Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1994

SBL- The Structural Biology Language

Marius A. Cornea-Hasegan

Dan C. Marinescu

Report Number:
94-008

Cornea-Hasegan, Marius A. and Marinescu, Dan C., "SBL- The Structural Biology Language" (1994).
Department of Computer Science Technical Reports. Paper 1111.
https://docs.lib.purdue.edu/cstech/1111

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SBL - THE STRUCTURAL BIOLOGY LANGUAGE

Marius A. Cornea-Hasegan
Dan C. Marinescu

CSD-TR-94-008
February 1994

SBL - The Structural Biology Language *

Marius A. Cornea-Hasegan
Dan C. Marinescu

February 6, 1994

Abstract

5B is a problem solving environment for structural biology. At the present time,
it consists of programs for Iterative Flectron Density Averaging, IEDA, programs for
optical data processing, and graphics support. SBL is a problem description language
allowing a structural biologist to speci{ly complex execution sequences for programs in
SB. Currently, it supports execution of programs from the IEDA suite, on distributed
memory MIMD systems.

Contents
1 The Structural Biology Language (SBL)

2 The Structure of an SBL Program
2.1 Symbols and Separators L e e
2.2 Comments L L e e e e e e e e e e e
2.3 Data Types and Declarations in SBL
24 Constants e e e e e e

“This research is supported in part by the NSF under grants CCR-9119388 and BIR-9301210

S O e

8

9

2.5 Built-in Procedures
2.6 Built-in Functions L
2.7 Imput/Output
2.8 Operators e
2.9 Statements. e e e e,

Sample SBL Programs

The SBL Compiler
4.1 The Command Line Version v v v .

Running SBL Programs. Stopping and Resuming the Computation
5.1 The Command Line Version

Internals of the SBL Program Execution
The SBL Reference Manual
Checkpointing and the Restart Mechanism

Auxiliary SB Procedures

10 The SBL Compiler Implementation

10.1 The Lexical Analyzer
10.2 The Syntactic Analyzer (The Parser)
10.3 Data Structures

10.5 The SBIL Compiler and the User Interface
10.6 Functionality Extensions

11 SB User Interface Support for SBL Program Execution

12 References

13

16
16
17

18
18
19

19

23

25

34

37
38
39
39
47
47
48

48

56

1 The Structural Biology Language (SBL)

The Structural Biology Language allows o simple description of an ezecution sequence for
programs in the 5B problem solving environment. SBL is a Problem Specification Language,
limited to a set of language constructs that allow structured programming, and place it closer
to the high-level Algol-like languages.

Two categories of programs from the SB environment can be invoked {rom an SBL pro-
gram:

(a) processing programs, like Envelope, FFTinv, Recip, FFTexp, FFTsynth, and Rota-
tion. More programs will be included as the SB environment evolves.

(b) auxiliary programs, designed to support the appropriate sequencing of the programs
in the first category, to test some of their output, and to transform part of the control
input data for these programs. At the present time, this category includes the programs
Converged, Phaseextl, and Phaseext2. A description of these programs follows.

The SBL also includes a minimal set of data types, operations and sequencing constructs
that allow a concise description of the processing flow. The possibility of executing each of
the SB programs from the command-line is still kept intact.

The main advantages of using the SBL for specifying the execution of SB programs are:

- a given processing sequence can be specified in a very simple way; the user is relieved
of the task of knowing the commands necessary to run it on a given machine (several
target machines will be supported, including the iPSC/860, the Paragon, and also Sun,
IBM RS6000, and SGI workstations; currently, only the iPSC/860 and the Paragon
versions are operational).

- multiple nested iteralions, and two different levels of phase extension used for Iterative
Electron Density Averaging, IEDA, can be executed without user intervention; the
user can examine partial results, but does not have to specifically initiate each compu-
tational siep.

- the user can stop the computation at any time, and then restart it; the same holds true for
the case when the computational process was interrupted, e.g. because of a hardware
failure, or because the allocated running time was exhausted: it can be resumed at any
time later, without any other loss than possibly re-running part of one SB program.

- the user can backup a number of computational steps (up to one innermost cycle for
iterative computations), by editing a log file that is generated by the compiled SBL
program (see §6, 'Internals of the SBL Programs Execution’).

- the execution of a sequence of SB programs will stop as soon as one of them fails, insuring
data integrity in this way; the user can then determine and remove the cause of the
failure, and restart execution as if nothing has happened.

Every SBL program is compiled into a UNIX shell script (UNIX command list), which
is able to control execution for the sequence of IEDA programs.

Compilation of an SBL program can be done either from the UNIX shell level, using
the command-line version of the compiler, or from the SB User Interface, as described in a
subsequent section.

2 The Structure of an SBL Program

An SBL program consists of declarations, followed by executable statements. The decla-
ration section can be omitted if no variables are used, but the statements part is compulsory.
Moreover, there has to be at least one call to an SB program (envelope, fftinv, recip,
fftexp, or fftsynth) for a successful compilation. Note the equivalence between the names
of the SB processing and auxiliary programs supported in the language, and their SBL
counterparts:

5B Program SBL Name

Envelope envelope
FFTinv fitinv
Recip recip
FFTexp fitexp
FFTsynth fitsynth
Rotation rotation
converge converged
phaseextl phaseextl
phaseext2 phaseext2

2.1 Symbols and Separators

Identifiers in SBL consist of letters, digits, and the underscore character. The first charac-
ter has to be a letter, and the last character cannot be an underscore (), these cases being
reserved for special identifiers defined by the SBL compiler.

The separator used for declarations or statements, is the semicolon (;). The colon (:)
is used to separate a variable list and the keyword specifying the data type in a variable
declaration. The comma (,) is used to separate multiple variables in a variable declaration,
or the arguments to a procedure or function (only built-in procedures and functions are
provided).

2.2 Comments

Comments in SBL are strings of characters delimited by ‘/*’, and “«/’. For example:

/* This is a comment */

/%
This is another comment

*/

2.3 Data Types and Declarations in SBL

lrour data lypes are supported: integer, real, string, and boolean. User defined data types

are not allowed. The following subsections on data types also illustrate the use of the
declarations in SBL: a variable name, or a sequence of variable names separated by commas,
are followed by a colon, and a keyword designating the data type.

The SBL is a strongly typed language, and it allows only safe expressions.

All variables declared in an SBL program are automatically initialized to a default value:
0 for integers, 0.0 for reals, false for boolean variables, and the empty string *” for string
variables.

Integer

The variables of type integer are declared using the keyword integer. In the following
examples, 1, j, int_var, and I are declared as integer variables:

i, j, int_var : integer;
I : integer;

Arithmetic and relational operations are possible on variables of type integer, that can
also be mixed with integer constants.

String

String variables are provided only as a convenience, e.g. when long path names are to be
passed as arguments to the SB procedures and functions. Only one assignment is allowed to
each string variable in the program. String constants are double-quoted strings of characters
(any characters except double-quotes). Examples of string variable declarations are:

outfile : string;
envexec(l, envexec, envcntlin8, enventlin9, envcntlin893 : string;

String constants are of type string, and can be mixed with string variables. The only
operations that can be performed on strings, are testing for equality, or non-equality.

Boolean

Boolean variables are provided to retain the values returned by the boolean functions of
the SBL. Conditional expressions can then be built using also the boolean constants true
and false. The operations that can be applied, are the logical operations, the equality, and
the non-equality tests. The following are boolean variables:

hasconv, extlposs : boolean;

Heal

The real type variables are declared using the keyword real:
incr, delta : real;

The real constants are also of type real. The real variables and constants are mainly
used to be passed as arguments to the SB equivalents of the built-in functions. The only
operations that can be performed on real quantities, are the equality, and non-equality tests.

2.4 Constants

Constants of the types provided for variables, are supported by the SBL. Some examples
are:

constants of type integer: 3, 33, -25, 0
- constants of type string:

"/home/ipscgate/n10/userx/cycle/fftinv.in",
"/home/ipscgate/cryst/Prog/i860/Envelope/Vi/1.2/Envelope”,
"my_own constant, quite peculiar"

constants of type boolean: true, false
constants of type real: 3.14, 0., .0, 0.0001

2.5 Built-in Procedures

The built-in procedures are the SBL correspondents of the processing programs recognized
by SB: envelope(), fftinv(), recip(), fftexp(), fftsynth(), and rotation().

All the built-in procedures lake three arguments of lype string, i.e. string variables, or
string constants. The three slrings represent, in order, the paths for the ezecutable program,
the control input file, and the control oulput file of the respective program.

The built-in procedures cannot be mixed in any kind of expression, or assignment state-
ment. The parentheses are required to follow the built-in procedure name, even if no argu-
ments are used.

The arguments to a built-in procedure are all of type ‘value’. For example, the following
declarations and call illustrate the invocation of the envelope() procedure:

outfile : string;
envexec0, enventlin® : string;

/* assign values to envexec0, envcntlin8, ontfile */

envelope(envexeco, enventling, ountfile);

2.6 Built-in Functions

The built-in functions arc all of type boolean, and correspond to auziliary SB procedures,
meant to help in the proper sequencing of the SB processing programs. As for the built-in
procedures, the built-in functions use the ‘call-by-value’ mechanism.

Currently, three built-in boolean functions used by the iterative electron density averaging
are avallable: converged(), phaseext1(), and phaseext2(). None of these functions can
appear in boolean expressions. The values returned have to be assigned first 1o boolean
variables, that can be used then in boolean expressions, in combinalion with other boolean
constants, variables, or expressions.

The function converged() takes one real argument, variable, or constant, that is the
increment for which the overall correlation coeflicients have to be tested after a call to
recip(), in order to determine if convergence has been reached in the iterative electron
density averaging process at a given resolution.

The function returns true if convergence was reached, and false, otherwise.

For example, if delta is a real variable of value 0.005, then the call

converged(delta)

returns true if the values of the overall correlation coefficients in the last two calls to recip(),
differ by less than 0.005 (convergence was reached), and it returns false otherwise.

The phaseext1() function performs phase exiension after convergence has been reached
at a given resolution, but maintaining the grid size and the mask file. A new value is
computed for the upper resolution of the structure factors, and is written out to the control
input files for the I'IF'Tinv, Recip, and FFTexp programs. New values are also computed for
the structure factor indices, hmax, kmax, and lmax, and are written out to the control input
file for the FFTinv program.

