each option can control as many as 8 input or output files. The file names are given
in the Control Input File along with each option as it is required.

WARNING: If you specify in the control input file a data input file which does not exist then
the message given by the operating system is sent to the screen ONLY, it will not appear in your
summary output file.

1. The Control Input File

The control input file can be created directly by the user in the format described below or it can
be created interactively by using the SBUI (SB-User Interface).

WARNING: the information supplied by the user in a control input file and the information
available from the file headers are combined as shown in the document E4.

4

Line 1

Line 2

IMODE IGROUP
IMODE=a put the mask/density file onto cfs/pfs

(parallel file system).
=1 Distribute the mask/data across the Nodes

(the 'DNI mode of operation). This is
faster if you have enough memory over all
the nodes you use. You must have at least 8
nodes to operate this ",ay.

IGROUP The number of nodes over ",hich the data is
to be distributed. This parameter is needed
only if IMODE.ne.a. For instance, if IGROUP
is a and you are using 16 nodes, then the
mask and density will be stored t",ice, once
on the first group of nodes and once on the
second group. This minimizes the
communication required for getting a brick
of data into any specific node.

IOPTION NFILES
IOPTION The option number to be executed.

Option a terminates the option sequence
input.

NFILES The number of files to be specified in using
the option

(25x,2i4)

(25x,2i4)

Line 3 IFILE FILENAME (25x,i4,3x,a64)
IFILE The type of file

FILENAME The name of the file (one line per file
required)
The type of files permitted for each option
is described below. Different ways of
running an option may require more or fewer
files. Only those files ",hich are actually
required need to be given.

Lines 2 and 3 are repeated for each option, in the order that the options are to
be executed, until Option a occurs.

5

Line 4

Line 5

P CELL INPUT

(CELL(2,1) ,1=1,6) (6£10.2)
cell dimensions a,b,c (in angstroms), and
alpha,beta,gamma (in degrees) of the unknown
(p) cell

NSYM NTYPE IMASK ISTORE IPRNT JPRNT ICELL LXTND IFILL IMPROP (10i3)
NSYM number of crystallographic symmetry

operations
NTYFE=l read polar angles relating h to p cell

=2 read Eulerian angles relating h to p cell
=3 read C matrix relating h to p cell
=4 read P matrix relating h to p cell
=5 read CINV matrix relating h to p cell
=6 read PINV matrix relating h to p cell

where
X=[P]Y+d

Note that this definition is opposite to
that for the HOMO program if you think of
the first crystal as the h crystal and the
second crystal as the p crystal. It is the
same definition as is used in the
translation function program.

IMASK=-l create and write a mask (use one asymmetric
unit and label each grid poin~ with a number
corresponding to ~he appropriate particle
center, also differentiate between solvent
and nucleic acid). The electron densi~y of
the points within the envelope is set ~o the
value at ~he corresponding grid points in
~he h-cell.
Use IMASK=2 if mask was generated prior to
May 92

IMASK=O create and write a mask (use one asymmetric
unit and label each grid point with a number
corresponding to the appropriate particle
center, also differentiate between solvent
and nucleic acid).
Set electron density at points within mask
to 100. If you plan to use ENLARGE then use
this option.

6

ISTORE=O

=1

JPRNT=O

=1

rCELL=O
=1

LXTND=O
>0

IFILL<O
>0

Use IMASK=3 if mask was generated prior to
May 92

do automatic rescaling in Option 8 (store p
cell density)
do not alter the value of SCALEP
do NOT print non-crystallographic symmetry
matrices.
print non-crystallographic symmetry
matrices.
The next two parameters refer to the
creation of a mask in the p cell given
density for a single molecule (particle) in
the h cell.
use the standard 'vecplpt' routine
use the special 'vecplpt' routine for
Sanjeev
do not enlarge envelope
Check symmetry and enlarge (or reduce)
volume of envelope.
The electron density is set to 100.0 within
protein and 0.0 outside. This density is
then averaged. Any grid point within the
envelope will get an average of 100.0 and
outside of 0.0. Points at the edge will
have an intermedia~e density of MAXPROT.
Then if a grid point is inside envelope and
MAXPROT<LXTND the point is changed to
solvent or acid if grid point is outside
envelope and MAXPROT>LXTND the point is
changed to be inside envelope.
Thus if LXTND=50 then the routine assures
that the envelope obeys non-crystallographic
symmetry but if LXTND>50 the envelope volume
is increased or if LXTND<50 the envelope
volume is shrunk.
do not fill in holes in protein mask
fill in holes in protein mask. If the
number of protein points from the same mask
that surround a non-protein point is larger
or equal to IFILL, then ~his grid point is
changed to be within this mask.

i

Line 6

Lines 7

Line 8

The default is 6. Thus. for the default
value, all single grid point holes that are
completely within one molecule are filled.

IMPRDP the number of particles or molecules in the
crystallographic asymmetric unit related by
improper non-crystallographic symmetry. For
instance if there are two molecules related,
by say, kappa=15D degrees rotation and a 30A
translation. or if there are two icosahedral
virus particles per crystallographic
asymmetric unit.
Default=1.

Only if IPRNT.ne.O, INCX INCY INCZ (free)

«CENTER(J,I) ,I=l,3) ,J=l,IMPROP) (3f10.4)
centers of particles within first
crystallographic asymmetric unit in
fractional coordinate for unknown cell (p)
with ' y ' coordinates. The second and
subsequent particles are related by improper
non-crystallographic symmetry to the first.

RADDUT RADIN CORAD (3f10.4)
outer. inner, and core radii in angstroms.
All density inside the abs(core) radius will
be set to nucleic acid.
Between CORAD and RADIN the density will be
set to protein if it is greater than CRIT1
and to acid otherwise.
Between RADIN and RADOUT the density will be
set to solvent if it is less than CRIT1.
If it is less than CRIT2 it will be set to
the mask with the smallest radius.
If it is bigger than CRIT2 it will be set to
the mask with the largest density.

Line 9 « (SYM(N, I, J) ,J=l, 4) ,I=1 ,3) ,N=I,NSYM)
crystallographic real space symmetry
operators.

8

(12F6.2)

Line 10 HX NY NZ IIX IFX IIY IFY lIZ IFZ SCALEP IIYAV IFYAV (9i3,f8.4,2i3)
HX,NY,NZ are the number of grid intervals in
a,b,c (one less than the number of grid
s-ceps) .
IIX,IIY,IIZ are the first points in a,b,c
that defines the asymmetric uni-c (the first
grid point in the array is #1).
IFX,IFY,IFZ are the last grid points that
defines the asymmetric unit.
IIYAV,IFYAV are the first and last sections
to be averaged in the p cell. Defaults are
IIYAV=IIY,IFYAV=IFY.
Note 1. While the initial and final

positions may cover any size unit
that is equal to or greater than
the crystallographic asymmetric
unit, it is assumed that at least
one asymmetric unit is defined by
these values tha-c lies in the
range .ge. a and .It. 1.0 in all
directions; where the units are
in fractions of the unit cell.

Note 2. The header information in the map
file (PEDMAP) will overwrite (over
ride) the information in Line 6.
SCALEP is scale factor to be
applied to the p cell input
electron density.

