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Abstract

We present efficient algorithms to construct both C! and C? smooth meshes of cubic and
quintic A-patches to approximate a given polyhedron P in three dimensions. The A-patch is
a smooth and single-sheeted zero-contour patch of a trivariate polynomial in Bernstein-Bezier
(BB) form defined within a tetrahedron. The smooth mesh constructions rely on a novel scheme
to build an inner simplicial hull £ consisting of tetrahedra and defined by the faces of the given
polyhedron P. A single cubic or quintic A-patch is then constructed within each tetrahedron of
the simplicial hull ¥ with the resulting surface being C! or C? smooth, respectively. The free
parameters of each individual A-patch can be independently controlled to achieve both local
and global shape deformations and a family of C! or C? smooth approximations of the ori ginal
polyhedron.

1 Introduction

In this paper, we present efficient algorithms to construct both a ¢! smooth mesh with cubic A-
patches and C? smooth mesh with cubic and quintic A-patches to approximate a given polyhedron P
in three dimensions. The A-patch is a smooth and single-sheeted zero-contour patch of a trivariate
polynomial in Bernstein-Bezier (BB) form defined within a tetrahedron[BCX93], where “A” stands
for algebraic. Solutions to the problem of constructing a C! mesh of implicit algebraic patches
which inierpolate the vertices of a simplicial polyhedron 7 have been given by [Dah89] using
quadric patches, [BCX93, DTS93, Guo91b, Guo93) using cubic patches and [BI92b] using quintic
for convex P(all faces are triangular) and degree seven patches for arbitrary . While papers
[BI92b, Dah89, DTS93, Guo9lb, Guo93) provide heuristics based on monotonicity and least square
approximation to circumvent the multiple sheeted and singularity problems of implicit patches,
[BCX93] introduces new sufficiency conditions for the BB form of trivariate polynomials within a
tetrahedron, such that the zero contour of the polynomial is a single sheeted non-singular surface
within the tetrahedron (the A-patch) and guarantees that its cubic-mesh complex for P is both
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F49620-94-1-0080, NASA grant NAG-1-1473 and a gifl from AT&T.




nonsingular and single sheeted. In this paper we use these cubic A-patches to provide a ! smooth
single sheeted mesh which approximates a given polyhedron. We also present a new scheme for
building a C? patch complex with quintic surface patches and furthermore do not require the
polyhedron P to be simplicial.

The C? interpolation schemes of [BCX93, Dah89, DTS93, Guo91b, Guo93] all build an outside
simplicial hull (consisting of a series of edge and face tetrahedra) containing the given polyhedron
P. Such a simplicial hull is nontrivial to construct for arbitrary P (even convex P with sharp
corners) and can give rise to several exceptional situations and degeneracies (co-planarity, hull self-
intersection, etc).The new correr-cutting, inner simplicial hull construction of this paper and can
handle all convex P and also arbitrary polyhedra with non-convex faces. This new simplicial hull
scheme is the three dimensional generalization of the two-dimensional corner-cutting scheme used
to construct C* continuous bivariate A-splines [BX92).

Related papers which approximate scattered data using implicit algebraic patches are [Bajoz,
BBX94, BI92a, BIW93, MW91, Pra87, Sed90] and a classification of data fitting using parametric
surface patches is given in [Pet90).

The rest of this paper is as follows. Section 2 gives some preliminary facts about Bernstein-
Bezier (BB) representations, A-patches and the geometry of simple polyhedra. Section 3 provides
a formal definition of 2 smoothable simplicial hull. Section 4 presents a simplicial hull construction
scheme for a simple polyhedron P with convex faces, where every vertex normal is “above” the
faces surrounding the vertex. Section 5 extends the hull construction algorithm to include a simple
polyhedron with nonconvex faces. Section 6 presents details of the C! and CZ continuity schemes for
cubic and quintic A-patches. Section 7 exhibits the capabilities of local and global shape control
of the A-patch approximating mesh under the current construction scheme. Finally, Section §
provides some implementation details.

2 Notation and Preliminary Details

2.1 Bernstein-Bezier Representation and A-Patches

Let {m,...p;} € R3. Then the convez hull of these points is defined by [pmp;...p;] = {p € I3 :

p=Xl 0piai 2 0,32 0; = 1}. Let p1, p2, ps, pa € IR3 be affine independent. Then the

tetrahedron(or three dimensional simplex) with vertices p;, ps, ps, and pa, is V = [p1p2psps]. For
4

any p = Za,-p,— €V, & = (a1,as,a3,a4)7 is the barycentric coordinate of p. Let ? = (z,v,2)%,
i=1

Pi = (%i,i,2)7. Then the barycentric coordinates relate to the Cartesian coordinates via, the

following relation

z L1 Tz X3z Iy 231
¥ 1| 5 2 Y3 ¥ a (2.1)

z Z]1 Z3 23 24 Oy

1 1 1 1 1 (4 7]
Any polynomial f(p) of degree m can be expressed in Bernstein-Bezier(BB) form over V as
f(®) = Zpl=m bx BT (a), A € 21 where BY*(a) = 1#13'1\4' ai\' aé\’aé“a:}‘ are the trivariate

Bernstein polynomials for [A| = 3, A; with A = (4, A2, A3, 24)T. Also o = (01, 02,03,04)T is
the barycentric coordirate of p, by = by,1,3,1,(2s a subscript, we simply write A as AjAA3)4) are




Figure 2.1: A Smooth and Single-Sheeted Triangular Algebraic Surface Patch(A triangular A-patch)

called control points, and Z_‘f_ stands for the set of all four dimensional vectors with nonnegative
integer components. Let

Fl@)= 3 hBf(a), |l =1, (2.2)
[Al=m
be a given polynomial of degree m on the tetrahedron § = {(e,a2,03,04)T € R? : T4, o =

1, @; 2 0}. The surface patch within the tetrahedron is defined by Sy C S : Flog,az,03,04) =0.