The function takes four arguments: three arguments of type string, representing, in
order, the paths for the control input files for FFTinv, Recip, and FFTexp programs, and
one real argument (constant, or variable), that represents the increment used in computing
the new values of hmax, kmax, and 1lmax. Assuming for example that incr is the real variable
(having e.g. the value 1.0, assigned to it previously), and that inventlin, reccntlin, and
expcntlin are the three string variables, then phaseext1() is invoked as:

phaseextl(invcntlin, recentlin, expentlin, incr)

The function returns true if phase extension is possible at the given grid size, and
false, otherwise. If phase extension is possible, then as a side effect, the control input files
are modified.

As for the converged () function, the value returned by phaseext1() has to be assigned
to a boolean variable before being tested or used in a boolean expression of any kind (see
the section on the ‘Assignment Statement’ below).

The function phaseext2(), is provided to perform phase extension when the current
grid size does not allow the use of phaseexti() anymore. This has to be combined with the
generation of 2 new mask, too. This function is not operational as of Jan 12, 1994, in that it
has no equivalent in the set of SB support programs. From the SBL point of view, though,
it is equivalent to the phaseexti() function, which will allow an easy implementation of the
operational phaseext2().

For more information about these auxiliary procedures, see §9, the section on ‘Auxiliary

SB Procedures’.

2.7 Input/Output

There is only one I/O function in SBL, print (), that writes to the standard output. There
is no function to read from the standard input, or to write to the standard error output. All
input data has to be provided through assignment statements.

The print() function takes any number of arguments, variables, or constants, of any
type. At execution, the constants are printed as they are at the standard output. For
variables, their values are printed. A newline character is automatically appended at the
end. For example, assuming that p is a real variable having the value 3.14, and i is an integer
of value 25, the call:

print("The value of i is ", i, " and of p is ", p,
“ ; p is larger than ", 3);

will print:
‘The value of i is 25 and of p is 3.14 ; p is larger than 3’

The print function has to appear in a stand-alone statement, as in the example above.

2.8 Operators

The operators supported in SBL are arithmetic, relational, and logical.

Arithmetic Operators

‘The binary arithmetic operators are plus (+), minus (-), times (%), div (/), and modulus
(%), with the obvious meanings. The minus (-) is also a unary operator. The arithmetic
operators can only be applied to integer variables and constants. For example, if i and j are
integer variables, then the following is a valid arithmetic expression:

(i) 4 7) + ((3 *5) / (~4) - 3)

Relational Operators

The equality operator (=), and the non-equality one (<>>) are binary operators that can
be applied to any two arguments of the same type (integer, real, string, or boolean). The
result is a boolean expression.

See the section on ‘Operators, Precedence, and Associativity’ below, in order to decide
if these expressions need to be parenthesized, depending on the context of their use.

The other relational operators are also binary, but can only be applied to integer operands.
These are ‘less than’ (<), ‘greater than’ (>>), ‘less than or equal to’ (<), and ‘greater than
or equal to’ (>).

Logical Operators

The logical operators are and, or (binary), and not (unary). They can be applied only
to boolean operands (constants, variables, or expressions), and the resulting expression is of
type boolean.

Operators, Precedence, and Associativity

A summary of the SBL operators, their type, the type(s) of their argument(s), the type
of the result, and the operator’s precedence, is:

Operand Type Argument(s) Result Precedence

- unary integer integer 4
* [, % binary integer integer 4
+, - binary integer integer 3
<, >, <, > binary integer boolean 2
=, <> binary integer, boolean 2

real,

boolean,

string
not unary boolean boolean 1
and, or binary boolean boolean 0

Some of the operators are non-associative, and therefore need to be fully parenthesized
when used in combination with other operators of the same precedence, while other operators
are left-associative. The non-associative operators are the logical not, the relational ‘=1,
‘<>’ <, 'L, > and >, and the arithmetic unary . The left associative operators are
the binary arithmetic ‘+’, ©-*, “«’, */’, and ‘%’, and the logical and and or.

For example, if 2 and b are boolean variables, then the expression:

a and b or not a and not b

is equivalent to the following expression:
((a and b) or (not a)) and (not b)

To have the expression evaluated as it would be in languages where the precedence of
the and operator is higher than thal of the or operator, some parentheses are necessary, as
shown below:

(a and b) or (not a and not b)

2.9 Statements

A statement is either a simple statement, or a list of statements. Simple statements are
terminated by a semicolon (;). These are: the null statement, the assignment statement, the
procedure call, the while statement (the only repetitive statement), and the if statement
(the only conditional statement).

Null Statement

The null statement is used if a branch of an if statement does not contain anything
else, or if the body of a repetitive statement (while) needs to be empty. The null statement
does not have any effect, and its syntax is:

null;

Assignment Statement

The assignment statement describes actions to be performed on the SBL program’s data.
It specifies that a newly computed value (or a constant) is to be assigned to a variable. The
left-hand side of an assignment statement contains a variable name. The assignment symbol
=" follows, and the right-hand side contains either a constant, or an expression built by
means of the SBL operators. If the lelt-hand side represents the name of a variable of type
string, then the right-hand side needs to be a constant. This happens because the string
data type is provided only to allow ‘shorthands’, in the form of variable names, for constants
represented by long strings of characters. If the left-hand side of an assignment statement
contains the name of a variable of type real, then the right hand side can only be a constant

10

or a variable of type real, as no expressions built with the SBL operators yield values of type
real. If the left hand side of an assignment statement is a variable of type boolean, then the
right hand side can only be a boolean constant, or a built-in function of type boolean.

Expressions of type boolean are allowed as conditions for the conditional, and for the
repetitive statements, while expressions of type string or real cannot be used in SBL pro-
grams.

If the variable on the left-hand side is of type integer, then compound expressions are
also allowed on the right-hand side. A few examples of assignment statements are following,
preceded by the respective variable declarations:

i, j, k : integer;
b, c, d : boolean;
P, q : real;

s, t, u : string;

= 16;

= (@ %5 -3 % /3))/ E-2)+s6;
=1:

= 0.001,

= 3.1415926;

= converged(p);

:= converged(0.0005);

:= "/home/sampson6/cryst/TESTV1.2/fftinv.in";
:= "/home/sampsoné/cryst/TESTV1.2/recip.in";
:= "/home/sampson6/cryst/TESTV1.2/fftexp.in";
:= phaseexti(q, s, t, u);

AE G0 0 o0Y RO L

Built-in-Procedure Call

A procedure call to a built-in SB procedure like enrvelope, £ftinv, recip, fftexp,
fftsynth, or rotation, can only occur in a statement of the form:

envelope(execpath, cntlinpath, cntloutpath);

In this example, execpath, cntlinpath, and cntlontpath are the paths (in the form
of string variables, as assumed here, or in the form of string constants), of the Envelope
executable program, of the control input file, and of the control output file. Internally, the
procedures are of type void (which does not have to be explicitly declared), and do not match
the types of any other SBL variables.

Repetitive Statement

The repetitive statement has the syntax:

11

while (condition) loop
statement list
end;

where ‘condition’ is a boolean expression, and ‘statement list’ is a simple statement, or a list
of simple statements, which constitutes the body of the while loop. The statement list is
executed 0 or more times, depending on the logical value of the condition, which is evaluated
before entering the body of the loop.

Conditional Statement

A conditional statement has the syntax:

if (conditiom;) then
statement-list,

elsif (condition,) then
statement-list,

elsif (condition,) then
statement-list,
else
statement-1ist, 1)
endif;

The expressions condition;, conditions,... are of type boolean (boolean variables in
the simplest case).

The ‘elsif’ parts are optional, as is also the ‘else’ part, together with their respective
associated statements. The final ‘endif’ cannot be omitted, though.

A single simple statement is recommended per line of SBL source program, with the
exception of the if and while statements, for which the structure has to be the one given
in the examples above. This limitation exists because the mechanism used to restart the
program if it has not run to completion, associates the line number in the source SBL program
with each statement, and uses it when resuming execution.

If this rule is not obeyed, the program will run correctly if not interrupted, but a restart
may fail.

12

3 Sample SBL Programs

Example 1

A simple example follows, in which only one SB processing program is invoked. The
following SBL source program was created in a file named ‘example’:

/* Program start */
/* Declarations */

outfile : string;

envexec, enventlin89 : string;

/* Statements */

outfile := “all.out";
envexec := "/home/ipscgate/ul0/cryst/Prog/i860/Envelope/V1/1.2/ENVELOPE";
envcntlin89 := "/home/ipscgate/ul0/cornea/TESTV1.2/env89/envelope.inj_89";

envelope(envexec, enventlin89, outfile);

/* Program end */

The executable program to be used has the path
‘/home/ipscgate/u10/cryst/Prog/i860/Envelope/V1/1.2/ENVELOPE’,

the control input file is
‘/home/ipscgate/ul0d/cornea/TESTV1.2/env89/envelope.inj_89°

and its name suggests that it is set up for running the options 8 and 9 of the Envelope
program, while the control output file has the name ‘all.out’, and will be generated in the
current directory. In the same directory, a log file, named ‘log.out’ will be created.

The compiled version of this program will be a UNIX shell script which, when invoked,
will allocate the specified partition to run the Envelope program, and will start its execution.
The log file will contain information about the run, used also by the restart mechanism, useful
especially when more SB programs are run consecutively.