Line 11 ISWPROT ISWSOLV ISWACID CAY SCLSOLV SCLACID
ISWPROT=O leave protein density

=1 leave protein density
(ISWPROT=1 when wishing to put the p cell
density into the h cell without averaging)

=2 average protein density using 8 point
interpolation

=3 average protein density using 11 point
interpolation

9

(3i2,3f8.4)

ISWSOLV=Q
=1

=2
ISWACID=O

=1

=2
CAY=1.0

CAY=2.0

SCLSOLV

SCLACID

do not change solvent density
set solvent density to zero
set solvent density to its mean value
do not change acid density
set acid density to zero
set acid density to its mean value
then the input file to Option 6 is a p-cell
mask file;
the input file to Option 6 is an h-cell mask
file (other values of CAY are not accepted
by Option 6)
apply this scale factor to solvent
(default=1.0)
apply this scale factor to acid
(default=1.0)
(Note: as modification into the h cell does
not take any notice of the p cell mask,
these factors are irrelevant when averaging
into the h cell).

H CELL INPUT

Line 12 (CELLO, I) ,I=1 ,6)
cell dimensions for h cell

(6f10.2)

Line 13 (CENTERH(I),I=1,3),CRIT1,SCALEH,CRIT2 (6f10.4)
Center of envelope in h cell given in
fractional.

CRIT1, CRIT2: Take a grid point in the p cell and find its
position in the h cell for each molecule
whose center is less than RADOUT from a
molecular center in the p cell. Then look
up the density in the h cell according to
the SMRAD and JSMEAR parameters.

10

Line 14

If all these densities are below CRITl then
this grid point is assigned to be solvent or
acid. If one or more of the densities are
above CRIT2. then the grid point is assigned
to that molecule which has the largest h
cell density. If one or more of the
possible molecular centers correspond to a
density greater than CRIT1, but none attain
a value as big as CRIT2 then assign the grid
point according to which molecular center is
closest. The default for CRIT2 is CRIT1. Thus
in the default situation, the mask is assigned
only on the basis of h cell density values.

SCALER is mUltiplier of h cell density when it is
written into storage. The h cell scaled
density will be stored in the p cell mask on
generating the mask. Limits on the stored
density are +{- 512 for the p cell.

(NAXIS(I).I=l,3),SMRADSQ,JSMEAR,JSTORE (3i2,f8.2.2i2)
NAXIS defines the directions in the map. Rows in

the map correspond to NAXIS(l). columns in
the map correspond to NAXIS(2), sections in
the map correspond to NAXIS(3), where
NAXIS(i)=1,2, or 3 correspond to a,b,c.

SMRADSQ is square of distance used to limit sphere
around a grid point (in units of grid
points) for smearing density when generating
mask in p cell from h cell density.
Default=3.0

JSMEAR=O take maximum density of all those within
SMRAD

=1 take mean density of all those within SMRAD
when generating mask in p cell from h cell
density.

=2 same as 0, but use abs(density)
=3 same as 1, but use abs(density).

JSTORE=O store h cell density counting from virus
center when averaging into h cell (Z=0.5
in h cell);

=1 store h cell density counting from edge of
cell when averaging into h cell (Z=O.O in
h cell).

11

Line 15 MXFULL MYFULL MZFULL IIHX IFHX IIHY IFHY 11HZ IFHZ (9i3)
NXFULL,NYFULL,NZFULL are the number of grid in~ervals in a,b,c

(one less than the number of grid steps)
IIHX,IIHY,IIHZ is the first point in a,b,c that defines

the volume for display in the h cell in
standard orienta~ion.

IFHX,IFHY,IFHZ is the las~ grid point that defines ~he volume.
Note: This volume can be either ~he

asymmetric uni~ of an icosahedron (for
instance) or much of the h cell for
re-defining the mask.

IRELATION OF P CELL MOLECULES TO STANDARD ORIENTATION IN H CELL I
Line 16

is repeated once for each particle
(molecule) in the p cell crystallographic
asymmetric unit related to each other by
non-crystallographic symmetry. That means
Line 16 is repeated IMPROP times.

if NTYPE=1 or 2 CAPA PSI FI
polar or Eulerian angles in degrees that
relate h to p cell

if NTYPE=3,4,5. or 6 «A(I,J),J=1,3),I=1.3)
read C,P,CINV, or PINV matrices
Where X= [RHO] Y
or x= [e] y= [ALPHA (h)] [RHO] [BETA (p)] Y

(3f10.2)

(3f10 .4)

I NON CRYSTALLOGRAPHIC SYMMETRY IN H CELL (standard orientation)

Line 17 NCRYST
number of non-crystallographic symmetry
elements necessary to generate all
non-crystallographic asymmetric units (e.g.,
4 for an icosahedron)

(i3)

Line 18 (NeAPA(N).NPSI(N) ,NPHI(N) ,N=1,NeRYST)
polar coordinates of the ncryst symmetry
operators referred to the h cell (in

12

(3f10.4)

degrees). Thus the non-crystallographic
symmetry operators are defined ~ith respect
to the standard orthogonal coordinate
system.

Line 19 (XPLoRE(I) ,I=I,6) ,IREF
used in Option 20 (CLIMB)

(3fB.2,3fl0.5, i2)

Line 20 (DXPLoRE(i),I=I,6)
used in Option 20 (CLIMB)

(3£8.2,3£10.5)

16
3

Icfs/dancm/haodata
Icfs/b4p/scratch
Icfs/b4p/redbord

90.0090.00

90.00 90.00 90.00
6 1

0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 1.00 0.50
0.00 0.50 0.00 0.00 1.00 0.25
0.00 0.50 0.00 0.00 1.00 0.75
0.00 0.00 0.00 0.00 -1.00 0.00
0.00 0.00 0.00 0.00 -1.00 0.50
0.00 0.50 0.00 0.00 -1.00 0.25
0.00 0.50 0.00 0.00 -1.00 0.75

90.00
75.0

1

14
1

2

3

o
801.00
o 1 60
0.0000
0.00 1.00
0.00 -1.00
1.00 0.00

-1.00 0.00
1.00 0.00

-1.00 0.00
0.00 1.00
0.00 -1.00
14010.96

300.00
0.0000

90.000
90.000
90.000

69.0900
0.0000

31. 7200

A sample control input file:

mode,group (3i4):
1st op., #files (2i4):
filenr, fname(i4,3x,a64):
filenr, fnameCi4,3x,a64):
filenr, fname(i4,3x,a64):
2nd op., #files (2i4):

255.00 255.00
8 4 a a a a

0.4667 0.4667
1.00 0.00 0.00 0.00

-1.00 0.00 0.00 0.00
0.00 -1.00 0.00 0.50
0.00 1.00 0.00 0.50
0.00 1.00 0.00 0.00
0.00 -1.00 0.00 0.00

-1.00 0.00 0.00 0.50
1.00 0.00 0.00 0.50

260260800 1131 1131
2 1 1 -0.4

300.00 300.00
0.0000 0.0000

1 3 2 3.00 3 1
300300300-64 19 75144-48 75
0.707107 0.707107 O.
-.689122 0.689122 0.224101
0.158463 -0.158463 0.974566

3

120.0000
180.0000
72.0000

13

OPTIONS

A. Mask Generation Options:

Option 1. generates mask based on intersecting spheres.

Option 2. reads h cell electron density (the particle is in a standard orientation in a
large h cell) for determining a new mask. If ICELL = 0 the program will
read the header of the p cell density otherwise it will use the grid given in
Line 6.

Option 3. Enlarge or shrink the mask and check on non-crystallographic symmetry.
The program averages the mask generated by Options 1 or 2. The mask is
initially all filled with density = 100.0. Thus averaged points that remain at
100 are completely within the mask. Points that average to aare completely
outside the mask. Points that average to a value larger than LXTND will be
made into protein if that is not already the case. Points that average to
less than LXTNO will be regarded as outside the mask. Hence LXTNO = 50 is
neutral and the effect is only to impose non-crystallographic symmetry. If
LXTND<50 then mask will be shrunk, etc.