Definition 2.1 Triangular algebraic surface paich

If any line segment passing through the j-th vertez v; of § and its opposite face S; = {{e1, az, a3,
el ia; =0, o >0, >izj @ = 1} intersects Sy only once, then we call Sy a triangular j-patch
(see Figure 2.1).

Note, for a given tetrahedron, we can have triangular j-patches for j = 1,2,3,4. All these
patches are A-patches (algebraic patches).

Lemma 2.1 The triangular j-patch is smooth (non-singular) and single-sheeted.

Proof. See [BCX93). ©

Theorem 2.1 Let F(«a) be defined as (2.2), and j(1 < j < 4) be a given integer. If there exists
an integer £(0 < k < m) such that

bairarsr, 2 0, A;=0,1,...,k-1, (2.3)
b.\p\g/\az\i <0, A.‘." =k+ 1,...,m. (24)
and D by >0, Z by < 0 for at least one Aj(k < A; < m). Then 8, is a triangular j-patch.
= I =m
=

Proof. See [BCX93]. <
Lemma 2.2 Let f(p) = Ljxj=a 0rB%(a) be defined on the tetrahedron [pipapsps), then
1 . .o
b(ﬂ—l)e;+ej = bne; + ;(PJ' - ‘p.')TV_f(p.'), 1=123,4 j#i (2.5)
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b{n—2)e.—+e,‘+ck = —bnc.' + b(n—-l]e,-+cj + b(n-—l)e.-+:k
(2.6)
+ ey — p)TVE (i) (pe — 2i)y G # ik A
(2.5) can be found in [Guo91al(p.23). (2.6) is derived from directional derivative formulas
(see [Far90] p.310).

Lemma 2.3 ([Far90] p.318) Let f(p) = Li=n eaBYa) and g(p) = T, 02B3(@) be two
polynomials defined on two tetrahedra [p1ppaps] and [p)papap4], respectively. Then
(i) f and g are C° continuous at the common face [p2pap4) if and only if

ay = b;, fOT‘ any A= DA2A3A4, |,\| =7 (27)
(%) f and g are C' continuous at the common face [papaps] if and only if (2.7) holds and

buadars = Brauirgaa, + B2@02g23240100 + B3002zr50440010 + B1802g05 240001 (2.8)
(iii) f and g are C* continuous at the common face [p2p3p4] if and only if (2.7)-(2.8) holds and
baaxan = Bieasaana + 26182805, 0+1100 + 2818380a00,0, 41010 + 2031848025332, +1001
+  B2a0xr;0;5,10200 + 2B2B83805,3, 0, 40110 + 2328480352524 +0101 (2.9)

+ Bla0aarsr+0020 + 20384803000 +0011 + BFE00,25 3¢ 40002
where 3 = (f1, f2, B3, ﬁq)T are defined by the following relation

71 = 61 + Bapa + Bapa + Baps, 18] =1
In Lemma 2.3, if 8, = f3 = 0, that is p{, p4 and p; are collinear, then (2.8) and (2.9) become

G02z3374+0001 = 1812 h3h + 220100050, (2.10)

38200000 — B1G0rsrghe 11001 = 20230000 — £2B03535 0041001 (2.11)
respectively, where p; = —%:-,pz = ,61_4’ that is pg = p1p) + uop.

2.2 Geometry of Simple Polyhedra

Definition 2.2 A point p is separable from other points of interest if there ezists a plane m that
separates p and the other points. I is unseparable from them otherwise.

Definition 2.3 The edge angle of edge E of a polyhedron is inner dikedral angle belween the two
faces incident at E

Definition 2.4 On a polyhedron P, an edge E is a ridge if its edge angle is less than or equal to
7; E is a valley otherwise.

Definition 2.5 For a vertez V of a planar polygon, a corner guard Gy of V is a point in the
interior Q from where corner V is visible, namely, the two edges incident to V are visible. A
corner guard set is a set of corner guards from which all the corners are visible. A corner guard
net is @ connected planar graph inside Q such that any corner V is visible from af least one of its
vertices.

For a convex polygon or a star-shaped polygon, 2 minimum corner guard set consists of just a
single point. Especially for a convex polygon, any point in the interior polygon forms a minimum
(singleton) corner guard set. Figure 2.2 illustrates different kinds of polygons and their corner
guard regions.




Iigure 2.2: Polygons and Their Corner Guard Net. Shaded parts are possible regions to position
guards

3 Smoothable Simplicial Hull

Definition 3.1 Let [p;p;] be an edge of a polyhedron P with endpoint vertez normals n; and 7.
If (p; — pi)Tni (pi — p;)n; > 0, then the edge is convex. Otherwise, it is nonconvex, If the edge
satisfies the conver condition. and at least one of (p; —p.—)Tn,- and (p; —pj)Tn_,- 18 positive, then we
say the edge [pip;] is positively convex. If both of them are zero then we say it is zero convex. If
at leasi one of them is negative, the edge is negatively convex.

Definition 3.2 Let [pip;pi] be a triangular face of a polyhedron P. If its three edges are non-
negatively (positively or zero} conver and at least one of them is positive convez, then we say the
face [pip;py] is positively convex. If all the three edges are zero conves then the Jace is zero convex.
If ils three edges are nonposilively (negalively or zero) convez and at least one of them is negatively
convez, the face is negatively convex. Otherwise, [p;p;px] 5 non-convex.

Note, that here we are overloading the term convez to characterize the relations between the
vertex normals and edges of faces. We distinguish between convex and non-convex faces in the
simplicial hull below where we build one tetrahedra for convex faces and double tetrahedra for
non-convex faces.

Definition 3.3 A polyhedron P with vertez normals is edge-convex if every edge is conver.