Example 2

This is a more complex example, and achieves the following tasks: runs options 8 and 9
of the Envelope program as two different jobs, then executes two nested while loops. The
inner loop runs the FFTinv program, the Recip program, and then tests for convergence {by
checking on the overall correlation coefficients from the last two runs of Recip). If convergence
was not achieved, the FFTexp program, the FFTsynth program, and the Envelope program
(options 8 and 9 as one single run), are executed next. If a certain maximum number of
iterations specified for the inner loop was reached, or if convergence was achieved, the inner

13

loop 1s left, and if phase extension at the present grid size is possible, it is performed through

a call to phaseext1() (see §2.6 on ‘Built-in Functions’ for details on phaseext1()). The

inner loop is then resumed. Both loops contain print () statements for informative messages.
The SBL source program, created say in a file named ‘cycle’, follows:

/* Program start */
/* Averaging cycle - test for the UI and the SBL compiler *f
/* Jan 12, 1994 */

delta : real;

numiter : integer;

maxiter : integer;

phase_extl_cnt : integer;
hasconv, extiposs, exit : boolean;
outfile : string;

envexecO, envexec, envcntlin8, envcentlind, enventlin89 : string;
invexec, invcntlin : string;
recexec, reccntlin : string;
expexec, expcntlin : string;
synthexec, synthcntlin : string;

delta := 0.005;

numiter := 0;

maxiter := 100;

hasconv ;= false;

outfile := "all.out";

envexecQ := "/home/ipscgate/ul0/cryst/Prog/i860/Envelope/V1i/1.0/ENVELOPE";
enventling := "/home/ipscgate/u10/cornea/TESTV1.2/env8/envelope.inj_8";
envexec := "/home/ipscgate/ulld/cryst/Prog/iB60/Envelope/V1i/1.2/ENVELOPE";
enventlin® := "/home/ipscgate/ul0/cornea/TESTV1.2/env9/envelope.inj_9";
invexec := "/home/ipscgate/ul0/cryst/Prog/i860/FFTinv/V1/1.0/n0/NODEO";
inventlin := "/home/ipscgate/uid/cornea/TESTV1.2/fftinv/fftinv.inj";
recexec := "/home/ipscgate/ul0/cryst/Prog/i860/Recip/V1i/1.0/NODEO";
reccntlin := "/home/ipscgate/ul0/cornea/TESTV1.2/recip/recip.inj";
expexec := "/home/ipscgate/wl0/cryst/Prog/i860/FFTexp/V1/1.0/NODEO";
expcntlin := "/home/ipscgate/ul0/cornea/TESTV1.2/fftexp/fftexp.inj";
synthexec := "/home/ipscgate/ul0/cryst/Prog/i860/FFTsynth/V1i/1.0/NODEO";
synthentlin := "/home/ipscgate/ul0/cornea/TESTV1.2/fftsynth/fftsynth.inj";
enventling9 := "/home/ipscgate/ul0/cornea/TESTV1.2/env89/envelope.inj_89";

14

envelope(envexecO, enventlin8, outfile);
envelope(envexec, enventling, outfile);

extlposs := true;

exit := false;

phase_extl_cnt := 1;

while(extlposs = true and exit = false) loop
print ("CYCLE AT PHASE EXTENSION STEP ', phase_exti_cnt);
while(numiter < maxiter and not hascenv) loop

numiter := numiter + 1;

fftinv(invexec, invcntlin, outfile);
recip(recexec, reccntlin, outfile);

hasconv := converged(delta);
if (not hasconv) then
fftexp(expexec, expcntlin, outfile);
fftsynth(synthexec, synthcntlin, outfile);
envelope(envexec, envcntling9, outfile);
endif;
end;
if(numiter = maxiter and not hasconv) then
print ("DID NOT CONVERGE TO DELTA = ", delta, " IN ",
maxiter, " ITERATIONS");
exit := true;

else

print ("CONVERGED TO DELTA = ", delta, " IN ", numiter,
" ITERATIONS");

15

extlposs :=

phaseexti(inventlin, reccntlin, expcntlin, 1.0);

phase_extl_cnt := phase_exti_cnt + 1;
hasconv := false;
numiter := 0;

endif;
end;

print ("TERMINATED PHASE EXTENSION AT PHASE EXTENSION STEP ",
phase_exti_cnt);

/* Program end

4 The SBL Compiler

The most general definition of a compiler considers a set of pairs (x,y), where x is a source
language program, and y is a target language program into which x is translated. The set
of pairs is assumed to be known beforehand, and the compiler is the device that given x,
efficiently translates it into y. The set of pairs (x,y) is referred to as a translation. If x is
a string over an alphabet S, and y a string over D, then a translation is merely a mapping
[rom S* to D* [Aho 72].

The source language [or the SBL compiler is the Structural Biology Language (SBL)
described herein. The target language is the UNIX Shell Programming Language, with
particular constructs depending on the target machine.

The SBL compiler can be invoked in its command-line version, or from the SB User
Interface.

4.1 The Command Line Version

In the command-line version, the name to use in order to invoke the compiler, is ‘sblc’
(from ‘Structural Biology Language Compiler’). This name has to be followed by the name
of the SBL source program to compile. The compiled output is written to a file having the
same name as the input, plus the suffix ‘.e’.

The compiled program is a UNIX shell script, targeted to a specific architecture, and OS.
The compiler has several switches used to specify the target machine:

16

*/

-1 : compile for the iPSC/860 Intel hypercube
-p : compile for the Intel Paragon machine
-5 : compile for Sun workstations

-r : compile for IBM RS6000 workstations

The default is *-i’. Only the i’ and ‘-p’ flags are operational as of Jan 12, 1994.
For example:

sblc example

will result in a UNIX shell script for executing the Envelope program on an iPSC/860,
written to the file named ‘example.¢’

The following command will compile the SBL program ‘cycle’, for execution on the Intel
Paragon supercomputer:

sblc -p cycle

The output is in the file named ‘cycle.e’ in this case.

4.2 The SB User Interface version

The SB User Interface version of the compiler is invoked through a series of submenus:
‘ITERATIVE ELECTRON DENSITY AVERAGING’ from the main menu, then ‘SBL Pro-
gram’, and ‘SBL Object Program’ object selection (see figure 5, on page 49). If there exists
an SBL program object in the catalog of objects, that we want to modify, then the object
needs to be selected, and the ‘Create/Modify SBL Prog’ button opens a window, in which it
starts a copy of the ‘vi’ editor, with the SBL source program read in, and ready to modify.
If a new SBL Program is to be created, an object of type SBL has to be created first, e.g.
using the ‘New Object’ button. Then, the ‘Create/Modify SBL Program’ button can be
used too o open a window with the ‘vi’ editor started, but no file read in this time.

In either case of the two above, when the editor is quit, the SBL compiler is automatically
invoked to compile the SBL source program that was created or modified. If the compilation
is successful, the user has the possibility of viewing the compiled file, of copying it to the
(possibly remote) machine on which it will be executed, or to quit. If the compilation is not
successful, error messages are displayed, and the user has the option to edit again the file
and to recompile, or to quit at this point.

Unlike for the command-line version, the SB User Interface version of the compiler packs
the SBL source program and the compiled UNIX shell script into one file, in which the
source program appears as a comment at the beginning. When an existing program is to be
modified from the User Interface, the SBL program is unpacked from this combined file. For
this reason, a UNIX shell script compiled with the command-line version of the compiler,
cannot be used with the User Interface to extract the source program from it. In order to see
the structure of a packed file, the user can view it from the User Interface, after compilation.
The windows mentioned in the description above, are illustrated in §11, ’SB User Interface
Support for SBL Program execution’.

17

5 Running SBL Programs. Stopping and Resuming
the Computation

As for the compilation, the user can run a compiled SBL program from either the command
line, or from the SB User Interface.

5.1 The Command Line Version

Once an SBL program is compiled, the UNIX shell script that was created, can be trans-
ferred to the machine it was generated for, and then executed. The shell script name has to
be followed by a partition name, and by the number of nodes in the partition. An ampersand
at the end will run the job in the background. For example, the shell script named cycle.e,
can be run on a partition of 32 nodes, named ‘mypart’, by issuing the following command:

cycle.e mypart 32 &

Running the job in the background leaves the user with the possibility of examining
partial results, or running other jobs, too.
If the user wants to stop the execution of a job, then the command to use is:

kill %1
assuming that this was the first job started in the background.

To start the SBL program from the beginning, the log file, ‘log.out’, must not exist in the
shell script’s directory. The output file may exist, but the current output will be appended
at its end.

If the job was killed, or has exhausted the allocated running time, or stopped running
because of a hardware problem, it can be restarted by typing the command:

cycle.e &

The partition name and the number of nodes, as well as the point in the SBL program
where the execution has to resume, are all recovered from a log file, named ‘log.out’, created
in the directory that contains the UNIX shell script. Restarting the program will fail if the
log file does not exist, or if it has been corrupted.

If the user wants the job to be run even after he/she logs out, then a Bourne shell (‘sh’)
has to be started, and the ‘nohup’ command has to be used. For starting afresh the SBL
program, type:

% sh

$ nohup csh cycle.e mypart 16 &
$ exit

% logout

To restart the program, the same commands are to be used, but without specifying the
partition name, and the number of nodes. In either case, the output of the program that
would have gone to the screen, goes now to a file named ‘nohup.out’.

18

5.2 The SB User Interface version

To run an SBL program from the SB user interface, the user has to create and compile it
first, unless an existing program is used.
To start the execution of a program from the beginning, the following steps are necessary:

- Select the SBL program from the ‘SBL Program’ object selection window.

- Press ‘OK’, and the window disappears if the SBL compiled program was found on the
target machine.

~ Press ‘Done’ in the ‘SBL Program’ submenu, and the ‘Info for the SBL Program Execution’
window appears on the screen; the labels in the left hand column are also help buttons.

- Type in the partition name and the number of nodes in the partition, in the appropriate
text editors. Note that the path of the UNIX shell script is also displayed, but it
cannot be changed by the user at this point.

- Press ‘Rur’, and a window opens, displaying the output for the program execution, that
goes to the screen on the target machine; if the files in the log directory need to be
examined, a ‘cd’ has to be made to the place displayed on the screen.

- If starting program execution fails for a reason that may be corrected, the window that
was open on the remote machine may be closed; after correcting the factors that caused
execution failure, the ‘Run’ button can be pressed again.

As for the command-line version, starting a program from the beginning will fail, if the
‘log.out’ file exists in the directory containing the compiled UNIX shell script.

In order to restart an SBL program that was interrupted for some reason, the same
sequence of steps as above has to be followed, except that the partition name and the
number of nodes do not have to be specified in this case, and the ‘Restart’ bution has to be
pressed instead of the ‘Run’ button, in the ‘Info for the SBL Program Execution’ window.

6 Internals of the SBL Program Execution

One of the main advaniages of using an SBL progrem to run a sequence of SB processing
programs, is the capability of resuming ezecuiion, if it has been interrupled for some reason.
This 1s achieved by having both the SB processing programs (envelope, fftinv, recip,
fftexp, fftsynth, and rotation), and the SBL program itself, write messages to a log file.