Option 4. Fills in holes in mask (routine ENVIRON). See value of IFILL in Line 3.

Option H. Find the non-crystallographic asymmetric unit for mapping back into this
reduced asymmetric unit from outside. When this has been done, then
averaging can be accomplished either by going to Option 9, as always, or
Options 11 or 15. Using Option 9 implies averaging over the whole crystal­
lographic asymmetric unit. The use of Option 11 jnvolves two steps: First
the non-crystallographic asymmetric unit plus a suitable surrounding border
is averaged. Then the points outside the non-crystallographic asymmetric
unit are folded back into the crystallographic asymmetric unit. Tlus is much
faster than Option 9 but may be less accurate due to the double interpola­
tion. The use of Option 11 is a one-step operation where the density inside
the non-crystallographic asymmetric unit is averaged and the density out­
side is folded back into the non-crystallographic asymmetric unit for finding
the density of the previous cycle.

14

B. Options required to average the p cell density and put the result back into
the p cell:

Option 7. reads Lines 14 and 15, giving the non· crystallographic symmetry in the cell
for generating all the necessary matrices for averaging into the p cell. If this
had already been done in another option, then the reading will be skipped,
but matrices will continue to be generated. If Option 4 was previously
executed, it is not necessary to use this option.

Option 8. stores the p cell electron density along with the mask. If IPRNT = 2, then
this yet unmodified density, is written on the output file.

Option 9. modify the p cell density within the defined limits (usually the asymmetric
unit) and write the results with WRITE3D onto MODFILE. See Line 8 for the
various modifying possibilities.

Option 10. Takes the modified density, reads it back into storage, along with the mask
and generates the whole of the unit cell file for back transformation (also
brick format).

Option 11. This option averages into the p cell, using the fast fold back procedure de­
scribed for Option 14. However it does things in two stages (as opposed to
one stage in Option 14), as follows:

1. If the non-crystallographic asymmetric unit has not yet been defined, go through CALL REDAU
(to avoid this go first through Option 14)

2. Average all the points in the non-crystallographic asymmetric unit and write out the results
with WRIT3D

3. Read back the map into the mask by calling STORMAP. Then fold the points outside the non­
crystallographic asymmetric unit into the already averaged non-crystallographic asymmetric
unit for interpolation.

Note that by using Options 14 and 9, the Step 3 above is always one cycle behind, as the interpo­
lation will be with respect to the old density in the non-crystallographic asymmetric unit.

C. Options required to average the p cell but store results in the standard orI­
entation in the h cell:

These are useful either for obtaining a better mask or for display of one non-crystallographic
asymmetric unit in a standard orientation.

15

Option 12. averages the p cell density (see ISWPROT in Line 8) within a radius RADOUT from
CENTERH, and puts it into the h cell. Reads Lines 14 and 15 giving the non­
crystallographic symmetry in the cell for generating all the necessary matrices for
averaging the p cell into the h cell. If IPRNT = 8 prints modified density in h cell
(test phase).

D. Additional options

Option 5. Transforms mask/density file for displaying

Option 6. Transforms a p-cell mask/density file (if input parameter CAY is 1.0), or an h-cell
mask/density file (if input parameter CAY is 2.0), from format with 8K header and
non-minimal brick padding, to format with 64K header and minimal brick padding.

Option 13. This puts density from the h cell back into the p cell mask. This is useful if the
averaged It cell density is to be taken as a starting model in the p cell.

Option 16. Transforms a mask/density file from brick to slab format, in preparation of the
FFTINV program. In addition to the control input information read by the INFO
routine, the control input file requires a last line with the special options, called
debug flags, as described for Line 19 of the control input me for the FFTINV program.
(e.g. 'input of debugflags: 1 0 0 0 0 0 0 0 0 0')

Option 20. explores parameters (three positional and three orientationa!) of one particle to
maximize the height (e.g., of heavy atom) lREF = lor minimizes the scatter (IREF =
0) XPLORE has THETAl THETA2 THETA3 CENTER(X) CENTER(Y) CENTER(Z) at start,
in degrees and fractional coordinates respectively. DXPLORE contains the increment
or decrement of each parameter for exploration

16

DATA INPUT AND DATA OUTPUT FILES
Option 1: Data Output: p-cell mask

Option 2: Data Input: h-cell density
Data Output: p-cell mask

Option 3: Data Input: p-cell mask
Data Output: p-cell mask

Option 4: Data Input: p-cell mask
Data Output: p-cell mask

Option 5: Data Input: mask/density
Data Output: mask/density, planes

Option 6: Data Input: mask/density, old header
Data Output: mask/density, new header

Option 8: Data Input (1): FFTSYNTH output
Data Input (2): p-cell mask
Data Output: p-cell mask/density

Option 9: Data Input: p-cell mask/density
Data Output: p-cell mask/density

Option 10: Data Input: p-cell mask/density
Data Output: p-cell mask/density

Option 12: Data Input: p-cell mask/density
Data Output: h-cell density

Option 13: Data Input (1): It-cell density
Data Input (2): p-cell density
Data Output: p-cell mask/density

Option 1G: Data Input: mask/density
Data Output: slabs for FFTINV

Option 20: Data Input: p-cell mask/density
Data Output: h-cell density

17

EXAMPLES of various option combinations:

a. Create a mask from the h cell density:

b. Read a mask and enlarge:

c. Create a mask from the h cell densi ty and
average within the p cell:
Note: if the mask is stored after this then

the storage would be of both the mask
and the pre-averaged density.
See (e) below.

d. Read a mask, read p cell density lnto mask,
average within the p cell, and expand into
the whole unit cell for back transformation:

2 0

3 0

289

689

o

10 0

e. Perhaps the p cell density was stored previously
with the mask. Then to average into the p cell
and to expand into the whole cell, all that
would be required would be: 6 9 10 0

h. read the p cell densitY(PEDFILE) and put
the averaged density into the h cell
(output onto HOUTFILE): 8 12 0

Note: The grid used in the map read in by Option 8 overwrites whatever is given in Line 6.
There is no purpose in defining a mask when averaging from the p cell into the h cell. This sequence
is useful when

(i) obtaining a skew averaged map of the non-crystallographic asymmetric unit;

(ii) obtaining an averaged molecule (particle) in the h cell to create a new mask;

(iii) to search for the best particle position by looking for lowest average rms scatter of non·
crystallographic equivalent points In this case use only the non-crystallographic asymmetric
unit as in (i) above.

2. How to Run the ENVELOPE Program on the iPSC/860

Besides the sample control input file mentioned earlier, two other examples can be found on ip­
scgate.cc.purdue.edu or sampson.ccsLcaltech.edu, in "'"'crystjPROGSjSCRIPTjenvelope.inj_9 (for
Option 9), and incrystjPROGSjSCRIPT jenvelope.inj_8Q (for Option 8. followed by Option Q).
To use any of these, the jcfs output directories would have to be changed to a place where permission
to write files exists.

18

Steps:

(a) Assuming the (appropriately modified) input file envelope.inj_9 exists in the directory from
which the user wants to run e.g., Options 9 on 16 nodes, this can be achieved as follows:

(b) type, on srm.cc.purdue.edu, or on ajax.ccsf.caltech.edu:

getcube -c mycube -ti6 > myoutfu1e

load -c mycube -H -cryst!Pprog!i860/Envelope!v1!1.3!ENVELOPE

startcube ; waitcube < envelope.inj-9

The output will then go to the file 'myoutfile'. The file 'envelope. inj-9' is the control input
fIle. The '-H' option of 'load' does not let the program start until the 's'tax'tcube' command is
given. The 'waitcube' command may be given on a separate line, too, but then some output may
appear on the screen before the user can type 'waitcube', if it is not redirected in the 'getcube'
command. To find out how to use the controllnput file when running multiple cycles, type:

man cycle

3. How to Run the ENVELOPE Program on the PARAGON

On the Paragon there is no host (front.end). You login to a service node (a node connected to the
network) and you need to specify:

(a) The program you want to execute and the environment for your run

- the program name

- the SIZE of the partition

- the name of the partition (default .compute)

- the priority (optional)

- the option to fix communication buffers in memory ("plk").