Definition 3.4 A face-tetrahedron [p;p;prqi] is a tetrahedron that is built based on a triangular
face [pip;px] € P. A face-tetrahedron [p;p;prqi] is {positively | zero | negative | non-)} convex if the
face [pip;px] is {positively | zero | negative | non-)} convez. A face-tetrahedron is U-nonconvex{/
for upper) if (1) it is outside P and has one positively convez edge; or (2) it is inside P and has
one negatively convez edge. A nonconvez face-tetrahedron is L-nonconvex(L for lower) if (1)it is
outside the lriangulation P and has two positively convez edge; or (2} it is inside P and has two
negatively conver edge,




Definition 3.5 A convez face-tetrahedron [pipypsps] is tangent-containing if the fangent planes
at the three interpolatory vertices p1, ps and p3 are tangent with [P1D2p3pa); A pair of LU face-
tetrahedra [pypopapsqs] is tangent-containing if the tangent planes at the three interpolaiory verlices
P1, P2 and p3 are tangent with either [prp2papa] or [Prp2paca);

The term simplicial hull is loosely defined as a contiguous collection of tetrahedra(simplices)
constructed on a base simplicial polyhedron. We define one kind of simplicial hull that we shall use
here and refer to it as smoothable simplicial hull.

Definition 3.6 A smoothable simplicial hull & = (7,8y,S,, Ruy, Rfyse) where

(1) T = [pip;px] is an edge-convex triangulation;

(2) S5 = [pip;prq] is a collection of face tetrakedra, where [pip;py] € T;

(3) Se = [pip;qrsi] is a collection of edge tetrahedra pairs, where [pip;] € T ond [pip;ax) € Sy,

(4) Riy = T X Sy is a relation between T and Sy, which can be described as (i) (single sided)
there is one tangent-plane-containing face-teirahedron [pip;prq) € Sy is built on a conver face
[pip;ipr) € T and (ii) (double sided) there are a tangent-plane-containing pair of LU-face-tetrahedra
[pip;peat], [Pip;pe@] € Sy are built on a nonconvesz face [p1P2p3) € T, ore on each side;

(5) Rpje = 8§ X 8§ X S is a relation between face-tetrahedra and a pair of edge letrohedra,
which can be described as (i) (non-intersection) two face-tetrahedra (pip;pxa), [pipjPman] € Sy
that share & common edge [pip;] € T does not intersect each other and (i) a pair of edge-tetrahedra
[pipj@is:], (pipjgnse] € S. where s, = I'""'%l, are built belween the pair of edge-sharing face-
tetrahedra that are both inside or both outside the triangulation T.

4 Simple Polyhedron with Convex Faces and “Above Face” Ver-
tex Normals

In this section, we present an algorithm for constructing a smoothable simplicial hull from a simple
polyhedron P with three restrictions. (i) every face is convex. (i) every vertex normal is “above”
the incident faces, namely for every vertex V. A vertex normal ny is above its incident faces f; if the
inner product of »y with all the face normals of f; is positive. The vertex normal can be computed
in different ways such as face normals or local interpolation by a sphere [BI92b, BCX93, Pet90].
(iii) the polyhedron is manifold (i.e. two faces incident per edge,etc)

Algorithm 1 INPUT: A simple polyhedron P with convez faces and “above face” verlez normals.

(1) Compute the centroid C; of each face f;.

(2) For every vertez V, if it is a trikedral vertez, go to (3); otherwise go to (4). Go to (6) if
every verlez is done.

(3) Build face-tetrahedron [C1C,C3V], where C; is the centroids of a face f; € P around V.
(See Figure 4.8) Go back to (3) for the nezl veriez.

(4) Let ly = V + nyt, be a straight line pass through vertez V in the direction of the normal
ny. Compute the projection p.; on ly of each of the centroids C; of the faces f; around V. (pc, =
V4 avt) Ift; > 0 for all i or t; < 0 for all i, then V is separable from the centroids C; of the
faces f; around V, by a plane = parallel to the tangent plane at V, otherwise V is unseparable. In
the case of a separable vertezx V, let V be the projection closest to V, or the one with the smallest
t; in absolute value; (V = V + nyt*, where t* € {t;} and |t"| = min{lt;|}). In the case of an
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Figure 4.3: Construct a Face-tetrahedron on a Trihedral Vertex
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T, To
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) {e)

Figure 4.4: Construction of Face-tetrahedron on a Non-trihedral Vertex

Figure 4.5: Face-tetrahedron around a Non-trihedral Vertex




unseparable vertez V, let V = V. Let Cp, denote a pseudo centroid, and be a point between V and
V. (Co=aV +(1- )V for some o € (0,1)). Let ny be the normal at Cy. Go to (5).

(5) Let e = VV' be an edge incident to V and C,, C, be the two centroids of the two faces
incident at edge e. Let Ty is the middle point between lhe intersection point of g, and M, the
middle point of edge e. Let Ty be the projeciion of Myv, the midpont of VV’ on TGy, the tangent
plane of Co. Now we construct the face-tetrahedra based on the signs of the inner products between
the normalng, and C1, Cs, To and T1. (i) (ng,C1)(ng,Cs) > 0, namely the two inner product are of
one sign, and (ng,To)(rc,C1) < 0. Build a face-tetrahedron [CoCyCyTy). (See Figure 4.4 (a)} (d).)
(i) (ng,C1)(ncyC2) = 0, (ne, To)(ne,C1) > 0, Ty and Ty are on one side of [CoC1C2). Build face-
tetrahedron [T CoC1Cy). (See Figure 4.4(c).) (i) (rc,C1){(nc,C2) 2 0, (nc,To)(n0,C1) > 0, To
and Ty are on different sides of [CoC)Cy]. Build L-U-face-tetrahedra [ToCoCyC2) and [T1C6eC1Co).
One on each side of [CoC1Ca). (See Figure 4.4(b) and (e).) (iv) (ng,C1)(nc,C2) < 0. Assume
that Ty is “above” [T1CoC1C2), namely e is a ridge. Move To along the direction of ng, until
it is “above” mg,, nemely (ng,To) > 0. Move T1 along the opposite direction of ng, until it is
“above” m¢,, namely (ng,T1) < 0. If € is a valley, move Ty and Ty in opposile directions. Build
L-U-face-tetrahedra [ToCoC1Cy) and [T1CoC1Cy]. (See Figure 4.4(f ).) (Figure 4.5 illustrates that
4 face-tetrahedra are built around a verlex with § edges,) Go back to (3) for the nezt vertex.