The SB programs write to the log file only one line, at the completion of their execution.
For example, for the Envelope program, this line is:

End-of-Envelope

19

When the SBL program has to initiate execution of the SB program following the En-
velope program that has written the message above, it checks the log file for the existence
of a last line, containing the string ‘End-of’. If it is found, execution of the next program
is initiated. If nof, it means that the previous SB program (Envelope), has not cornpleted
normally, and the SBL program stops execution.

The SBL program writes to the log file some information when it completes the ini-
tialization phase (see the example below), and then, before initiating execution of each SB
processing program, it writes the current date and time, a line mdicating which program is
going to start, and also the current status of the SBL program. This helps the SBL program
‘know’ where to restart execution at a later time.

The SBL program status contains the values of all the integer, real, and boolean type
variables defined in the SBL program. The variables of type string are not included, as
only one assignment is allowed for them. All the assignments to the string variables will be
executed at a restart, without any risk.

One other piece of information completes the program status: the ‘restart line number’.
This is the line number for the line of SBL source program, that contains the procedure call
for the SB program which is going to be executed next. As an example, part of the ‘log.out’
file created by the UNIX shell script named ‘cycle.e’ is [ollowing:

Start execution of ‘/home/ipscgate/uld/cornea/TESTV1.2/gsscycle/cycle.e’
cubename m1615013 numnodes 16

End~of-Initialization

Tue Jan 25 13:25:32 EST 1994
Start of the envelope program

PROGRAM STATUS : _rln phase_extl_cnt exit extlposs hasconv maxiter numiter delta

PROGRAM_STATUS: 38 0 0 0 0 100 O 0.005000
End-of -ENVELOPE

Tue Jan 25 19:55:51 EST 1994
Start of the fftinv program

PROGRAM STATUS : _rln phase_extl_cnt exit extlposs hasconv maxiter numiter delta

PROGRAM_STATUS: 53 4 ¢ 1 ¢ 100 1 0.005000

The line containing the program status (beginning with ‘PROGRAM_STATUS’), is preceded
by a line containing the names of the variables that are saved. This makes the information
user-readable, and can be uselul in debugging operations.

20

In the example above, the last program whose execution has started, is the FFTinv
invoked on line 53 in the SBL source program. The value of ‘hasconv’ is 0, or false {con-
vergence was not reached at this step of phase extension), ‘numiter’ is 1 (the inner while
Joop is executed the first time at this step of phase extension), ‘phase_extl.cnt’ is 4 (this is
the fourth step of phase extension), and ‘extlposs’ is 1 (phase extension at the same grid
size is possible; 1 is the equivalent of true). The FFTinv program has not completed, as the
line containing ‘End-of-FFTinv’ does not appear above. Assuming that the SBL program
execution terminated at this stage of the ‘log.out’ file, it can be restarted, as indicated before,

by simply typing
cycle.e &

while in the directory containing this UNIX shell script. The ‘log.out’ file will look as follows
after execution has resumed:

Tue Jan 25 19:55:51 EST 1994

Start of the fftinv program

PROGRAM STATUS : _rln phase_extl_cnt exit extlposs hasconv maxiter numiter delta
PROGRAM_STATUS: 53 4 0 1 0 100 1 0.005000

RESTART

Wed Jan 26 18:46:53 EST 1994

End-of-Initialization

Hed Jan 26 18:46:59 EST 1994

Start of the fftinv program

PROGRAM STATUS : _rlmn phase_extl_cnt exit extlposs hasconv maxiter numiter delta
PROGRAM_STATUS: 53 4 0 1 0 100 1 0.005000

End-of-FFTINV

Hed Jan 26 18:51:05 EST 1994

Start of the recip program

PROGRAM STATUS : _rln phase_exti_cnt exit extiposs hasconv maxiter numiter delta
PROGRAM_STATUS: 54 4 ¢ 1 ¢ 100 1 0.005000

End-of-RECIP

In this example, the FFTinv program that was interrupted completes, then Recip follows,
a.s.0.

21

If the log file is somehow corrupted, the restart may fail. The user has in this case the
possibility to edit the ‘log.out’ file, so that the last line be of the appropriate type. Also,
the user can delete a number of lines at the end of this file, which is equivalent to backing
up a number of steps in the computation (one ‘step’ meaning here the execution of one SB
processing program).

A special case may occur though. A problem arises if the execution of the SBL program
was interrupted by some external cause after an SB processing program has completed, but
before the next one has started. This situation, which is very unlikely to occur (for the
iPSC/860 the host machine, and for the Paragon system, the service node would have to
fail for this to happen), can be corrected by the user in two possible ways, both involving a
modification to the log file (‘log.out’). The first possibility is to delete the last line in the log
file (the one containing ‘End-of-...), but this would mean re-running the last SB processing
program, that completed successfully. The second possibility requires more care from the
user: a group of 5 lines can be added (actually, only the last one is necessary), as if the
executlon of the next SB processing program had started, but not completed:

USER ADDED 4 LINES
Tue Jan 26 22:00:00 EST 1994
Start of the fftinv program

PROGRAM STATUS : _rln phase_extl_cnt exit extlposs hasconv maxiter numiter delta

PROGRAM_STATUS: 53 4 0 1 0 100 1 0.005000

In this example, we assumed that the FFTinv invoked by the fftinv() on line 53 was the
next to start, and we have computed and saved the restart line number and the variable
values, as if the SBL program had been executed up to line 53 in the SBL source program
(the one containing the call to the fftinv() built-in procedure).

The atomicity of the SBL program execution is at the level one SB processing program.
Each such program uses input data files of which at least some may be created by other
SB programs executed previously, and generates usually one data output file. Therefore,
when interrupted, and then restarted, an SBL program will re-execute at most part of one
SB processing program (and some SBL statements that do not involve the SBL processing
programs).

When backing up a number of steps in the computation, the availability of the input
data files has to be taken into consideration. I'or iterative computations, the output data
files are overwritten. Hence, unless other special arrangements are made, the user can only
back up a number of steps equal to the ‘size’ of the innermost while loop.

22

7 The SBL Reference Manual

A description of the contezl-free grammar, cfg, defining the SBL follows, in an extended
BNF (EBNF) notation.

Recall that a context-free grammar is a restricted grammar, with productions satisfying

certain conditions.

The context-free grammar is defined as a quadruple G = (N, £ P,S), where:

- N is a finite set of non-terminal symbols (also called variables, or syntactic categories)

- ¥ is a set of terminal symbols, disjornt from N

- P is a finite subset of

N X (N U £)*

An element (@, f) in P is written as @ — 3, and called a prodnction.

- S is a distinguished symbol in N, called the sentence (or start) symbol

The notations used in our EBNF description are:

<XK>

[x]
{x}
(xlyl=)

non-terminal symbol

terminal symbol

optional symbol, that may occur 0 or 1 times
symbol repeated 0, 1, 2, ... times

exactly one of the symbols x, y, or z must appear

The cfg in EBNF notation follows:

<program>
<stmtlist>

<statement>

<declarations><stmtlist>
<statement>{<statement>}

null ;
<l-expr> := <r-~expr>;
<l-expr> ([<r-expr>{, <r-expr>}]);
if <r-expr> then <stmtlist>
{ elsif <r-expr> then <stmtlist> }
[else <stmtlist>]
endif ;
while <x-expr> loop
<gtmtlist>
end ;

23

<l-expr> = lidentifier
<r-expr> = <l-expr>
<constant>
= <1l-expr> ([<r-expr>{, <x-expr>}])
= <r-expr> <binop> <r-expr>
= <unop> <r—expr>
= (<r-expr>)
<constant> = <integer-constant>
<real-constant>
<string-constant>
= <boolean-constant>
<declarations> ::= {<vardecl>}
<vardecl> = {identifier , } identifier: <typedesc>;
<typedesc> = integer
= real
= boolean
= string
<identifier> = <letter>{<letter>[<digit>|_}(<letter>|<digit>)
<letter> = A|B|...|Z]|a]b...|z
<digit> = 0|1]...]9
<intconst> = <digit>{<digit>}
<realconst> = <digit>{<digit>} . {<digit>}
= {<digit>} . <digit>{<digit>}
<booleanconst> ::= true | false
<stringconst> = " {(<letter>|<digit>[<printchar>)} »
<primtchar> = |1 | @) # [8 [B [A& *[(|)]-]-

=101 040yt 00 10 <]>

24

TN~

+l-0Ixl /1R <I>]<=]>=|=]<
and | or

<binop>

<unop> - | not

For the translation from SBL to the UNIX shell programming language, the above descrip-
tion only specifies the syntactic mapping. The latter associates with each input (program
from the source language), some structure which is in the domain of a second relation, the
semantic mapping. This associates with the syntactic structure of each input, a string in
some language (possibly the same language), which is considered to be the meaning of the
original language. The semantics of the SBL have been described in plain English, in the
section on the ‘Structure of an SBL Program’. A more formal description can be given, but
will not be included here.

8 Checkpointing and the Restart Mechanism

The existence of a restart mechanism, equivalent to the checkpointing mechanism in other
programming environments, is one of the most important features for which the SBL and
the SBL compiler have been designed. The atomicity of the SBL programs is at the level of
the SB processing programs. If the execution of an SBL program was interrupted and has to
be restarted, at most part of the SB program that was being executed when the interruption
occured, will be repeated at restart. This is possible, as each SB processing program writes
out data that is to be used (in general) by the next SB processing program.

The mechanism used to insure a correct restart at the point where the execution was
interrupted, is based on saving the SBL program status, and the restart line number, before
starting the execution of each SB processing program. The restart line number (RLN), is
the line number in the SBL source program, of the built-in procedure call that corresponds
to the SB processing program.

Given an SBL source program of the form:

<declarations>
<stmtliat>

the result of the compilation corresponds actually to a modified SBL source program, de-
scribed here in pseudo-code (the pseudo-code parts are capitalized):

<declarations>
RLN : integer;

25

if (IT_IS_A_RESTART) then

RESTORE PROGRAM STATUS AND THE RLN FROM THE LOG FILE
else

RLN := 0
endif

<augmented_stmtlist>

The augmented statement list contains the original list of statements, in which the as-
signment statements, the repetitive, the conditional statements, and the built-in-procedure
calls are modified as shown below, in a recursive definition.