(b) The input control file.

(c) The output control file.

Example:

PROGRAM < CONTROL..INPUT > CONTROL.DUTPUT
/home/sampson6/cryst/Prog/Paragon/Envelope/V1/n6/cryst/Prog/Paragon/Envelope/V1.1/ENVELOPE

-sz 32 -pn .compute -pri 10 -p1 k <
Ihome/sampson6/dcm/TEST1. 0/opt1!env.opt1. in-paragon >
Ihome/sampson6/dcm/TEST1.0/opt1!env.optl.out-paraton

19

Please report BUGS to:

dcm@cs.purdue.edu
zz@cs.purdue edu

20

E2 ENVELOPE FILE FORMAT

Related documents
El. Envelope - User's Guide
E3. Envelope - Control information precedence
E4. Envelope - Internals

Last update: dem, January 12, 1994

Each file cosists of a 64 K header followed by binary data.

file
header binary data

(64 Ie bytes

There are two types of file produced by the Envelope:

• the brick format

• the section by section format

Different options of the Envelope use the following files:

Option 1 :

Option 2 :

Option 3 :

Option 4 :

Option 5 :

Option 6 :

Data Output - p-cell mask

Data Input - h-cell density
Data Output (1) - p-cell mask

Data Input - p-cell mask
Data Output (1) - p-cell mask

Data Input - p-cell mask
Data Output: p-cell mask

Data Input - mask/density
Data Output - mask/density, planes
(not yet implemented)

Data Input - mask/density, old header

21

(Brick format)

(Brick format)
(Brick format)

(Brick format)
(Brick format)

(Brick format)
(Brick format)

(Brick format)
(ASCII [mmat)

(Brick format)

Data Output - mask/density, new header (Brick format)

Option 8 : Data Input (1) - FFTsynth output (Section by Section Format)
Data Input (2) - p-cell mask (Brick format)
Data Output - p-cell mask/density (Brick format)

Option 9 : Data Input - p-cell mask/density (Brick format)
Data Output (1) - p-cell mask/density (Brick format)

Option 10 : Data Input - p-cell mask/density (Brick format)
Data Output - p-cell mask/density (Brick format)

Option 12 : Data Input - p-cell mask/density (Brick format)
Data Output (1) - h-cell density (Brick format)

Option 13 : Data Input (1) - h-cell density (Brick format)
Data Input (2) - p-cell density (Brick format)

Option 16 : Data Input - mask/density (Brick format)
Data Output - slahs for FFTINV (Section by section format)

Option 20 : Data Input - p-cell mask/density (Brick format)
Data Output (1) - h-cell density (Brick format)

This document describes:

A. The format of the header, the same for both types of files.

B. The brick format.

C. The section by section format.

1. THE HEADER FORMAT

Each file header produced by the Envelope program is 64 Kbytes long. The information written in
the file header comes from:

• the control input file

• the information in the file headers of the input data files.

(see E3 for details).
The programs responsible for header processing are:

22

decodeheadJ - it reads an input file header
encodeheadJ - it writes out the output file header

1. System information
Data item

Date of file creation (for tills file)
Time of file creation (for this file)
Machine name (e.g. srm.cc.purdue.edu)
Operating system (e.g. UNIX System V)
Machine architecture (e.g. iPSe/860)
Test byte (for little/big endian)
Next free byte

Length
(bytes)

8
8

64
32
32
4

Offset
(bytes)

o
8

16
80

112
144
148

2. Information about the program which created the file and about the file
Data item Length Offset

(bytes) (bytes)
Program name (ENVELOPE)
Program version
Full path name of the executable
Date when executable was created
Header length (64K)
File length (for this file)
Comment
Next free byte

3. Information about the physical problem

16 208
8 224

64 232
8 296
4 304
4 308

100 312
412

Data item

Cell
Reciprocal cell
nsym
sym(ij,k)
ntype
improp
center(i)
centerh(l)
radout
radin
corad
Matrix relating p to h cell
imask
Next free byte

Length
(bytes)

24
24

4
1152

4
4

48
12
4
4
4

144
4

·512
536
560
564

1716
1720
1724
1772
1784
1788
1792
1796
1940
1944

23

4. Information about the run.
Data item Length Offset

(bytes) (bytes)
nx 4 2000
ny 4 2004
nz 4 2008
HX 4 2012
ifx 4 2016
iiy 4 2020
ify 4 2024
HZ 4 2028
Ifz 4 2032
na.x.is() (ipa,ipb,ipc) 12 2036
resmin 4 2048
resmax 4 2052
hmax, kmax, lmax 12 2056
ms 4 2068
Is 256 2072
ctlnv 3072 2328
tiny 2304 5400
s 3072 7704
Next free byte 10776

Note: The header of an input file created by another program (for example the header of
the section by section file produced by FFTsynth and used as input in option 8) differs from
the header described above starting at displacement 2048 as follows:

edmin 4 2048
edrnax 4 2052
Next free byte 2056

2. The Brick Format

2.A. Overview

The brick format is the standard input and output data format for the Envelope. It is designed
to store in a compact format the information about a "dense" 3-D mesh.

The brick file is manipulated by a set of primitives in the program "pbr.c". These primitives
aUow concurrent access to the brick file from multiple nodes (see E4 for details).

24

2.B. The 3-D mesh

Given a 3-D mesh of (na) x (nb) x (nc) grid points, from iix to ifx in the x-direction, from
iiy to ify in the v-direction and from iiz to ifz in the z-dlrection (see infoprocess.f):

na ;:: ifx - iix + 1
nb = ify - iiy + 1
nc = ijz- iiz+ 1

For each grid point the information is packed into two bytes:

• 10 bits electron density and

• 6 bits mask.

A brick is a 3-D volume consisting of (bx) x (by) x (bz) consecutive grid points. Currently
bx = by = bz = 16. There are 4096 grid points within a brick and the storage space occupied
by a brick is 8K bytes. The grid points within a brick are stored in the x --. y ----'" z order.

We can look at the bricks as a 3-D structure consisting of layers of bricks stored in the
x ---'" y --+ Z order. Call ibrick, jbrick, kbrick the number of bricks in the x, y and z direction
respectively. The values ibrick, jbrick, kbrick are computed as follows: (see infoprocess.f):

ibrick = ((na -1)/b.) + 1
jbrick = ((nb - 1)/by) + 1
kbrick = ((nc - 1)/b.) + 1
ijbrick = ibrick * jbrick

The "brick reference point" is the brick point closest to the origin of the 3-D brick space. Given
the brick with 3-D coordinates (ibid,jbid,kbid) its reference point has the 3-D coordinates
(istart,jsturt,ksturt) given by (see modpmapJ):

istart
jstart
kstart

bx * (ibid- 1) + iix
by * (jbid - 1) + iiy
bz * (kbid - 1) + iiz

The relation between local and global coordinates of a grid point. Assume that you are given
(i, j, k) the local coordinates of a point in brick bid with the reference point (istart, jstart, kstart).
Then its global coordinates (iglobal,jglobal,kglobal) are given by:

iglobal =

jglobal
kglobal

25

i + istart - 1
j+jstart-l
k +blud - 1

2.C. The relation between 3-D coordinates of a brick and its displacement
in the file, a I-D structure.