(6) Build one pair of edge-tetrahedra belween each pair of adjacent face-tetrahedra of the same
orieniation. (See Figure 6.9. Forgel about the nodes on the teirahedra for the moment. )

QUTPUT: A simplicial hull .

Let 7 be the triangulation consists of the triangular faces [C1C2C3]’s and [CoC1Cy]’s, built in
step (3) and step (5) of Algorithm 1, with respect to different vertices and edges. Let S ¢ be the
collection of face-tetrahedra and S, be the collection of edge-tetrahedra. Conditions {2), (3) and
(5)(ii) of definition 3.6 are obviously satisfied by the construction of . Along with the following
lemmas, we conclude that X is a smoothable simplicial hull. See Appendix A for details and proofs
of the following lemma.

Lemma 4.1 Triangulation T is edge-convez.

Lemma 4.2 Every face-teirahedron [pip;prqi] € Sy is langeni-containing.
Lemma 4.3 The face-tetrahedra in Sy do not intersect each other.
Theorem 4.1 X is a smoothable simplicial hull.

For a simple polyhedron that does not satisfy the three restrictions, certain preprocessing steps
can be taken to enforce them. Appendix C gives an algorithm to transform an arbitrary polyhedron
to one that has “above face” vertex normals. The convex face restriction can be enforced by
subdividing nonconvex faces into convex ones. However, the next section discusses a modified
version of Algorithm 1 by which a simplicial hull can be constructed directly on a simple polyhedron
with “above face” vertex normals, which could have nonconvex faces.

In [BCX93], extra subdivision are needed if the adjacent triangular faces of the triangulation T°
are coplanar to each other. Otherwise, all the bottom weights of the coplanar face-tetrahedra are
related to each other by the continuity constraints so that the locality proper ty of the weight-setting




a nen-triangulated cell

Figure 5.6: Triangulating a Mesh of Corner Guard Nets and Nontrihedral vertices

procedure is destroyed and also the single sheeted condition is jeopardized. For the smoothable
simplicial hull scheme presented in this section, as the triangulation of the polyhedron is also
constructed instead of being given. By selecting “good” centroid combinations, one can construct
a hull without any coplanar faces or only with some “trivial” coplanar cases. See Appendix B for
details.

5 Extending the Algorithm to Include Polyhedra with Noncon-
vex Faces

In this section, we extend our Algorithm 1 to allow nonconvex facets in polyhedron P.

Construction of the face-tetrahedron requires that the corner is visible from the centroid. While
every point in a convex polygon meets this requirement, it is not the case for a nonconvex polygon.
For each nonconvex polygon, we first construct a corner guard net (Definition 2.5), and set the
vertex normal of the corner guards as the face normal. For each convex polygon, take a centroid(as
we did in last section) to be the corner guard. For a vertex V, connect the neighboring corner
guards with respect to vertex V. If V is non-trihedral, connect Cy, pseudo centroid of V and the
surrounding corner guards. Now the corner guards and the pseudo centroids C'v’s,are connected by
the corner guard net and the newly added edges, to form a mesh Q* with non-triangular cells (due
to multiple corner guards in some nonconvex faces. see Figure 5.6). Triangulating the four-sided
non-triangular cells, we obtain a triangulation Q. By similar arguments as in the last section, the
edges between corner guards of different faces, and the edges between corner guards and pseudo
centroids are all convex (Definition 3.1) And the edges in corner guard nets are zero convex by
construction. Hence Q is edge-convex.

There are some nonconvex corners with respect to a nonconvex polygonal face. One example
is shown in Figure 5.7. Here two face-tetrahedra are needed although the vertex is trihedral,

Now we extend Algorithm 1 by replacing the centroids of non-convex faces by the corner guards.

Algorithm 2 INPUT:A simple polyhedron P with “above face” verler normals.

(1)} compute the corner guard net of each faces.

(2) For every vertez V, if it is a trihedral verlez and each pair of edges form an angle < &, go
to (3); if V is a trihedral vertex and one pair of edges e; and e3 form an angle greater than 7, go

9




(@) ®)

Figure 5.7: A Hallway Corner

to (3°); Otherwise go to (4). Go to (5’) if every vertez is done.

(3’) Build two face-tetrahedra [G1G2G3V] and [G1G2GsTy], where Ty is a point between M, ,
the middle point of e;, and the intersection of e; and [G1G2G3V]. (see Figure 5.7)

(3) (4) (5) (replace centroids by corner guards).

(57) (See Figure 5.6) For each pair of adjacent face fy and fy, let edge V1V be the edge they
share, G1 and G2 be the corner guards of fi with respect to vertices Vi and V2, Gz and G4 be
the corner guards of f, with respect to vertices Vi and Vo. If G; # G2 and G3 # G4, build
face-tetrahedra [G1G2GaHp) and [G2G3GyH,], where Hy is a vertez between My, v, the midpoint
of ViVe, and top vertex of the face-ietrahedron shares edge [G1G3] that was built in Step (3) or
(5) of the algorithm, similarly, Hy is on the other side of Mvyy,. If G1 = G2 and G3 # G4, build
face-tetrahedron [G1GaGyMv,v,). If G1 # G4 and Gs = G4, build face-tetrahedron [G1G2Gs My, v,)-

(6) (same as in Algorithm 1)

QUTPUT: A simplicial hull T.

It is not difficult to show that simplicial hull ¥ is also smoothable.

6 (' Mesh of Cubic Patches and C? Mesh of Quintic Patches

Once we have established a smoothable simplicial hull 5~ for the given polyhedron P and a set of
point normals N, we construct a C? or C? trivariate piecewise polynomial function f within 3
such that f has the given C! or C? data at each vertex and the zero contour of J within ¥~ form
a C! or C? continuous surface with the same topology as T. We adopt the C?! cubic scheme from
[BCX93] using only the special cases needed for the new smoothable simplicial hull 3.