Formally, this augmentation process can be represented as a set of productions:

<augmented-stmtlist> ::= <augmented-statement>{<augmented-statement>}

<augmented-statement> ::= null;
= <augmented-assignment-statement>
;1= <augmented-if-stmtd>
<augmented-while-stmt>
::= <augmented-procedure-call>

The augmented statements on the right-hand side are derived from the the non-augmented
ones, as described further for each case. The representation ol the ‘augmented’ productions
exceeds the possibilities offered by the context-[ree grammars, as the augmented statements
depend on attributes that are not dependent on the sets of terminals and non-terminals used
in the language. In particular, the augmented statements depend on the position, repre-
sented by a line number, of the original statements in the SBL source program. Therefore,
the augmented statements will be presented here in contrast with the respective original
SBL statments.

An assignment statement, that was on line n; in the SBL source program (the line
numbers will be dispalyed at the left, for clarity):

nq <l-expr> := <r-expr>;
is translated as:

if (RLN <=mn;) then

26

<l-expr> := <r-expr>;
endif;

A repetitive statement:

ny while (cond) loop
<gtmtlist>
g end;
becomes:

while(((cond) and RLN = 0) or (RLN >=n,; and RLN <= ny) loop
<augmented_stmtlist>

end;

A conditional expression of the form:

ng if {condl) then
<stmtlist>;
ns elsif (cond;) then
<stmtlist>,
ns elsif (conds)} then
<stmtlist>j
oy else
<stmtlist>y
endif;

is translated as:

27

if (((comd;) and RLN = 0) or (RLN >= ny and RLN < n;)) then
<augmented-stmtlist>,

elsif (((condy) and RLN = 0) or (RLN >= mn; and RLN < n3) then
<augmented-stmtlist>,

elsif (((condz) and RLN = 0) or (RLN >= n3 and RLN < n4)) then

<augmented-stmtlist>;

else
<augmented-stmtligt>y

endif;

Finally, a call to a built-in procedure is also augmented. A call to print is treated as if
it were an assignment statement. For the other calls (to envelope, fftinv, recip, fftexp,
fftsynth, or rotation), the initial call:

np: <1l-expr> ([<r-expr>{ , <r-expr>}]) ;
is treated as:

if (RLN <= n;) then

SAVE PROGRAM STATUS AND RLN
<l-expr> ([<r-expr>{ , <r-expr>}]) ;
RLN := 0Q;

endif;

If the SBL program is executed from the beginning (not as a restart), the value of RLN
is initialized to 0. This means that all the statements in the modified SBL program (with
augmented statements), are executed exactly as in the original SBL program (with non-
augmented statements).

If the SBL program is executed as a restart, the program status and the restart line
number RLN are restored {rom the log file. These were saved right before starting the
execution of the SB processing program whose completion was not successful.

28

In this case, all the statements in the SBL program are skipped up to the built-in proce-
dure call for which the program status and the restart line number were saved last. Execution
starts there, and when the 8B program that is executed again completes, the restart line
number, RLN, is assigned the value 0. This means that from here on, the execution of the
SBL program with augmented statements, follows identically that of the original SBL source

prograitn.

It is clear that the restart mechanism works correctly, even in the cases where the restart
point is inside the body of a repetitive statement, or in the body of a conditional statement.

As an example, consider the following SBL source program, with the line numbers dis-
played at the left. While this is not a real application SBL program, it illustrates most of
the aspects related to the implementation of the restart mechanism in the SBL programs:

W W0 ~N O U N =

&R A A A R OB R N N P P R B B R
W Oo~NGUd WK PO ORI ONO P WNRD

/* Example for illustrating the restart mechanism
1 : integer;

delta : real;

b, ¢, d, e : boolean;

enve, envi, envo :@ string;

null;

delta := 0.0005;
b := converged(0.01);

converged(delta);

c
d :
e

if (((b and c¢) or (not b and not ¢)) and e) then

i:=2;
elsif (¢) then
i:=3;
elsif (e) then
i:=4;
else
i:=5;
endif;
enve := "envexec";
envi := "envcntlin";
enve := "envcntlout";
i:=1;

29

*/

phaseext1("imnvcntlin", "rececntlin", "expcntlin", 1.0);

phaseext1("inventlin", "reccntlin", "expcntlin", 1.0);

30 while (i <= 10) loop

31

32 i:=1+1;

a3 envelope(enve, envi, envo);
34

35 end;

36

The program compiled for the iPSC/860 ([rom which the parts that are not essential for
illustrating the restart mechanism were removed) is:

#!/bin/csh -f

Default initializatien of the wvariables
set delta = "0.0"
set b =0
set ¢
set d =
e

e B o I e

set
@ i
et enve
set envi

n

set envo

Initialize the restart line number
set _rln = 0

#t Check if restart
if ($#argv == 0) then

Restore the restart line number

set _rln = ‘tail -1 $_logfile | grep 'PROGRAM_STATUS:’ | awk ’‘{print $2}’°
if ($.rln == "") then

echo "Cannot restore the restart line number from $_logfile . Bye"

exit
endif

if ($_rln == 0) then
echo "Restored invalid restart line number 0 from $_logfile . Bye"
exit

30

endif

Restore the integer, boolean, and real variables
set i = ‘tail -1 $_logfile | awk ’{print $3}’°

set e = ‘tail -1 $_logfile | awk '{print $4}’°
set d = ‘tail -1 $_logfile | awk ’{print $5}’°
set ¢ = ‘tail -1 $_logfile | awk ’{print $6}°°¢
set b = ‘tail -1 $_logfile | awk ’{print $7}’°

set delta = ‘tail -1 $_logfile | awk ’{print $8}’¢

echo "RESTART"

date

echo "RESTART" >> $_logfile

date >> §_logfile

echo "PROGRAM STATUS : _rln i e d c b delta"

echo "PROGRAM_STATUS: $_rln $i $e $d $c $b $delta”

else
set _rln =0
endif
if ($_rln <= 9) then

set delta = "0.000500"
endif

if ($_rln <= 10) then
set b = ‘“cryst/Prog/i860/Util/converge
$_logdir/recip.new $_logdir/recip.old 0.010000°
endif

if ($_rln <= 11) then
set ¢ = ‘“cryst/Prog/i860/Util/phaseextl 1.000000 expcntlin reccmtlin inventlin'
Create recip.new
echo "correlation coefficient for all the data 9.99" > §_logdir/recip.new

endif

if ($_rln <= 12) then
set d = ‘“cryst/Prog/i860/Util/converge $_logdir/recip.new

31

$_logdir/recip.old $delta’
endif

if ($_rln <= 13) then
set e = ‘“cryst/Prog/i860/Util/phaseextl 1.000000 expcntlin reccntlin inventlin®
Create recip.new
echo "correlation coefficient for all the data 9.99" > $_logdir/recip.new
endif
if (C(($p && $c) [1 (C(1($D)) && (1($c)))) && $e)
&% $_rln == 0 || $_rln >= 15 && $_rln <= 16) then
if ($_rln <= 16) then
@ i=2
endif

else if ($c && $_rln == 0 || $_rln >= 17 && $_rln <= 18) then

if ($_rln <= 18) then

@1=23
endif
else if ($e && $_rln == 0 || $_rln >= 19 &% $_rln <= 20) then

if ($_rln <= 20) then
@ 1i=4
endif
else
if ($_xrln <= 22) then

@i=25
endif

endif

32

set enve = "envexec"
set envi = "envcntlin"
set enve = "envcntlout™

if ($_rln <= 29) then
Q@i=1
endif
while (($i <= 10) && $_rln == 0 || $_rln >= 30 && $_rln <= 35)
if ($_rln <= 32) then
Q@ i= ($i + 1)
endif

envelope ("envexec", "envcntlin", "envcntlout")

if ($_xrln <= 33) then

set _exitline = ‘tail -1 $_logfile’

set _exitstatus = ‘echo $_exitline | egrep ’End-of-’ | wc -1° f

if ($_exitstatus == Q) then i
echo "$0 : error in the phase previous to envelope. Abort" i
exit

endif

echo "PROGRAM STATUS : _rln 1 e d ¢ b delta" >> $_logfile

echo "PROGRAM_STATUS: 33 $i $e $d $c $b $delta" >> $_logfile

newserver -¢ $_cubename >> envcntlout

load -c¢ $_cubename -H envexec

startcube
waitcube —c¢ $_cubename < envcntlin

set _rln =0
endif

end

33

9 Auxiliary SB Procedures

The auxiliary SB procedures are meant to help the proper sequencing of the SB process-
ing programs. Their correspondents in the SBL are currently the three built-in functions:
converged(), phaseexti(), and phaseext2(). The names of the three auxiliary SB proce-
dures are ‘converge’, ‘phaseextl’, and ‘phaseext2’. Their locations in the ‘cryst’ directories
(on all machine types), are:

“cryst/Prog/iB60/Util/converge
“cryst/Prog/iB860/Util/phaseextl
“cryst/Prog/i860/Util/phaseext?2

The ‘1860’ may be replaced by ‘Paragon’, ‘Sun’, or ‘RS6000 (the last too not currently
available).

The interaction between the UNIX shell script that is the compiled SBL program, and
these three procedures, is based on the possibility of assigning a value printed by a procedure
(program) at the standard output, to a UNIX shell script variable, by:

set shell_variable = ‘program_name arguments®

The three auxihary procedures perform each some actions, but finally they prini either
‘1°, or ‘0’ at the standard output, to indicale success or failure, respectively. For this reason,
from the SBL point of view, they are considered boolean functions, returning either true,
or false.

The procedure converge takes one real argument on the command-line, that is the
increment for which the overall correlation coefficients have to be tested after the execution
of Recip, in order to determine if convergence has been reached in the iterative electron
density averaging process, at a given resolution. The overall correlation coefficients for the
last two runs of Recip are read by ‘converge’ from two files, ‘recip.old’ and ‘recip.new’, that
are created by the UNIX shell script (the SBL compiled program). Before Recip is run
for the first time, a file ‘recip.new’ is created, with an initial value of 9.99 for the overall
correlation coefficient. It is important to know also that a call to phaseext1() in an SBL
source program {ranslates in the compiled code not only in the call to the ‘phaseextl’ SB
program, but also in the creation of a new file ‘recip.new’, with a value of 3.99 for the overall
correlation coefficient.