The bricks are stored sequentially in the x -+ y -+ z order.

I Brick 1 I Brick 2 I -brick nbk I

The brick with 3-D brick coordinates ibid,jbid,kbid is stored sequentially as brick bid with:

bid = (k - 1) * ibrick *kbrick +(j - 1) * ibrick + i.

The first layer of bricks (z = 1) contains ibrick x jbrick bricks:

(1, 2•. ,.
(ibrick+l •.....

(ibrick*(jbrick-l)+l) .

ibrick) •
2*ibrick),

jbrick*ibrick)

Succesive layers of bricks up to kbrick layers are The total number of bricks is:

nbr = ibrick * jbrick * kbrick

The code to determine the 3-D coordinates of brick bid follows: (see modpmapJ):

C Find the brick layer kbid in which bid is
kbid = bid/ijbrick
if«bid - kbid*ijbrick).gt.O) kbid = kbid + 1

C Find position of brick in the layer
ijbid = bid- (kbid-1)*ijbrick
jbid = ijbid/ibrick
if«ijbid - jbid*ibrick).gt.O) jbid = jbid + 1
ibid = ijbid - (jbid-1)*ibrick

Note: The brick format is used to store both the p-cell (which contains either the mask or
the electron density and the mask) and the h-cell which contains only the electron density.
For the h-cell the computation of the mesh geometry is similar to the oue described above
for the p-cell.

26

mx=ifhx-iihx+ 1
my=ifhy-iihy+ 1
mz=ifuz-iihz+1

ibrickh
jbrickh
kbrickh

(mx - 1) / bxh + 1
(my - 1) / byh + 1
(mz-l)/bzh+l

ijbrickh=ibrickh*jbrickh

nbrh=ibrickh*jbrickh*kbrickh

3. The section by section format

This data format is used to export results produced by Envelope to FFTinv (option 16) or to
import from FFTsynth new electron density data (option 8).

3.A. The format produced by option 16 for the FFTinv

The data is written out in y-slabs.

ISlab 1 !Slab 2 I I Slab fly I
An y-slab is a group of consecutive xz-planes. For example the slab with

slab number
slab width

slannr=10
slabw = 5

consists of the planes 46, '17, 48, 49 and 50. Each slab is written out as:

slab numuer (an integer)
slab width (an integer)
first plane (nx*nz floating point numbers)
second plane

last plane (nx*nz floating point numbers)

The total size of a slab in bytes is 4 *(nx *nz + 2).
The actual writing of the slabs is done in makeyslbJ.

subroutine makeyslbCslabnr, slabw, buff, buffptr)

27

idispl = buffptr
mbp = «buff - \1.loc (b» I 4) - 1
b(mbp+idispl) = slabnr
b(mbp+idispl+1) = slab~

idispl = idispl + 2

npresnt=l

do 10 j =1, slabw
jpt(2)=(slabnr-1)*slabg + j - 1

if(kpt(ii).ge.O) go to 16
kpt(ii)=kpt(ii)+nxyz(ii)
go to 17
if(kpt(ii).le.nxyz(ii» go ~o 18
kpt(ii)=kpt(ii)-nxyz(ii)
go to 16
ipt(ii)=kpt(ii)+l

continue

point with coordinates ipt(1),ipt(2),ipt(3)
assymetric unit. If YES go to 19.

16

15
17

C cycle over points in the section (xz plane)
do 11 i = 1,nx

jpt(1) = i-1
do 12 k = 1, nz

jpt(3) = k-1
21 do 13 n=npresn~,nsym

do 14 ii=1,3
kpt(ii)=ifix(sym(n,ii,4)*float(nxyz(ii»)
do 15 jj=1,3
kpt(ii)=kpt(ii)+

> ifix(sym(n,ii,jj)*float(jpt(jj»)
continue

18

14

C

C Tes~ that the
C is yithin the
C

if((ipt(1).ge.iix).and.(ipt(1).le.ifx).and.
> (ipt(2).ge.iiy).and.(ipt(2).le.ify).and.
> (ipt(3) .ge.iiz) .and. (ipt(3) .le.ifz» then

go to 19
endif

28

13

22
99

20

>

con1;inue

if(npresnt.eq.l) go to 22
npresnt=l
go to 21

write(6.99) i,j,k
format (' point cannot be placed

, into asym. unit' ,3i4)
bCmbp + idispl) = 0.0
idispl = idispl + 1

npresnt=n

12 continue
b(mbp+idispl) = 0.0
b(mbp+idispl+l) = 0.0
idispl = idispl + 2

11 continue
10 continue

3.B. The format produced by FFTsynth

The file consists of a sequence of planes. The reading of the planes and filling in of the electron
density in bricks is done in stormap.f.

c
secsz = nx * nz * intiglen
slabsz = ibrick * kbrick * bbsize
maxmern = 10500000
if ((secsz + slabsz).gt.maxmem) then

",rite(O.*), » NODE J, iam,
> (stormap): insufficient memory to store a slab of
> ' size: J. slabsz, • and a plane of size: " seCSZ,
> J The program will terminate I

call node_error
stop

andif

nslabs = jbrick
nsteps = nslabs /nnodes
if (nslabs .ne. nsteps * nnodes) nsteps =nsteps + 1
maxoffset = (ny - 1) * secsz + bbsize*nbrhead

29

c
C Read header
C

, f
=' ,lpe19.7/
=' ,lpe19. 7/
=' ,lpe19.7)

88

c
c
c

call getplane(ioffset. admin, edsiz8. 1)
ioffset is the displacement in the input file

(ioffset=2048, at displacement 2048 in
header you find admin. See the header

edmin is the address of the buffer
edsiza is the length (8)

scale! = 511.0/max(abs(edmax). abs(edmin»
if (iam .sq. 0) then
write(6, 88) edrnin,edmax,scalel
format(Sx,'Information from the Fftsynth

> 'Minimum electron density value
> J 'Maximum electron density value
> , 'SCALE

endif

print *,'Debug-Node:' ,iam,'edmx.admn=' ,hsec(1).hsec(2)
print *. J NODE'. iam, ' scale = '. scale!
if (iam.eq.O) print *, ' NODE'. iam. ' scale = " scale!

the
format.)

c
c
c
c
c
c
c
c

Process data in slabs.

Bricks are numbered:
Sections are numbered:
Slabs are numbered:

1 to nbr
1 to ny
1 "to nslabs.

do 10 istep = 1, nsteps
myslab = iam + 1 + (istep -1) * nnodes
if (myslab.gt.nslabs) go "to 10
do 20 iplane = 1. by

isection = iplane + (myslab-1) * by
if(isec"tion.gt.ny) isec"tion=isection-ny
if((isec"tion.lt.iiy).or.(isection.gt.ify» go to 20

30

ioffset = (isaction - l)*secsz + bbsize*nbrhead
if (ioffset .gt. maxoffset) then

write(O.*)'» NODE (stormap) , ,iam,
> ' invalid offset' .ioffset,maxoffset

call node_error
stop

endif
C print *. • NODE' , iam,
C > • slab: • myslab. section:•
C > offset: • ,ioffset

call getplane(ioffset,hsec,secsz,1)

isection,

c

c

>

>

do 30 kbk = l,kbrick
print *, , NODE' ,iam.' *** kbk'. kbk
do 40 ibk = l,ibrick

print *,' NODE',iam.' *** ibk', ibk
nnb = (myslab - 1) * ibrick

+ (kbk -1) * ijbrick + ibk
if (nnb .gt. nbr) then

write(O.*)'» NODE (stormap) '.iam,
, invalid brick number', nnb, nbr

call node_error
stop

endif

c print *. ' kbrick. ibrick, brick#:
do 60 kk = l,bz

kbk, ibk, nnb

c

c

kglobal = kk + bz * (kbk - 1)
if(kglobal.gt.nz) kglobal=kglobal-nz
if((kglobal.lt.iiz).or.(kglobal.gt.ifz» go to 60
print *, , NODE', iam. ' kglobal:', kglobal

do 70 ii = 1.bx

iglobal = ii + bx * (ibk - 1)
if(iglobal.gt.nx) iglobal=iglobal-nx
if((iglobal.lt.iix).or.(iglobal.gt.ifx» go to 70
print *, ' NODE' J iam. ' iglobal:'. iglobal