For the construction of f within the tetrahedra built on two adjacent triangles(see Figure 6.8
for C* and Figure 6.9 for C2. See also Figure 7.10 for examples of the € and C? surfaces), let

Vi = [p1p2papal, Va = [Plpepspl], Wi = [pYpapspal
W, = [P;’Pzpapﬁ], Vf = [plpzpsqq], V; = [Pipzpsqf;]

and the polynomiz_ﬂs fi over Vi, gi over W; and f] over V/ be expressed in Bernstein-Bezier forms
with coefficients a}, b} and ¢}, respectively. Now we shall determine these coefficients step by step.

10




Figure 6.8: Adjacent Tetrahedra, Cubic Functions and Control Points for two Non-Convex Adjacent

Faces

Denote
P{ = Bipy +03p2+Bips+ Oips, B+ 03 +B+PL=1
Pl = Bini+03p+B5pa+82ph, BI+BI+pE+p2=1 (6.12)
Pl = mps+ pepy, it p =1

C? cubic scheme(see Figure 6.8)

1.

® N e e oA w

The number 0 weights are given by the function values at the vertices.
The number 1 weights are determined by formula (2.5).

{#)

The number 2 weights, that is ajj,q, 2re free.

. The number 3 weights are determined by C' conditions (2.8).

The number 4 weights are free.
The number 5 weights are determined by C? conditions (2.8).
The number 6 weights are free.

The number 7 weights are determined by C' conditions (2.10).

The remaining weights with index Ay A2A3A4 are determined by C? condition (2.8)foras <1
and freely chosen for A4 > 1.

C? quintic scheme(see Figure 6.9)

1.

2.
3.

4.

The number 0 weights are given by the function values at the vertices. For examples, ag?i =
f(p), i=1,2,3.

The number 1 weights are determired by formula (2.5).
The number 2 weights are determined by formula (2.6).

@

The number 3 weights, that is agizlzoa ag'.zjw and aj;,y, are free.

11




[C] tree weight
(O dependent weight

®@ OHOGP 5.
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Figure 6.9: Adjacent Tetrahedra, Quintic Functions and Control Points for two Non-Convex Adja-
cent Faces
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10.

11,
12.

. The number 4 weights are determined by C! conditions (2.8), that is

bg'z)zn = F)a?z)zo + ﬁgljat(;a)zo + ﬂ:gl)“gz)ao + ﬂ‘gl)ai(;z)zp i=1,2

' 1 2
55'2)20 = “({12)21 + ﬂzﬂc(m)n

It follows from these equations that

magan + 2ol ~ B0y, = B0al + 600, + 6l (6.13)

for i = 1,2. The coefficient matrix 4 of (6.13) for the unknowns a({]‘gzl is
A= [ H — ‘El) 2 )
H1 H2 ~ ﬁg )

This matrix is nonsingular if and only if p1,p{p; and p3 are not coplanar [BCX93]. Hence
(6.13) has unique solution under our assumptions.

. The number 5 and 6 weights have to be determined simultaneously. In determining these

weights, we need to consider all the C* and C? conditions related to the tetrahedra surround-
ing the vertex p2. Suppose there are k triangles(hence & edges) around p, and the convexity
change of the edges occurs r times, then by C! and C? conditions, we have 6k 4 r equations
That is, crossing each face, we have two equations, and crossing each triangle, we have one
equation. The number of related unknowns is also 6% -+ . That is, & number 5 weights and
5k number 6 weights and one more unknown is related when a single convexity change of the
edges occur. See Appendix D for further details.

- The number 7 weights are similarly determined as that of number 6 weights.

(1)

. 'The number 8 weight a;/,, are free.

. The number 9 weights are determined by C! and C2 conditions. Both the number of equations

and the number of unknowns are 6k. See Appendix E for details.

For the number 10 weights, we have six equations parallel to the equations (E.23)-(E.26)
with all the index changed by the rule

the index of the number 10 weright = the index of the number 9 — e, + €3 (6.14)

and seven independent weights. By chosing one of them, say bg?lo, to be a free parameter,
the entire system can be solved.

The number 11 weights are determined in the same way as the that of number 9 weights.

The number 12 and 13 weights are free. The number 14 ‘weights are determined by C? and
C? conditions. That is b£'1)03 are defined by (2.8), and b£‘1)02 are defined by (2.9). For b:(;l)m:

we have by (2.10) and (2.11)

2
Plb:(sll)ol + #26'%1)01 = bﬁll)oo
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(2) (b)
Figure 7.10: ! and C? Smooth Approximations of a Polyhedron

_#lb:(sl1)01 + #2557.21331 = #%bgﬂn - P‘fbgﬂlz

Hence 1) (2) (2)
Bl _ batoo — #3b3102 + £36370,
3101 = 2u
1
pl2) b«(ill)oo + ﬂ%bg}n - #%bgﬂm
3101 = 2u
1
13. The number 15 weights are similar to that of number 14, the index is changed by the rule
(6.14).

14. The number 16 weights are free, the number 17’s are determined by C? and 2 conditions.

15. The remaining weights with index AA2X3A4 are determined by C! and 2 conditions (2.8)
and (2.9) for Ay < 2 and freely chosen for Ay > 2

In summary, the construction step 1-14 is according to the C! and C'? conditions across the
common tetrahedra faces that are over or below the original triangulation. Step 15 is according to
the C* and C? conditions across the common tetrahedra faces that are on the original triangulation.
Therefore, the composite polynomial function is global C? continuous.

7 Shape Control

7.1 Cutting the corner by different ratio

We can control how sharply the corners of the original polyhedral are cut. For a trihedral corner
that is to be smoothed in step (3) of the algorithm, we cut the corner by different extends to raise
or lower the A-patch defined inside the face-tetrahedron. The top of the surface can be as high as
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Figure 7.11: Shape Control of Smooth Approximations of a Polyhedron
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Figure 7.12: Interpolation of a Corner Guard Net

the vertex V', or the top of the face-tetrahedron, or as low as the bottom of the face-tetrahedron.
For a nontrihedral corner that is to be smoothed in step (4) of Algorithm 1 and Algorithm 2, we
adjust parameter o to decide the position of Cy on the line segment VV. Similarly, if Cy is chosen
close to V, only a little is cut off from the corner, while if Cy is chosen close to V, the corner is
nearly almost all cut off. See Figure 7.11. In the top left figure, the weights are set approximating
piecewise functional surface over the faces of the triangulation. In the top right figure, the upper leg
of the surface is dragged to a corner by changing the weights of the tetrahedron on this corner. In
the bottom left and bottom right figures, the whole surface is deformed in this manner in different
scales.