Then, at each run of Recip, ‘recip.new’ replaces ‘recip.old’, and ‘recip.new’ receives the
latest value computed for the overall correlation coefficient. After reading the two correlation
coefficient values, ‘converge’ subtracts them, and tests the absolute value of the difference,
against its command line argument (for which acceptable user specified values are in the
range from 0 to 0.5). If the difference is less than or equal to the command-line argument, it
is considered that convergence has been reached, and the value ‘1’ is printed at the standard
output. If not, ‘0’ is printed.

For example, if the desired increment to test for is 0.005, ‘converge’ will be invoked as:

34

“cryst/Prog/i860/Util/converge 0.005

The procedure phaseextl performs phase extension, after convergence has been reached
at a given resolution, but maintaining the grid size and the mask file. A new value is
computed for the upper resolution of the structure factors, and is written out to the control
input files for the FI*Tinv, Recip, and FFTexp programs. New values are also computed for
the structure factor indices, hmax, kmax, and lmax, and are written out to the control input
file for the FFTinv program. The function takes four arguments on the command-line: a real
argument that will be denoted by incr, which represents the increment used in computing
the new values of hmax, kmax, and lmax, and three arguments of type string, representing,
in order, the paths for the control input files of the FFTexp, Recip, and FFTinv programs.
Assuming for example that incr is having the value 1.0, and that ‘invcntlin’, ‘recentlin’, and
‘expcntlin’ are the names for the three control input files for FFTinv, Recip, and FI'Texp
respectively (it is assumed that the control input files are in the same directory with the
UNIX shell script containing the call to ‘phaseextl’), then ‘phaseextl’ is invoked as:

“cryst/Prog/i860/Util/phaseexti incr expcntlin reccntlin invcntlin

The procedure prints ‘1’ if phase extension is possible at the given grid size, and ‘0’ otherwise.
As a side effect, the control input files are also modified if phase extension is possible. At the
SBL program level, just as for the converged() function, the value returned by phaseext1()
has to be assigned to a boolean variable before being tested or used in a boolean expression
of any kind (see the section on the ‘Assignment Statement’, in §2.9).

The logic implemented in the ‘phaseextl’ procedure is described further:

- Test the value of the incr command-line argument; acceptable values are in the range

(0.0, 2.0].
- Read in the data in the control input files for FFTinv, Recip, and FFTexp.
- Read rmax, the high resclution, {rom the control input file for Recip.
- Read a, b, ¢, the unit-cell dimensions, from the control input file for Recip.

- Read nx, ny, nz, the number of grid steps in each direction, from the control input file for
FFTinv.

- Set the real constant k to 3.0.

- Determine
maxdim = max(a, b, c)
indmax = maxdim / rmax

- Determine the real values:

35

hmax = a / rmax
kmax = b / rmax
lmax = ¢ / rmax
hmazxnew = hmax + incr
kmaxnew = kmax + incr
lmaxnew = 1max + incr

indmaxnew = indmax + incr
rmaxnew = maxdim / indmaxnew

ind = (maxdim * k) / rmaxnew
- Check if phase extension at the current grid size is possible:
if (min(nx, ny, nz) >= ind) then
continue the phase extension process
else

phase extension at the current grid size is not
possible; print "0" at the standard output, and exit

endif

- Update the info for the control input file for FFTinv:

- rmaxnew ~ (.05 replaces rmax

- hmaxnew, kmaxnew, lmaxnew, arc replacing the old values of the structure factor
indices, hmax, kmax, and lmax

Note: the slightly smaller value of the new rmax counterbalances the possible effects
of the rounding errors when FFTinv computes the reflections that will be input to the
Recip program; in this way, we avoid the situation in which certain reflections are not
written out by the FFTinv program, but are expected by Recip.

- Update the info for the control input file for Recip:

- rmax replaces fcalcin

- rmaxnew replaces rmax

- Update the info for the control input file for FFTexp:

36

-~ rmaxnew repla.ces rmax

-~ Write out the control input files for FFTinv, Recip, and FFTexp

In case any error situation occurs, ‘phaseextl’ considers that the phase extension is not
possible, prints ‘0’ at the standard output, and exits.

The third anxiliary SB procedure, phaseext2, is provided to perform phase extension
when the current grid size does not allow the use of ‘phaseext1’ anymore. This has to be com-
bined with the generation of a new mask, too. The ’phaseext2’ procedure is not operational
as of Jan 12, 1994. From the SBL point of view, though, it is equivalent to the phaseext1()
function, which will allow an easy implementation of the operational phaseext2().

10 The SBL Compiler Implementation

The SBL compiler itself is a common tool, very similar to other, most often more complex
such tools. The important aspect is that it translates a source program written in a simple,
customized problem definition language, the Structural Biology Language, into a UNIX shell
script capable to control the execution of a sequence of SB programs. Typically, a source
program of 40 lines, translates into a UNIX shell script of more than 1000 lines, performing
various tasks, one of the most imporlant being the implementation of a restart mechanism.
The aclions performed by the compiled UNIX shell script are:

- Checks that the partition characteristics are acceptable for the target machine.

- Checks that the log file does not exist when a sequence of SB programs, specified in the
form of an SBL program, 1s run for the first time.

- Checks that the log file does exist for a restart.

- Checks that all the files necessary for the execution of the SBL program exist, and that
they have the right access permissions.

- Allocates the resources necessary for the run.

- If it is a restart, recovers all the partition characteristics,the restart line number, and the
program status from the log file, and restarts execution at the right position in the
SBL program.

- Before starting execution for each of the SB processing programs, saves the restart line
number and the program status in the log file.

- For each SB processing program (Envelope, FFTinv, Recip, FFTexp, PFTsynth, or Ro-
tation), or for the SB auxiliary programs ('converge’, "phaseextl’, and ’phaseext2’),
issues the appropriate commands for its execution; these depend on the target ma-

chine (iPSC/860, Paragon, Sun, or IBM RS6000), and on the OS.

37

- Records the values returned by the auxiliary SB procedures in shell variables, and uses
them in controlling the sequencing of the SB processing programs, as specified in the
SBL source program.

- Issues error messages or warnings whenever appropriate, and terminates the run, if nec-
essary.

Through its functions, the shell script relieves the user (usually crystallographer or bi-
ologist) of the task of knowing the shell programming language details, and the specific
commands on a variely of target machines. It does a variety of checkings that would require
significant time to perform, creates the possibility of automatic cycling and phase extension,
and, most important, implements a checkpoint and restart mechanism that allows comple-
tion of complex and time consuming jobs (consisting of several SB processing programs, in
multiple nested loops), in several sessions.

The SBL compiler consists of three main parts: the lexical analyzer, the parser, that
also handles the symbol table and builds a parse tree, and the code generator, with similar
functions for various target machines. The error analysis is performed at each of these three
levels.

Figure 1 illustrates the structure of the SBL compiler.

[exical rules cfg grammar rules
Lex Yacc
4 1
—wm yylex(» yyparse() » code generator [—w
Input SBL lexical parsed UNIX
source tokens input shel|
program script

Figure 1. The structure of the SBL compiler

10.1 The Lexical Analyzer

The lexical analyzer was implemented using the Lex lexical analyzer-generator. The input
to Lex is a table of regular expressions and corresponding program fragments. The deter-
ministic finite automaton generated by Lex is segmenting the input in preparation for the
parsing routine. The input to the lexical analyzer is a string of symbols from the alphabet
of all the printable characters, plus the EOI" character. The lexer, which is called by the
parser, returns either a token, for certain combinations of characters that it recognizes in

38

the input, or the unknown character if it is not part of a known pattern, and issues an error
message in this case.

Tokens are returned for keywords, identifiers, strings, integer constants, real constants,
separators, parentheses, and operators, unary or binary.

10.2 The Syntactic Analyzer (The Parser)

‘The parser was produced using the Yacc tool, which accepts a broad class of specifications
- the LALR(1) grammars, with disambiguating rules. Grammar rules derived directly from
the context-free grammar describing the SBL, together with associated actions, were input
to Yacc. The parser produced is a finite state machine, with a stack. It is capable of reading
and remembering the next input token, called the ‘lookahead’ token. The current state is
always the one on the top of the stack. Four actions are available to the state machine: shift
(pop a state off the stack, and push another one on its top), reduce (replace the right-hand
side of a grammar rule by its left-hand side), accept (indicates that the entire input has been
seen, and that it matches the specification), and error (parsing can no longer be continuved
according to the specification). The actions associated with the grammar rules have on one
side the role to detect errors that are related to the semantics of the language, and cannot
be detected using only the cfg rules, and on the other side, to build the parse tree that will
be used in code generation.

10.3 Data Structures

The lexical analyzer builds a simple symbol table, using a2 hashing technique, with the
heads of the linked lists of structures of type NODE, in the array hashtab]] (figure 2).
NODE NODE

char * pame
int token
0 NODE * next -

H-1

Figure 2. The symbol table built by the lexical analyzer.

39

The communication between the lexical analyzer and the parser is insured, other than
through values returned by the lexical analyzer, also through values stored in the llval union,
depending on the pattern identified by the lexer in the input:

union _llval
{ char * yystr; int yyint; float yyreal; NODE *yynodep; }
lival;

The tokens returned by the lexical analyzer {o the parser are corresponding to keywords,
separators, and SBL operators (listed in ‘key_words.h’ and ‘tokens.h’). The keywords are
stored in a table of structures, (containing each a token and a pointer to the actual name),
used In binary search operations when checking whether an identifier is also a keyword of
the SBL.

The parser rebuilds an enhanced symbol table, which contains besides the identifiers read
from the input, also the built-in type names, and the names of the built-in procedures and
functions. An entry in the parser symbol table is illustrated in figure 3.

struct var_symbol

symtab_entry * type —
symtab_entry * next_form ——

symtab_entry * next_var ——m

symtab_entry char * vl
char * name
symbol symb

enum symbol_kind tag / struct type_symbol

Z

¥

union {...} variants enum type_sort type_kind

symtab_entry * index_link —

to the next entry
in the symbol table

Figure 3. Entry in the symbol table for the syntactic analyzer.

In figure 3, the ‘variants’ union is a pointer to either a structure for a type, or for a
variable. The latter has also fields for the next formal if it is a formal parameter, or to the
next variable, if in a variable declaration.

40

The syntactic analyzer builds a parse tree that will be used in code generation. Each
node in the parse tree is materialized by a data structure having the following fields:

- the node type,

- a pointer to the symbol table entry for the type, if a variable or a built-in function,
- the value, if a constant of some type,

- a pointer to the string storing the name, if a variable,

- a pointer to the left child in the parse tree, and

- a pointer to the right child in the parse tree.