31

x
x
x
x

x
x
x
x

rrho = hsec(iglobal+(kglobal-l)*nx) * scale1
itest = (iglobal+(kglobal-l)*nx)
if(rhomax.lt.rrho) rhomax=rrho
if(rhomin.gt.rrho) rhomin=rrho
if(rrho.ge.512.0) then

print *. ,» NODE' ,iam,
(stormap) WARNING - 'J
scale out of range in section : ',isection,
density:' > rrho.
x, z·. iglobal. kglobal

rrho=511.0
endif
if(rrho.le.-512.0) then

print *. NODE '.iam.
(stormap) WARNING - "
scale out of range in section :',isection,
density:', rrho,
x, z' J iglobal, kglobal

rrho=-511.0
endif

call getentry(ii,iplane,kk,nnb,rhoold,mask.3)

call putslave(ii,iplana,kk,nnb,rrho.mask)

20 continue
10 continue

32

E3. THE PRECEDENCE OF THE CONTROL INFORMATION

Option 1 2 3 '. S , W 12 13 20 5 6
What type of input - H P P P P P P II P P orH P

Data item F P
What type of output P P P P P P P H P P

o:e11(2,i) (p cell I n I n P nn P/nn Plno Plnn Plno - P/nu Plnn P nn In
Dsym lin lin Pin Pin Pin Pin Pin Pin Pin Pin Pin I n
ntype lin I n P n Pin Pin Pin Pin P/u P/u P/u P u I u
ima.sk (set im....k • 1
for options 8.9,10,13,6) I/u Plnn P/no P/u P/u P/u - P/u
islore lInn - - -
iprnt I/u I/u I/u I u I u I u I u lin I/u
jpml lin I/u lin I/u I/u I/u I/u I/u I u I/u I u
iceU I n I n lin ? I/u I n
Ixtnd - I/u Plnn Plnn Plno Plnn P nn P/nu PorH nu
'fill Plnn lin P/nu P/nu P/nn Plnn Plnn P or H/nu
improp I/u I/u P/u P/u P/u P/u Plnn P/u P/u l/u Plnn I/u
~~CX. iocy, inez

I'u I/n I/uonly if ipml '* 0) I/u I/u I/u lin I/u I/u
centerrj,i) I n I/u P n P/u P/u P/u Plnn P/u P/u P/u Plnn I/u
raclaut I/u I/u Plnn - lin l/u
rndin lin P nn - -
corad I/u I/u Plnn - -
sym(ij,k) I/u lin Pu Pin P/u P/u Pin P/u P/u P/u P/nn lin
nx, ny, nz I/u I/u P/u P/u P/u P/u II",Plu P/u P u P/u P/u P/u
ii;c, ... ,irz I u lin P/u P n Pin Pin I/n,P/u P/u P/u P/u Pin P n
scalep - I/u -
iiyll.v, ifyll.v I u
iswprot - - I/u - I u -
isw!lolv I u lin -
iswacid - - I/u - I/u -
sclsolv lin I/u -
sclo.cid - I/u I u
cell(lJ) H/n P/nu Plno Plnn P/nn Plnn I/u H/u H/nu
centerh(i) - H/u Plnn Plnn Plnn Plnn Plnn I/u H/u Hlnu
erin, crit2 lin P nu Plnn Plnn P/nn Plnn Plnn Plnn - P Or Hlnu -
scnleh - I/u Plnn Plno Plnn Plnn Plnn Plnn lin I" or Hlnu
naxis(i) 'in P/nu P/nu P/nu P/nu P/nu P/nu I/u Par H/nu
srnradsq I/u P/nu Plno P/nu P/nu P/nu P/nu P/nu PorH nu
Jsmear - I/u P/nu P/nu P/nu P nu P nn P/nu P/nu - Par H/nu -
jslore I/u P/nu P/nu P/nn P/nu P/nn P/nu I/u Par H/nu
m;duU, myfull. rnzfull I u P nn P nn P/nu P/nu P/nu I/u P/nu Par H/nu -
iihx, ... ,ifuz I/u P/nu P/nu P nu P/nu P/nu I/u P nu PorH nu
c:apa(i), psi(i), fi(i) [Line 16]

a(ij) rZi:e 161
- I/u P/u P/nu P/nu P/u P/nu I/u I/u - Par H/nu -

Option I 2 3 4 S 9 10 12 n 20 5 6
\'Vhllt lype of input - H P P P P P P H P P orH P

Data iLem F P
What ~ype of ouLput P P P P P P P H P P

ncryst I n Pin P/nu P/nu P/u P/nu I/u I/u P or H/nu
nC8pa(i), npsi(i), nfi(i) Line 18 - I/u P/u P/nu P/nu P/u P/nu lin I u PorH nu
xplore(i) - I/u -
i,-ef - - - - - - lin
dxplore(i) - - - - - l/u -

Option 1 2 3 4 S 9 10 12 13 20 5 6

33

The control information used by different options of the Envelope program may come from:
(a) the control input file. (b) the headers of the data mes (p-cell, h-cell, FFTsynth output). This
table indicates for every single parameter wether it is used or not by the corresponding option of
the Envelope. It also gives the precedence rules when conflicting information is gathered from the
different sources described above.

LEGEND

I
P
H
F

control input file
p-cell header u
h-cell header nu
map-file header, from FFTsynth

irrelevant
used
not used

E4 ENVELOPE IMPLEMENTATION NOTES

Related documents
E1. Envelope - User's Guide
E2. Envelope - file format
E3. Envelope - control information precedence

Last update: dem, January 14, 1994

This document describes the implementation of the Envelope program for a distributed memory
MIMD (Multiple Instruction, Multiple Data) system, DMIMD, like the iPSe/8GO and Paragon.

1. Overview

A DMIMD consists of a number of PEs (Processing Elements) each consisting of a processor and
local memory, interconnected by a 2·D mesh (the Paragon) or a hypercube (1860). Each PE can
only process data in its local memory and may communicate with other nodes by explicitely sending
and receiving messages.

The main problem in designing algorithms and programs for DMIMD systems are data parti­
tioning and load balancing. Data partitioning means to decide what data elements are stored in
each node and work allocation means to decide on the work carried out by every node. The concepts
of "data allocation unit" and "work allocation unit", called "bricks", as well as the algorithms used
are outlined in [2] and [3]. The basic idea is to allocate "master bricks" for processing according
to a strategy ensuring load balance and then for a master brick to bring in all the "slave bricks"
necessary to carry out the computation for all the grid points.

Important observation: most problems on 3-D meshes use some form of geometric partitioning
of the mesh. This does not work in case of electron density averaging due to the nature of the
computation namely points related by non-crystallographic symmetry are scattered throughout the
entire volume. For this reason we have to implement a Shared Virtual Memory.

2. Inter-node Communication

Nodes communicate with one another using messages. There are three types of messages:

• synchronous messages (csend, crecv)

• asynchronous messages (isend, irecv)

• interrupt driven messages (hsend, hrecv)

See Paragon Fortran or C System Call Manuals for the syntax and semantics of communication
system calls.