7.2 Interpolating points

We introduce a corner guard net in the case of nonconvex polyhedral faces. The final surface
interpolates the edges of the corner guard net. Actually, even in the case of convex face, we can
make it a corner guard net that we would like the smooth surface to pass through certain lines, or
even a region of the face. See Figure 7.12. In latter case, the corner guard “region” is covered by
a planar polygon in the final piecewise smooth surface.

8 Implementation

We have presented algorithms for approximating a three dimensional polyhedron with C! cubic
and C? quintic A-patches, respectively. These algorithms have been implemented in the SPLINEX
and SHILP toolkits of our X-11 based distributed and collaborative geometric design environment
SHASTRA [AB93]. See Figure 7.10 and Figure 7.11. We are using it for interactive free-form design.
SHILP is an X-11 based, interactive solid modeling system and is used to create a simplicial (face
triangulated) polyhedral model of the desired shape. This model could also be the triangulation
of an arbitrary surface in three dimensions. This triangulation is € smoothed by a client/server
call to a SPLINEX computation using inter process communication. SPLINEX is a an X-11 based,
interactive surface modeling toolkit for arbitrary algebraic surfaces (implicit or parametric) in
BB form. It allows for the creation of simplex chains (as for example the simplicial hull of the
triangulation) and the interactive change of control points and weights of the A-patches for shape
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control. SPLINEX also has the ability to distribute its rendering tasks (for the display of the
individual A-patches) on 2 network of workstations, to achieve maximal display parallelism.
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A  Proofs Lemmas of Section 4
Lemma A.1 (Lemma 4.1) Triangulation T is edge-conver.

Proof. There are 3 kinds of edges in 7. (1) CiC}, edge between the centroids of two adjacent
faces f; and f;. CiC; is convex since the face normal of f; and f; are the normals of C; and C;. (2)
V(;, edge between an unseparable vertex V and Cj, the centroid of a face fi around vertex V. Edge
VC; is always convex as VC; is always perpendicular to the normal at Cs, or the face normal of f;.
(3) CoC:, edge between Cy, the pseudo centroid of 2 separable vertex V and C;, the centroid of a
face f; around vertex V. Without lost of generality, assume that ¢; < 0. By the input assumption,

nyng; 2 0, namely ny is pointing above face f;. So Cp is under face fi- Therefore C;Cpng; < 0.
Let pc; be the projection of C; on line Iy = V 4 nyt. By construction, |[VCo| < |Vpg,|, hence

C'oa-nc‘. < 0. Remember that ng, = ny. So edge CoC; is convex. Therefore, every edge in 7 is
convex. 7 is an edge-convex triangulation. This settles condition (1) of definition 3.6. <

Lemma A.2 In a polyhedron, for a corner V with normal ny, if the inner product between ny and
the face normal ny, of any face f; around V is positive, then the faces’ projections on the tangent
plane of V' do not overlap each other.

Proof. Assume that the lemma is not true. Then there must be two adjacent faces f; and
fit1 whose projections overlap each other. One of them, say f;, must “face downward”, namely
ngny < 0, a contradiction. ¢

Lemma A.3 (Lemma 4.2) Every face-tetrakedron [pip;prqi] € Sy 15 tangent-containing.

Proof. We divide the face-tetrahedra into following 5 groups. (1) [C;C2C3V), face-tetrahedra
built in step (3) of Algorithm 1. (2) [CoToC1Cy] is the face-tetrahedron built in step (5)(i) of
Algorithm 1. (3) [CoC1C,Th] is the face-tetrahedron built in step (5)(ii) of Algorithm 1. (4)
[CaC1C3T0) and [CoT1C1Co], a pair of face-tetrahedra built in step (5)(iii) of Algorithm 1. (5)
[CoC1C2T0] and [CoT1C1Cy), 2 pair of face-tetrahedra built in step (5)(iv) of Algorithm 1 and
(neC1)(ne, C2) 2 0.

Let us look at the tangent plane of the centroids first. In case (1), by construction, CT/ ne; =0
for i = 1,2,3. So it is tangent-containing. In case (2), (4) the tangent planes of € and Cs are

contained same as in case (1), CiTong, = 0 for ¢ = 1,2, for Ty is a point on edge e. In case (3),
without lost of generality, assume that (ng,C1) < 0, (ng,C3) < 0, so that edge e is a ridge. As T}

is the projection of M € e on Cp’s tangent plane 7y, MT1 is parallel to ny. Hence T is above or
on face f;, or the inner product ng,C17; > 0. On the other hand, ng, Ci1C2 £ 0 as e is a ridge,

RCIC-H_CG < 0 as Cy is below face f;. Hence at Cy, the tangent plane is contained. Symmetrically,
tangent plane is also contained at C;. Similarly, we prove that in case (5), the tangent planes at
C7 and C; are contained,

Now we consider the tangent plane of Cy in cases (2)-(5). In case (2), =g, intersects [T6CoC1CR)

as the inner product =g, CoTy is of a different sign to that of the inner products g, CoCy and
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gy CoC2. Hence [CaCiCoTy] is tangent-containing at Co. In cases (3), (4) and (5), tangent con-

tainment is obvious as ng, CyTy = 0.

From the above discussion, Sy is tangent-containing, which settles condition (4) of definition 3.6.
<
Lemma A.4 (Lemma 4.8) The face-teirahedra in S; do not intersect each other.