Figures 4, (a) to (i}, illustrate parse tree fragments built when certain SBL constructs
are recognized in the input by the syntactic analyzer. The cfg productions in their form
accepted by the Yacc are given in full, but only some of the corresponding subtrees will be
shown.

FOR INTCONST:

const: INTCONST
| REALCONST
| STRCONST
[TRUE
| FALSE;

symbol table entry

for the constant

(a) Subtree built for a constant

41

FOR IDENT:

r_expr: IDENT 0. if undefined

| const
| built_in_func LPAREN opt_r_exprs RPAREN
| MINUS r_expr
| NOT r_expr
I r_expr TIMES r_expr
r_expr DIV r_expr
r_expr MOD r_expr a3 .
expr PLUS r_exI:) g FOR built_in_func:
r_expr MINUS r_expr

symbol table
entry for the
type

r_expr LT r_expr
r_expr GT r_expr

I
I
I
|
I
[
| r_expr LE r_expr symbol table
I

I

I

i

|

[

entry for the
type

r_expr GE r_expr

r_expr EQ r_expr

r_expr NEQ r_expr

r_expr AND r_expr

r_expr OR r_expr
LPAREN r_expr RPAREN;

subtree for the
opt_r_exprs

FOR TIMES:

0 for mismatch

symbol table entry
for the resulting

type

(b) Subtree built for an r_expression

42

FOR r_expr:

mult_r_expr: r_expr

| mult_r_cxpr COMMA r_expr;

FOR muli_r_cxpr COMMA r-expr

for the last
r_exprin the list

—
sublree
forr_expr

subtrec
for ¢_expr

sublree for mult_r_cxpr

opl_f_exprs: /* emply */
| mult_r_expr, <- copy subtree for the muli_r_cxpr

{c} Subtree buill for mulliple r_cxpressions, and for optional r_expressions

43

stmt: IDENT ASSIGN r_expr SEP

Symbol table
entry for lhs type

subtree for r_expr

(d)} Subtree built for the assignment statement
stmt: built_in_proc LPAREN opt_s_exprs RPAREN SEP

nt = proc
proc name

O

subtree for
opt_r_exprs

(e) Subtree built for the built-in procedure call

44

stmt: WHILE r_expr LOOP stmtlist END SEP

subtree
for r_expr

for stmtlist

{f) Subtree built for the repeating statement
stmt: IF r_expr THEN stmtlist mult_elsif opt_else ENDIF SEP

subtree (
for r_expr stmtlist mult_elsif

(g) Subtree built for the conditional staternent

45

mult_elsif: /4 empty, no subtree to build */
| mult_elsif ELSIF r_expr THEN stmtlist

/\

subtree fo
mult_elsif

subtree
for stmtlist

subtree
for r_expr

(h) Subtree buiit for multiple elsif part of the conditional
statement

stmmt_list: stmt /* copy subtree */
[stmtlist stmt;

subtree fo
stmt

(i) Subtree built for a statement list

Figure 4. Subtrees in the parse tree, built for the different SBL constructs

46

10.4 The Code Generator

The code generator traverses the parse tree from the root, and generates the appropriate
segments of code. As many checking operations are performed before the actual execution
of the SBL program starts, a first traversal of the parse tree is dedicated to the generation
of such initialization and checking operations. The next traversal is dedicated to the actual
code generation.

Code is generated differently in some respects for different target machines. For example,
the sequence of commands for the iPSC/860 machine:

getcube -c mycube -t16 > outfile
load -c mycube -H executable_path < infile
startcube -c mycube; waitcube

is replaced for the Paragon system, by:
executable_path < infile > ocutfile

The target machine is specified by a flag on the command line (i for iPSC/860, p for
Paragon, s for Sun workstalion, and r for IBM RS6000 workstation). The default target
machine is the iPSC/860.

10.5 The SBL Compiler and the User Interface

The user interface invokes the compiler from a shell script, .sblpgen (SBL program gener-
ator), that is a virtually infinite edit - compile - view -rcp loop. The user has the option to
exit after any step. If compilation of a program has terminated successfuily, the compiled
program can also be remotely copied (with ‘rcp’), to the target machine.

The user interface packs together the SBL source program and the compiled UNIX shell
script into a single file, when compilation ends. The source program appears as a comment
at the beginning of the UNIX shell script. The exact structure of the script is:

- A first line containing the command ‘#!/bin/csh -f that starts a new copy of the csh
shell.

- A line specifying the number n of comment lines that follow, and correspond the the SBL
Source program.

- The n comment lines containing the source program.

- The compiled UNIX shell script.

When an existing program that has been created with the SB User interface is modified,
it is unpacked first, and the user sees on the screen only the un-commented SBL source
prograrm.

Two functions, ‘addsharp’ and ‘rmsharp’ are used to pack and unpack the SBL programs
(’#’, or ’sharp’, is marking comments in UNIX shell programs).

47

10.6 Functionality Extensions

The SBL compiler is functional as it is, and was tested on a significant number of real test
programs. A number of extensions are possible, or even necessary.

1. Extending the code generation part for other target machines than the iPSC/860 and
the Paragon.

2. Implementation of the phaseext2() function. The current procedure implementa-
tion uses the same number and types for the arguments to phaseext2(), as for
phaseext1(). This makes it easy to change to a slightly different structure.

3. Extending the number of built-in procedures and/or built-in [unctions.

4. Adding new arguments to the built-in procedures, in order to specify the PEs to use
when executing the corresponding SB programs. This will allow, without other sup-
plementary language constructs, a certain degree of concurrency in executing different
5B programs on different subpartitions of the same partition.

5. Adding an automatic consistency check mechanism: the SBL compiler can build the list
of all the control input files in an SBL source program, and can then call an auxiliary
SB procedure to check the consistency of all the control input data. This checking
operation can be extended also to the headers of the input data files that are used in
the execution of the SBL program.

11 SB User Interface Support for SBL Program Ex-
ecution

The Structural Biology Language was defined to allow a simple and concise specification of
an execution sequence of SB programs. The SB User Interface provides support for creating
SBL program objects, and for creating, modifying, compiling, executing, and monitoring the
execution of the SBL programs.

The SBL Program Menu

The ’SBL Program’ menu is opened from the 'ITERATIVE ELECTRON DENSITY
AVERAGING’ menu.

Figure 5 illustrates these two menus, and also the ’SBL Program’ object selection window.

For the 'SBL Program’ menu, the 'SBL Program Selection’ button opens the selection
window seen in figure 5.

48

R STRUCTURAL BICLOGY
.’ | | Vorsion 12, Dec 20, 1993

AME = teal_phasedl

8| TYPE~ SELP.1aan

B | MACHINE = smmcepurdue.edu
SEAID = comen

'ATH = Momeflpregatekr Ocornea’
ATE ~ Unknown

B PERSISTENCY = prrmanent

Bl SI7F = Unknown

Figure 5. The main menu, the ITTERATIVE ELECTRON DENSITY’ menu, the ’SBL
Program’ menu, and the ’'SBL Program’ object selection window

The ’Previous Selection’ button allows repeating the last successful selection [rom the
current, or from a previous work session.

The "Done’ button opens an execution window, and the "Man’, "Help’, and "Quit’ buttons
have the obvious roles. Pressing the 'Quit’ button cancels any selection made during the
current work session.

The SBL Program Object Selection Window

When opened, all the SBL program objects found in the user’s object catalog, are dis-
played in the scrolled list window on the left. Selecting any of them with the mouse, will
display its attributes in the scrolled text window on the right.

Once an object is selected, it can be ’okayed’ by pressing the ’OK’ button, which implies
that it can be executed next.

The ’Create/Modify SBL Prog’ button is used in creating, modifying, and compiling SBL
programs. Its functions will be discussed in detail in the next section.

49

The 'New Object’ button works as for the control input objects, allowing creation of an
SBL program object, even if the underlying file does not exist yet, in the idea that it will
be created as explained in the next section. This would not be possible starting from the
’Catalog’ menu, just as it not possible for control input, or control output objects.

The *Show Previous Selection’ button displays the previous selections made in the current
work session, in the scrolled text window on the right. This only clears from that window
any object attributes, but does not cancel the current selection.

The "Help’ and the 'Quit’ buttons have the same role as for the similar object selection
windows.

Warning and wait messages are displayed for the 'SBL Program’ menu and its descendents
whenever appropriate. Figure 6 illustrates the wait message displayed when the SB User
Interface remotely logs in to the machine hosting an SBL program, in order to check that it
exists, and has the necessary access rights.

E| LACHME = srm.ce.purdueedu
{|USERID = comea)

OWHER = Urknown
A| PATH = fhome/lpacgaleful Ofeornens
d| PATE = Uninewn
H|PERSISTEHCY = permuaneni
|| SZE = Unknevm

Figure 6. Wait message displayed while checking the access rights of an SBL program, on
a remote machine

50

Creating, Modifying, and Compiling SBL Programs

New SBL programs can be created, or existing SBL programs can be modified, by select-
ing the corresponding object, and pressing the *Create/Modify SBL Prog’ button. In either
case, an xterm window is opened, with a copy of the 'vi' editor started in it. If the SBL
program does not exist, the vi’ window is empty. If it exists, the SBL program is remotely
copied from the machine that hosts it, is read into the editor buffer, and is displayed on the
screen. Figure 7 illustrates the xterm window, with the 'vi’ text editor started on an SBL
SOUICE Prograim.

When exiting from the text editor, the user is supposed to have typed in or modified an
SBL source program.