35

3. The Programming Model

We use a quasi-SPMD (Same Program Multiple Data) programming model. All nodes run the
same program with different data, namely the data allocated to them by the data partitioning and
load distribution mechanism. Yet one node, the "master" (typically node 0) performs some control
functions not performed by other nodes. Examples of control functions performed by the" master".

• reading of the control input data

• reading of the me header

• computation of some initial values of parameter

• the "master" side of the "intia! exchange1
'. The master node node sends control information

and parameters to all "slave" nodes.

• receiving of partial results at the end of the computation.

A slave node starts by executing tile "slave" side of the "initial exchange". It starts by receiving
the control information and other parameters necessary for computation from the "master".

The work allocation and the data distribution is done in a distributed fashion. All nodes execute
the same work allocation and data distribution algorithm and each decides what data and work is
assigned to it.

The "iam=mynodeO" system call allows a node to discover its own identity.

4. Data Files

All ftles are binary files. All binary files are linear strings of bytes. An access routine need only
know the "offset", the "length" of the data block to be read or written and the "buffer" where the
data block is read from (in case of a "write" operation) or where the data will be read into (in case
of a "read" operation).

:\Il data files are accessed through an I/O driver called "pbr.c". This driver allows direct and
parallel file access from multiple nodes at the same time. Direct access (as opposed to sequential
access) allows access to to an item stored at any given "offset" from the beginning of the file.
Parallel access means that several nodes may access the file at the same time.

There are three basic execution modes:

(DFS) The input data space is stored on a Disk File System (CFS for iS60 and PFS on the
Paragon) and brought in each node as the execution needs dictate.

(DAN) The input data space is distributed accross nodes (the data is cached in the local storage
of all nodes). Each node has a copy of the "brick directory" and is able to locate where a
ccrtain brick is and then to request it from that node. This mode relays all "intcrrupt driven
communication", (hsend, hrecv messages).

36

(DS) The input bricks are all stored in a few nodes (Data Servers) which do not carry out any
computation and all compute nodes request data from the Data Servers.

The DAN and DS modes are more efficient than the CFS mode.
Note: The DAN mode requires "interrupt driven messages" (hsend/hrecv).

5. Error Conditions

Whenever a node termlnates due to an error condition it calls "node_error" and sends an "inter­
rupLdriven..message" to all other nodes to stop the entire computation immediately. Without this
feature the failure of a single node would cause the entire partition to hang till an external agent
(the user, the operator or the system job scheduler) would stop the partition.

6. I/O Functions performed by the I/O driver pbr.c

FUNCTIONS FOR OPENING AND CLOSING FILES

PBROPEN: opens the file whose name Is the (first part of the) string 'name' (up to the first space
character); the file descriptor is fd[*fnr-1] if mode equiv "RD", the file is opened only for reading
if mode equiv "RW" ,the file is open for reading and writing; if the file doesn't exist, node 0 also
creates it; the file is open for reading and writing.
PBROPEN_(name, fnr, mode)

char *name;
long *fnr;
char *mode;

PBRCLOSE closes file [nc --+ file number (1 to 6 in Fortran, 0 to 5 in C).
PBRCLOSK(lnr)

long *fnr;

FUNCTIONS FOR BRICK MANIPULATION

GETBRICK: brings the brick with virtual number bvn, from the file with descriptor fd[*fnr-l], into
the array master[J ; involves I/O fur --+ file number (1 to Bln Fortran, 0 to 5 in C).
GETBRIClqbvn,lnr)
Int *bvn;
long *fnr;

GETDMBRK: for the CFS version: makes the previous master brick DISPosable if the new master
brick is not already here, brings it in (synchronous call to cbring) ; if the next master brick (in
'snake' order) is not already here, brings it in (asynchronous call to ibring); sets mbvn & mbrn and
also nextmbvn & nextmhrn (mbrn & nextmbrn show where to find the bricks in memory) ; involves

37

I/O fnr --> file number (1 to 6 in Fortran, 0 to 5 in C).
GETDMBRK.{bvn, fakebvn, fnr)
int *bvn, *fakebvn;
long *fnrj

GETMMBRK: for the DAN version: if the new master brick is not already here, brings it in
(synchronous call to cbring1); sets mbvn & mbrn (mbrn shows where to find the brick in memory)
; does not involve I/O.
GETMMBRK.(bvn)
int *bvn;

PUTMBRICK: for Options 1,2,3,4,9,10,11,13,14 and 15 : for both CFS and DAN, write the
new master brick from new...mbrick, into the output data file in the ds; this is a synchronous write
- it returns only after the new master brick has been written out; makes the brick DISPosable, if
it is not to be stored permanently by the node, if the DAN option is used for Option 12, for both
CFS and DAN, write the h-cell master brick from new...mbrickh into the h-cell output data file in
the ds; this is a synchronous write - it returns only after the new master brick has been written
out; no brick has to be made DISPosable, since the h cell master brick has not been brought from
an input file fur --> file number (1 to 6 in Fortran, 0 to 5 in C).
PUTMBRICK.(bvn, fnr)
int *bvnj
long *fnr;

WRITEOUTSLAVE: writes into the output data file in the efs, all the bricks currently in memory
fill --> file number (1 to 6 in Fortran, 0 to 5 in C).
WRITEOUTSL.(fnr)

long "'fnr;

CLEARMBRK: makes DISPosable the brick (frame) which contains the brick with the virtual
number bid; it is assumed that this brick is (already) stored in memory (as for master bricks, for
ex.).
CLEARMBRIC(bid)

int *bid;

COPYMBRK: Copies master brick master[J to new master brick new...mbrick[J.
COPYMBRK·O

38

FUNCTIONS TO READ AND WRITE PLANES OF DATA

GETPLANE: get a plane
offset --+ offset in the disk file (in bytes)
buff --+ the address of the buffer containg the data
length --+ the length of the data to be read (in bytes)
fnr file number (1 to 6 in Fortran, 0 to 5 in C)
GETPLANE-(offset, buff, lengtb, Inr)
int *offset, *buff, *length;
long *fnri

PUTPLANE: writes a plane to the file with file descriptor fd[*fnr - 1]
ffset --+ offset in the disk file (in bytes)
buff --+ the address of the buffer containg the data
length --+ the length of the data to he written (in bytes)
fm --+ file number (1 to 6 in Fortran, 0 to 5 in C)
PUTPLANE-(offset, buff, lengtb, 1m)
iut *offset, *buff, *length;
long *fnr;

FUNCTIONS FOR ENTRY MANIPULATION

MGETENTRY: extract the electron density and the mask for the point (1. j, k) in the current
master brick.
MGETENTRY_(i, j, k, Iden, mask)

iut
unsigned
float

*i, *j, *k;
*mask;
*fdeu;

GETENTRY: For options other than 8 and 14 : extracts the density and the mask for the point
(i, j, k) in the brick with virtual number bvn (llrings in the brick first, if it is not already here) and
returns them in fden and mask.