Proof. Now we show that adjacent face-tetrahedra do not intersect each other. Let [C1C2C3T]
and [C;C3C4T2] be two face-tetrahedra adjacent to each other. T1 and T> can be either vertices
on some edges or projections on the tangent planes of some vertices. First, assume C) and C;
are the centroids of two adjacent faces incident at edge e, T} and T3 are on the edge e(see Steps
(8) (5)(i)(iti)(iv) of Algorithm 1), or the projection of M., the midpoint of e on the tangent plane
of C3 or Cy (Steps (5)(if)(iii)(iv) of Algorithm 1). Let o be the plane passing through M, and
perpendicular to e. In any combination of the above cases, T} and 7% are in different side of o.
Therefore the two tetrahedra do not intersect each other. Secondly, if C} is a pseudo centroid,
C2 must be a regular centroid. 7y and 7% are vertices on neighboring edges e; and e; or on ¢
and eg’s projections on g, , the tangent plane of the pseudo centroid C;. As the inner product
ng,ne; > 0 for any surrounding face f; , the projections of the surrounding faces and edges on 7¢,
do not overlap each other (Lemma A.2). Let o be the plane passing through C) and perpendicular
to mg, and bisecting the angle e;Chez. In any combination, 77 and T, are on different sides of ¢.
Therefore Sy is not self-intersecting, which satisfies condition (5)(i) of definition 3.6. ©

B Elimination of Coplanarity

In [BCX93], extra subdivision is needed if the adjacent triangular faces of the triangulation 7 are
coplanar to each other. Otherwise, the bottom weights of the face-tetrahedra are all related to each
other by the continuity constraints, so that the locality property of the weight-setting procedure
is destroyed and also the single sheeted condition is jeopardized. In the scheme presented in this
paper, however, as the polyhedron face is also constructed instead of being given, one can choose
to construct a triangulation without any coplanar faces or only with some “trivial” coplanar cases.

Coplanarity of a triangulation 7 could be described by a coplanar graph, denoted as G, which
has an edge f;f; if and only if face f; and fi are coplanar to each other.

The vertices of the triangulation are the corner guards of the faces of the original polyhedron 7
and pseudo centroids of the non-trihedral vertices of 2. Those corner guards and pseudo centroids
are by no means in any unique positions related to the faces. One exception is the non-trihedral
vertex that is unseparable from its corner guards, but such kind of vertices are never adjacent to
each other in 7. Hence coplanarity between adjacent facts in 7 can be eliminated by displacement
of the corner guards or the pseudo centroids.

In our implementation, instead of computing a corner guard, we compute a corner guard circle,
in which every point is a corner gunard. Corner guard circles of a face are connected into a corner
guard circle net. We center a corner guard on each circle. But any of them can be moveed around
within the circle without affecting any other part of the corner guard net. However, while being
a complete solution to the coplanarity problem, displacement is not needed in the following two
“trivial” coplanar cases.

(1) A face-tetrahedron is coplanar to only one other face-tetrahedron, namely the coplanar
faces in 7 can be grouped into isolated pairs. In this case, the bottom weights of the two faces are
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dependent to each other, but they are not dependent to other face-tetrahedra.

(2) A group of coplanar faces whose edges between themselves are all zero convex. The continuity
constraint can be set among them by setting the bottom weights a111p’s to zero. Let us refer to such
a group as a zero coplanar group. A special case of this kind is a group like VG;Gi;1 € T, where
vertex V' is a non-trihedral vertex that is unseparable from the corner guards G; around them, (see
Algorithm 2 step (4)) and VG;Gi11 € 7, the triangular faces around V are on one common plane
7v. The normal at each corner guard G; is vertical to the edge, ng,;(G;V) = 0. Now if we set the
normal of ¥ to be that of plane 7, then all the edge VG; are zero convex.

It can be shown that if [p;p;py] is a face coplanar over a nonzero edge [p;p;] to a face in a zero
coplanar group, then py is not an unseparable vertex, and hence can be displaced to eliminate the
coplanarity over [p;p;].

Lemma B.1 A zero coplanar group can be always removed from a coplanar graph G by displacing
a veriez of the face coplanar to il.

We sum up the above discussion by modifying Algorithm 2 to resolve the coplanarity problem
without subdividing the triangulation. The significance of the corner guard circle in this modifi-
cation is that after any displacement of a corner guard, the reconstruction of the simplicial hull is
needed except when a displaced vertex is adjacent to an unseparable vertex V € P.

Algorithm 3 INPUT:(same as in Algorithm 2)

{1’) Compute the corner guard circle net of each faces.

(2)(3°)(3) (same as (2)(3°)(8) in Algorithm 2)

(4°) Letly =V 4 nyt, be a siraight line passes through vertez V in the direction of the normal
nv. Let Cg; be guard circle on f; of vertez V.. Compute the projection of quard circle Cg; only,
which is a line segment and denoted as PG, Pg, P& =V + nvitl, Py, =V +nyt}. If10,1} > 0 for
all i or 12,1} < 0 for all i, then V is separable from the centroids C; of the faces f; around V, by a
plane m parallel to the tangent plane at V, otherwise V is unseparable. In the case of a separable
vertez V, let V be the projection closest to V, or the one with the smallest t! in absolute value;
V = V4ayts, where t* € {19,1}} and |t*] = min{[t0|,|t}|}. In the case of an unseparable vertez V,
let V.= V. Let Cy, denoted as a pseudo centroid, be a point between V and V. Cp = aV + (1-a)V
for some & € (0,1). Let ny be the normal at Co. Go to (5).

(6)(5°) (same as in Algorithm 2.)

(5”)(i) Construct planar graph G.

(57)(ii) Look for zero coplanar groups. For each face-tetrahedron based on a face of an zero
coplanar groups, set weights ay119 = 0.0.

(57)(i%i) For each face F' = [pip;pi] € T that is coplanar to a zero coplanar group over edge
[pip;], displace py. within the corner guard circle as as to eliminate the coplanarily over edge [pip;].

(57)(iv) Break the rest of G into pairs by displace some corner guards within their corner guard
circles.

(5”)(v) For any unseparable vertex V adjacent to a displace guard G;, reconsiruct all the face-
tetrahedra sharing [V G;, as well as the edge-tetrahedra adjacent to them.