STRUCTURAL BIOLOGT
VYerslon L2, Dos 20, 1883

FL] frvarogleg cacle — thoat For the UL and the S compllar
i Jon 21. 1694

doltn : Tanl:
rimitor @ inlegora
moeiler lnugnr:
phato_sartd_ent @ Entager
axtIpoms, ull. 1 boolean:

wt.ﬂl.e H m.rqu

tlinf. orvenlling. emeonllindd ; teh
Levexec. Lecntlin @ otrlog: puteful fcamenl
rocuxot. recanilin @ alrlng:
axpaxes, expontlin @ otring:
mynithaxac, ounthentiln @ otelogs

doltn e 0,005;:

mnthosoc ;=
oynthoentliln := ©
enventlingd 1= 'ﬂmnflpscgamful&fcomﬂ'ﬁl\'l.y

amvalopalervomectd. onvantling, outllla):
omva lopolonvexec, orwontling, outfile):

ore,Leal_phanoxtl™ 50 Lllnon, X382 char

Figure 7. Xterm window, with ’vi’ editor started on an SBL source program

Exiting automatically determines the compilation of the SBL source program. If there
are errors, appropriate messages are displayed, and the user has the possibility to edit the
file again, and recompile. If there were no errors, the compiled program can be remotely
copied to the host machine, and/or viewed. Finally, the user has the option to exit from the
xterm window, or to repeat the ’edit-compile-rcp-view’ cycle.

51

STRUCSTURAL BIOLOGY
Yeralon 1.2, Dios 20,1553 I

[

pLar—]
] [e o

Figure 8. The xterm window after successful compilation of an SBL source program

Figure 8 shows an xterm window after successful compilation of an SBL source program.

The result of the compilation is a UNIX shell program, that has the SBL source program
inserted as a comment at its beginning. When an existing SBL program is modified, the
entire UNIX shell program is copied locally, and the SBL source program is unpacked and
displayed in the ’vi’ editor window. The first part of the compiled UNIX shell program from
the previous example is shown in figure 9.

Executing SBL Programs

SBL program execution can be initiated by specifying first a partition name, and the
number of nodes to be used in the parfition. This information can be filled out in an
execution window, which also displays the SBL program’s file pathname. Figure 10 presents
also the SBL program execution window.

92

|
B9 lines in source proyras

i Averoglng cycla ~ thont Ter the UL ond the 5B compllar
/= Jan 21, 1994

doltn ; real:
rmltor = Integer:
maxiter : InLagoer:
la_oxtl ont @ Ley H
rgod. extlpooo. exIt : booloan:
outflle = otring:

- 1lin8, ementling. srwenllingd @ otrings
Invaxec, Imventlln @ wirlng:
rocaxss, rocentlin @ oirlng:
wpowed. weponllin @ oelring:
mynthestec, mnlhantlin @ atrlng:

daltn o Q005
rmller =
amiter im 1oo
hmwuraud za l'n].lla.

autflle & nll -
anvaxecd MIMUWUIOIEWUWIMMIMIII Q/ENVELGPE

amventilng i@ =/Twese/lpocgales/uld/cormen/TESTY . 2/enwBrammlopa, ing_B™:
TNt e 'ﬁmllpﬁgnu/ulofmwlmlopaﬂllll 2/ENVELOPE ™|

“/Memat/ | pocgole/ulscermeas TESTYL, 2/am @ /o lopa. InJ 9';
107 tSFrog/ LEBO/FFT L/ V171 .0/ N0 NODE O™,
“/hoso/ lpocgate/ul 0/ cornaas TESTYL . 2T ML inw/TFtiny, Inj "
! 'ulo/cryot/Prog/ LES0/Roclp/VLAL .O/NIDED ™1
e peEanas 1S ey oo (BSe T e SR
J'hn-al POCcH u. sV, O/HODED ™
Pﬂc}ﬂWulO/w TESTVL, 2/ T Ftaxp/ i taxp. 1!\1-
n\lu] 1031 linsu. T5467 charoctorn

Figure 9. Compiled SBL program: the first part of the UNIX shell program contains as a
comment, the SBL source program

The left-hand side column of the execution window contains push-buttons that display
help messages.

The 'Run’ button has to be used when an SBL program is executed from the beginning.
If an SBL program’s execution was interrupted for some reason, it can be restarted, using
the "'Restart’ button. In this case, the partition name and the number of nodes need not be
specified, as they are restored by the UNIX shell program from a log file.

When using either 'Run’ or 'Restart’, an xterm window is opened, that displays all
the messages going to the standard error output during the SBL program execution. The
program execution is also started at this point.

33

: Infofor tho HBL Pn:v:nm Exocution B

..._..-.-.-_

Figure 10. The SBL program execution window

The 'Quit’ button will close the execution window, but not the xterm window, if it was
opened.

Figure 11 shows the xterm window, after a failed SBL program execution: the *Run’
button tries to start the program from the beginning, but fails because the log file, named
log.out’, exists in the same directory with the UNIX shell program. Similarly, execution
would fail as a restart, in the absence of the log file.

54

UMD: Symtem V/358 Aaloooa 3,2

ors
Copyrlght (C)} 1084, 1D86. 1887, 1988 ATAT
Copyright {C) 18E7. 18808 Mlcroceft Corp,
M1l Righta Reservod

Login lont wned: Frl Jon 21 189:24:17 10894

Call KT Operallons (41787} lor ooonlotanco if ore-cc or ipac.cc locko up,

¥ Tha IPSC myotos, Includlng ipocgota.cc, WIll bo cown Mondoy.
7-Fab-94, to ingtoll o new O3S diok ond to esnblo now OFS
file purging policles, Tupa “nowa cfo.purge” for more an tha
OFS purglng mochanlos,

PUCC Short Couroa Schodule {(completa pchedule Ln Aunr/resnl/cmroen) =
Introductlon to the IEH 3090 129, 271 9:30 « 11120 A ST
Introductlon Lo E-Mall 1716, 1720 3

125, 1727 11
125, W22 ?
kB

1726, 128 1

rorapdoto mpaqueves wp
El]fm .31 onhonca.331 doclleyl, X1 Tolonnes, 33 mllm.dﬂ:
1
Yarm 1 : To viow tha outpot, "o /howo/Ipacgatesuld/cormea’/TESTVL, 2/gnocyclo”

Tho log file ./log.out axiuts . Pleano dalsts, or chongo noma - Bye

Partilon Hame

Figure 11. Xterm execution window for an SBL program

55

12 References

[Aho 72 | A. V. Aho, J. D. Ullman, The Theory of Parsing, Translation, and Compiling,
Prentice-Hall, 1972

[Bar 92]| N. Barkakati UNIX Deskiop Guide to X/Motif, Hayden Books, 1992

[Cha 92 | R. Chamberlain, Paragon XP/S - An Applications Viewpoint, Intel Technology
Focus Conference, Timberline Lodge, Apr. 1992.

[Fer 93] P. M. Ferguson, Motif Reference Manual for X Version 11 (Vol. Siz B of 'The
Definitive Guides to the X Window System’), O’Reilly & Associates, Inc., 1993

[Fis 88 | C. N. Fischer, R. J. LeBlanc, Crafting a Compiler with C, Benjamin/Cummings
Publishing Co., Inc., 1988

[Hea 91 | M.T. Heath, J.A. Etheridge, ParaGraph : A Tool for Visualizing Performance
of Parallel Programs, Oak Ridge National Laboratory, Mathematical Sciences Section,
Sep. 1991

[Int 90-a | Intel Corporation, iPSC/2 and iPSC/860 User’s Guide, Jun. 1990

[Mar 93 | D.C. Marinescu, J.R. Rice, M.A. Cornea-Hasegan, R.E. Lynch, M.G. Rossmann,
Macromolecular Eleciron Density Averaging on Distributed Memory MIMD systems,
Concurrency: Practice and Experience, Vol. 5(8), pp. 635-657, December 1993

[Mar 94 | D. C. Marinescu, M. Cornea-Hasegan, C. Costian, I. Boier, Towards Problem
Solving Environment for High Performance Computing, 1994 (under preparation)

[Mor 93 | A. Morse, G. Reynolds, Overcoming Current Growth Limils in UI Development,
C.A.C.M., Vol. 36, No. 4, April 1993

[Nie 93 | J. Nielsen, Noncommand User Interfaces, C.A.C.M., Vol. 36, No. 4, April 1993

[Nye 88-a | A. Nye, editor, Xlib Programming Manual for Version 11 (Vol. One of "The
Definitive Guides to the X Window System’), O'Reilly & Associates, Inc., 1988

[Nye 88-b | A. Nye, editor, Xlib Reference Manual for Version 11 (Vol. Two of The
Definitive Guides to the X Window System’), O’Reilly & Associates, Inc., 1988

[Nye 90 | A. Nye, T. O’Reilly, X Toolkil Intrinsics Programming Manual for QOSF/Motif
Release 1.2 (Vol. Four of 'The Definitive Guides to the X Window System’), O’Reilly
& Associates, Inc., 1990

56

[Rei 88] T. O'Reilly, V. Quercia, L. Lamb, X Window System User’s Guide for Version
11 (Vol. Three of *The Definilive Guides to the X Window System’), O'Reilly &
Associates, Inc., 1988

[Rei 90 | T. O'Reilly, editor, X Toolkit Reference Manual for X Version 11 (Vol. Five of
"The Definilive Guides Lo the X Window System’), O'Reilly & Associates, Inc., 1990

[Ros 62] M.G. Rossmann, D.M. Blow, The Deleclion of Subunits Within the Crystallo-
graphic Asymmetric Unit, Acta Crystallographica 15, 24, pp. 45 — 55, 1962

[Ros 72] M.G. Rossmann, editor, The Molecular Replacement Method - A Collection of
Papers on the Use of the Non-Crystallographic Symmetry, Gordon and Breach Science
Publishers, NY, London, Paris, 1972

[Ros 90 | M.G. Rossmann, The Molecular Replacement Method, Acta Crystallographica
Ad6, pp. T3 — 82, 1990

[Ros 92 | M.G. Rossmann, R. McKenna, L. Tong, D. Xia, J. Dai, . Wu, and H. Choi,
Molecular Heplacement Real-Space Averaging, Journal of Applied Crystallography, nr.
22, pp. 166 - 180, 1992.

[Set 89 | R. Sethi, Programming Languages - Concepts and Consiructs, Addison-Wesley,
1989

[Sta 90 | R. Stansifer, Lecture Notes in Programming Languages, Purdue University, 1990

[Tre 90] P.C. Treleaven, Parallel Computing Framework, Parallel Computers - Object Ori-
ented, Functional, Logic , edited by P.C. Treleaven, pp. 17 - 45, 1990

[You 90 | D. A. Young, The X Window System - Programming and Applications with Xt -
OSF/Motif Edition, Prentice-Hall, Inc., 1990

57

	SBL- The Structural Biology Language
	Report Number:
	

	tmp.1307986960.pdf.Z2Drk