For Options 8 and 14 : if the brick vith virtual number bvn is not here, brings it in from the
output data file in the cfs ; if the corresponding brick frame was containing a valid brick, writes
that one to the output data file in the cfs ;extracts the density and the mask for the point (i, j, k)
in the brick that has been brought in, and returns them in fden and mask.

fnr ---+ file number (1 to 6 in Fortran, 0 to 5 in C).
GETENTRY..(i, j, k, bvn, fden, mask, fnr)

39

int
unsigned
float
long

*i, *j, *k, *bvn;
*mask;
*fden;
*fnr;

MPUTENTRY: places the density and the mask for the point (i, j, k) in the new master brick.
MPUTENTRY_(i, j, k, Iden, mask)

int *i, *j, *k;
unsigned *mask;
float *fden;

PUTSLAVE: writes the density and the mask from fden and mask respectively, corresponding to
point (i, j, k) from the brick with virtual number bvn, into this brick; the brick should be in
memory (error, otherwise).
PUTSLAVE_(i, j, k, bvn, fden, mask)
int *i, *j, *k, *bvn;
unsigned *mask;
float *fden;

FUNCTIONS FOR MANIPULATING THE FILE HEADER

GETHEAD: this function is called only by node 0 ; reads into array rec10, the first record from
the input data file in the cfs ; this is a synchronous (blocking) call fur -+ file number (1 to 6 in
Fortran, 0 to 5 in C).
GETHEAD_(rec1,lm)

char *rec1;
long *fnr;

PUTHEAD: This function is called only by node 0; writes the first record from the input data file
(in the cfs), from the array rec1D into the output data file in the cfs, also, writes the current date
and time into the header the file; it is a synchronous (blocking) call fnr --> file number (1 to 6 in
Fortran, 0 to 5 in C).
PUTHEAD_(recl,lm)

FUNCTIONS FOR DETERMINING THE BRICKS TO BE STORED
AND/OR PROCESSED BY EACH NODE

COUNTH: function to record the number of points in the h-cell bricks, situated at a distance larger
than radout from the center of the h-cell.
COUNTH_(bid, hent)

int *bid, *hcnt;

40

BRICKLIMS: for Options 3,9, 11, 14, 15 , with order =. 0 (call preceding pcount) : all nodes
compute the limits for the p-cell bricks to he processed by each node (Array rangeOm ; the bricks
are evenly distributed to the nodes if imode =. 1 (only in the DAN mode) : node 0 computes the
limits for the p-cell bricks to be stored by the nodes, (array boundOo), and the node on which each
brick can be found, given by its relative number inside the group of nodes it belongs to ; node 0
then sends these two tables to all the other nodes, which receive them; all nodes call brickdistrO
to bring in the bricks they have to store fnr --+ file number (1 to 6 in Fortran, 0 to 5 in C)

For Options 3, 9, 11, 14, 15 , with order =. 1 : node 0 computes the limits for the bricks to be
processed by each! node (array rangeOm, node 0 then sends this table to all the other nodes, which
receive them; bstart and bend get the limits of the range of bricks to be processed Note: the first
integer in pbrcnt[] represents the total number of protein points to be processed ; the following
ones are the numbers of protein points in each brick (the array may not be entirely used)

For Options 2 and 13 (should only be called with order == 1) : all nodes compute the limits for
the p-cell bricks to be processed by each node (array range[][J) ; the bricks are evenly distributed
to the nodes all nodes compute the limits for the h-cell bricks to be stored by each node (array
bound[lD) ; the bricks are evenly distributed to the nodes

For Option 4 (should only be called with order == 1) : all nodes compute the limits for the p-cell
bricks to be processed by each node (array rangeOm j the bricks are evenly distributed to the nodes
all nodes compute the limits for the p-cell bricks to be stored by each node (array boundOo) ; the
bricks are evenly distributed to the nodes

For Options 7 and 10 (the value of order does not matter) : all compute the limits for the bricks
(p-cell or h-cell in Option 7, only p-cell in Option 10) to be stored by the nodes (array boundOm

For Option 12 (should only be called with order == 1) : node 0 computes the limits for the
h-cell bricks to be processed by each node (array rangeOD, according to the relationship between
radout, and the dlstances from the points in the h·cell to the center of the h-cell), then it computes
the limits for the range of p-cell bricks to be stored by the nodes, (array bound[][J), and the node
on which each p-cell brick can be found, given by its relative number inside the group of nodes it
belongs to ; bstarth and bendh get the limits of the range of h·cel! bricks to be processed; for the
DAN option, all nodes call brickdistrO to bring in the p-cell bricks they have to store fnr --+ file
number (1 to 6 in Fortran, 0 to 5 in C).
BRICKLIMS_(nbr, nbrh, bstart, bend, PBRCNT..F, fnr, order)

int
int
long
int

*nbr, *nbrh, *bstart, *bend;
*phrcnt..F;
*fnr;
*ordcr;

psize
slabw
nslab
slabsz
lastsw
lastssz
maxstack

FUNCTIONS FOR THE INTERRUPT MECHANISM USED
TO TRANSFER BRICKS BETWEEN NODES

INITTRAP: posts hrecv-s for messages of length *len, from all the nodes in the group of igroup
nodes.
INITTRAP_(jam, nnades, len)

iut *iarn, *nnodes, *len;

ENDTRAP: send the value -1 ('shut' message) to all the nodes in the group of igroup nodes.
ENDTRAP R(iam, nnodes, len)

iut *iam, *nnodes, *len;

FUNCTIONS USED TO IMPLEMENT THE 'SNAKE' ORDER

WIND: sets the 'snake' order for the bricks, in array realJndexO void.
WIND.(m, n, p)

iut *m, *u, *p;

REALINDEX: returns in reJnd the real index (= virtual number) for the ind-th brick, in the
'snake' order void.
REALINDEX_(ind, reJnd)
iut *ind;
iut *rejnd;

FUNCTIONS FOR CONVERSION FROM BRICKS TO SLABS

YSLAB: Given a mesh of nx x ny x nz points and the amount of memory available in a node.
MAXMEM / 2 Compu'e,

plane size (bytes)
slab width (number of planes the node can hold)
total number of slabs
slab size (byes)
last slab width
last slab size
number of slabs that can be prepared by node 0

PUTSLAB: number fm

MISCELLANEOUS FUNCTIONS

INITADDRTR, INITADDRTR.O

42

COPYFILE: this function is called only by node 0; copies (using synchronous cread-s and cwrite-s)
the input data file; in the cfs, into the output data file in the cfs.
COPYFILE.(fnrl, fnr2)
long *fnr1;
long *fnr2;

UPDATE: sets to 0 the usage counter for all non· master brick frames.
UPDATKO

BRlCKFLTS: prints the current numbers of brick faults and of master bricks; read/written.
BRICKFLTS·O

GETFLT: returns in 'total' the current number of brick faults (it is used to transmit this value
from the C to the Fortran environment).
GETFLL(tolal)

int *total;

SETMARK: transmits the mode and the group size from the Fortran to the C environment.
SETMARK.(mod, grp)
lnt *mod, *grp;

SETOPT: transmits the option number from the Fortran to the C environment.
SETOPT.(opl)

int *opt;

GETDATE: returns in tyme and date, the current time and date, in the format 23:59:59 10/31/92.
GETDATK{lyme, date)

43

References

1. Rossmann, M. G., R. McKenna, L. Tong, D. Xia, J. Dai, H. Wu, H. K. Choi, and R. E. Lynch,
l<Molecular replacement real-space averaging," J. Appl. Crystallogr., 25 (1992), 166-180.

2. Marlnescu, D.C., J.R. Rlce, M.A. Cornea-Hasegan, R.E. Lynch, M.G. Rossmann, "Macro­
molecular Electron Density Aveaging on Distributed Memory MIMD Systems," Concurrency:
Practice and Experience, Vol 5(8),1993, pp. 635-657.

3. Cornea-Hasegan, M., D.C. Marinescu and Z. Zhang, "Data Management for a Class of It­
erative Computations on Distributed Memory MIMD Systems," Concurrency: Practice and
Experience, 1994, (in press).

	The Parallel Envelope
	Report Number:
	
	Authors

	tmp.1307986960.pdf.WSxnx