(6) (same as in Algorithm 2.)

QUTPUT: Simplicial hull ¥ without any coplanarity other than coplanar pairs or zero coplanar
groups.
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Figure C.14: Smooth an Unseparable Corner

C Transform Arbitrary a Simple Polyhedron into one that has
only “above face” vertex normal

Intersect the faces of a vertex V with a sphere § centered at V. The intersection is a non-self-
intersecting polygon P = Py P,...F, on the surface of §. For i = 1,...,n, replace P; by the midpoint
of arc P;Pit1)mod(n+1)- Repeat this until P’s projection on some big circle C' does not overlap
itsell. That means that if the plane of C is chosen as the tangent plane of V, then the projection
of V’s surrounding faces do not overlap each other and the inner product of the normal at V and
any face normal around V is positive.

Map this process onto a vertex V. Let & be the number of iterations in the process. Imitially,
7 =0. (1) As shown in Figure C.14, on each edge F;, take a point D7 so that |D}V] = 2k- s, where
s is some preselected step size. Determine M} so that |M7 V| = (2k — 1)s and |DIMi| = [Df+1Mf|
Connect D M{ and Di,, M, VM{ and MIMi,, delete DIV.
(2) if k is 0 stop. Otherwise k = & — 1 and j = j + 1 go to (1).

The polygon M{ME..ME forms a corner V* which is smoothable. The newly introduced
vertices M ; are of vertex-degree 5 and D;'-, D} 1 D}"'l and M J‘ are coplanar, so that it can be
shown that M} are also smoothable.
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D Determining Number 5 and 6 Weights of Quintic

It follows from (2.8) and (2.9) that

bgz)u = ﬁ( ) 52)11 + ﬁg }algli)ll + ﬁg)“é )21 + ﬁi')ﬂ((;) (D.15)
bg?lo — )ﬁ{ i) { ) o+ 2ﬁli)ﬁ(') {i ) o+ 2}31‘}’3( i} ( ] ot 2ﬁ ﬁ( i) 5'211
+ }ﬁ(‘) (' ot 2ﬁ£ )ﬁ(') () +2ﬂ2 ﬁ4 0311 (D.16)

+ ﬁa :gjaa(az)au + 2606 ((;221 + 860 a,
for ¢ =1,2. (D.16) can be written briefly as

650 = 26060068, + 8806l , + 4 (D.17)

where 7 is the known terms in (D.16). Since

1
£2J10 = Flb£12)11 + ﬂ2bg]11 (D.18)
bt(le)lz 552)11 = %bc()i)lz - #25?5)11 (D.19)

then by substituting (D.15) into (ID.18) and (D.19) and then eliminating bgz}lo from (D.17} and
(D.18) we get three equations related to four unknowns which could be written as:

ﬁ‘” ~ 1 ] [ﬁ?’ 0 ] [ agals ] [ 260 —m - ]
= +--- (D.20
e a1 R (0-1)
(1)
['-#1(5.5 — ) p2(8) - o )] [ o l [#151 :'-#21912)] [ ‘11211 ] = (D.21)
0212 1211
where --- are known terms. Since the coefficient matrix of (D.20) is nonsingular, by solving

[a((,lz):l2 ‘10212] from (D.20) and then substituting it into (D.21), we get one equation relating to

{2)

the unknowns a%{l, ajs11- Let the equation be in the form
1 2
¢a£2)11 + ’-bagz)u =w (D.22)

Therefore, these unknowns form a closed chain around the vertex pz. But one should note that
the chain will go to the other side of the triangles if the edges change their convexity(from positive
convex to negative convex or from negative convex to positive convex). For example, if the edge

[p2pa] is positive convex, while the edge [p;ps] is negative convex, then the chain is changed by
(1) {1)

adding one more equation related to the two unknowns a3, and ¢j3, from C! condition

(1) (1) (1) (1)

(1)
1211 = Q18321p T Q281310 + Q381900 + 04§51y

where
g4 = a1p) + tape + a3p3 + agpy
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Again, this equation is in the same form as (D.22). The coefficient matrix of all these equations
related to the vertex p» is in the form of

$
¢ P

"pbk+r ¢k+r

whose determinant is Hf:{ $i— (=1 Hf-‘:{ ;. This matrix is nonsingular in general if the points
given are in the general position. Hence the system can be solved.
(1) (1)

In this specified case, ej,q, and ajyq, do not involve in any equation, since there is no neighbor
tetrahedron. These two weights are defined by a C? condition crossing the face (p1p2p3)-

E Determining Number 9 Weights of the Quintic Scheme

Fori=1,2, .
bg‘zjoz = ﬁ( )ﬂgz)oz + ﬁ{ L 1(33)02 + ﬁg )alg2}l2 + ﬁxg‘)“r(;m (E.23)
bggm — ﬁ ﬂ(') (i ) _|_ 25(‘)ﬁ(') (¢ ) + 2ﬂ£ )ﬁé) (i ) + 25%‘))5( )alm
+ ﬁ; 6008, + 260800l + 26860 _&a’oz (E.24)
+ 53' é] 52)2 + 25:& )ﬁ( ) 52]12 + ﬁ‘(; )ﬁ{ i) 1(32)03
and 1) @ (2
bgzoo = pbgyg; + #2b22)m (E.25)
ufbﬁzﬁz 1 5&2)01 szgzzlz FZbgzzjol (E.26)

Substitute (E.23) and (E.24) into (E.26), we have

88N (r — BE)6hs — 2B (a — BPNE, = ...

This is a system that is in the same form as (D.22) and a system like (D.22) needs to be solved.
However, if the surrounding tetrahedra at the same side at p, are not closed, the matrix A is in
the form of

é1
A= .
bk P
. . A1 0

By chosing one unknown, say the {-th to be a free parameter, A can be written as A = 0 A
2

with

1t Y
. !
Ay = oo A P2 7.b'f+2 .
$r-1 i1 T T
o b Pk

Hence the system of equations breakup into two smaller sub-systems. Each of them can be solved
separately.
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