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Abstract

We present efficient algorithms to construct both C1 and C 2 smooth meshes of cubic and
quintic A-patches to approximate a given polyhedron P in three dimensions. The A~patch is
a smooth and single-sheeted zero-contour patch of a trivariate polynomial in Bernstein-Bezier
(BB) form defined within a tetrahedron. The smooth mesh constructions rely on a novel scheme
to build an inner simplicial hull E consisting of tetrahedra and defined by the faces of the given
polyhedron p, A single cubic or quintic A-patch is then constructed within each tetrahedron of
the simplicial hull :E with the resulting surface being C l or C 2 smooth, respectively. The free
parameters of each individual A-patch can be independently controlled to achieve both local
and globa1shape deformations and a family of C 1 or C 2 smooth approximations of the original
polyhedron.

1 Introduction

In this paper, we present efficient algorithms to construct both a a1 smooth mesh with cubic A­
patches and C 2 smooth mesh with cubic and quintic A-patches to approximate a given polyhedron P
in three dimensions. The A-patch is a smooth and single-sheeted zero-contour patch of a trivariate
polynomlal in Bernstein-Bezier (BB) form defined within a tetrahedron[BCX93], where "A" stands
for algebraic. Solutions to the problem of constructing a a1 mesh of implicit algebraic patches
which in.terpolate the vertices of a simplicial polyhedron P have been given by [Dah89] using
quadric patches, [BCX93, DTS93, Guo91b, Gu093] using cubic patches and [BI92b] using quintic
for convex P(all faces are triangular) and degree seven patches for arbitrary P. While papers
[BI92b, Dah89, DTS93, Guo91b, Gu093] provide heuristics based on monotonicity and least square
approximation to circumvent the multiple sheeted and singularity problems of implicit patches,
[BCX93] introduces new sufficiency conditions for the BB form of trivariate polynomials within a
tetrahedron, such that the zero contonr of the polynomial is a single sheeted non-singular surface
within the tetrahedron (the A-patch) and guarantees that its cubic-mesh complex for P is both

·This work was supported in part by NSF griUlts CCR 92-22467, DMS 91-01424, AFOSR grants F49620-93-10138,
F49620-94-1-0080, NASA grant NAG-l-14.73 and a gift from AT&T.
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nonslngular and single sheeted. In this paper we use these cubic A-patches to provide a C 1 smooth
single sheeted mesh which approximates a given polyhedron. We also present a new scheme for
building a C2 patch complex with quintic surface patches and furthermore do not require the
polyhedron P to be simplicial.

The C1 interpolation schemes of [BCX93, Dah89, DTS93, Guo91b, Guo93] all build an outside
simplicial hull (consisting of a series of edge and face tetrahedra) containing the given polyhedron
P. Such a simplicial hull is nontrivial to construct for arbitrary P (even convex P with sharp
corners) and can give rise to several exceptional situations and degeneracies (co-planarity, hull self­
intersection, etc).The neW corner-cutting, inner simplicial hull construction of this paper and can
handle all convex P and also arbitrary polyhedra with non-convex faces. This new simplicial hull
scheme is the three dimensional generalization of the two-dimensional corner-cutting scheme used
to construct C k continuous bivariate A-splines [BX92].

Related papers which approximate scattered data using implicit algebraic patches are [Baj92,
BBX94, BI92a, BIW93, MW91, Pra87, Sed90J and a classification of data fitting using parametric
surface patches is given in [Pet90].

The rest of this paper is as follows. Section 2 gives some preliminary facts about Bernstein­
Bezier (BB) representations, A-patches and the geometry of simple polyhedra. Section 3 provides
a formal definition of a sIDoothable simplicial hull. Section 4 presents a simplicial hull construction
scheme for a simple polyhedron P with convex faces, where every vertex normal Is "above" the
faces surrounding the vertex. Section 5 extends the hull construction algorithm to include a simple
polyhedron with nonconvex faces. Section 6 presents details ofthe C 1 and C2 continuity schemes for
cubic and quintic A-patches. Section 7 exhibits the capabilities of local and global shape control
of the A-patch approximating mesh under the current construction scheme. Finally, Section 8
provides some implementation details.

2 Notation and Preliminary Details

2.1 Bernstein-Bezier Representation and A-Patches

Let {PI," ,Pi} E JR3. Then the convex hull of these points is defined by [PlP2,.,Pi] = {p E IR3 :

P = E1=1 O:iPi,O:j ~ D,li=1 O:j = I}. Let PI, P2, Ps, P4 E IR3 be affine independent. Then the
tetrahedron(or three dimensional simplex) with vertices PI, P2, P3, and P4, is V = [PIP2P3P4]. For

4

any p = LO:iPi E V, 0: = (0:1,0:2,0:3, 0:4? is the barycentric coordinate of p. Let P = (x, y,z)T,

i=1
Pi = (Xi, Yi, Zi? Then the barycentric coordinates relate to the Cartesian coordinates via the
following relation

(2.1)

Any polynomial j(p) of degree m can be expressed in Bernstein-Bezier(BB) form over V as
f(p) = Lp.l=m b),. Bf(o:), >. E Z~ where Bf(o:) = X1!>'2i13!>'4! Q;IQi20:i3Q~t are the trivariate

Bernstein polynomials for 1..\1 = L&:I..\j with ..\ = (..\1' >'2, >'3, ..\4?' Also 0: = (0:1> 0:2, Q3, Q4)T is
the barycentric coordinate of P, b),. = b>'1>'2>'3),.t(as a subscript, we simply write..\ as ;\1..\2..\3>'4) are
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Figure 2.1: A Smooth and Single-Sheeted Triangular Algebraic Surface Patch(A triangular A-patch)

called control points, and Z+ stands for the set of all four dimensional vectors with nonnegative
integer components. Let

F(a) = L b,B:\,(a), lal = 1, (2.2)
1>.I=m

be a given polynomial of degree m on the tetrahedron S = {(aI, t):2,03, 0:'4f E IR:l. 2:f=lO::; =
1, a; ~ OJ. The surface patch within the tetrahedron is defined by SJ C S : F(al' 0:'2, 0:3, (4) = O.

Definition 2.1 Triangular algebraic surface patch
If any line segment passing through the j-th vertex Vj ofS and its opposite face Sj = {(OIl 02, 03,

Ct4f; Qj = 0, frj > 0, Li;l:j Qj = I} intersects Sf only once, then we call SJ a triangular j-patch
(see Figure 2.1).

Note, for a given tetrahedron, we can have triangular i-patches for j
patches are A-patches (algebraic patches).

1,2,3,4. Jlll these

Lemma 2.1 The triangular j-patch is smooth (non-singular) and single~sheeted.

Proof. See [BCX93]. 0

Theorem 2.1 Let F(a) be defined as (2.2), and j(1 :$ j :::; 4} be a given integer. If there exists
an integer k(O < k < m) such that

Aj = O,1, ... ,k-1,

Aj;:: k+ l, ... ,m.

(2.3)

(2.4)

and 2:: b>. > 0, 2:: bJ. < 0 for at least one Aj(k < Aj :::; m). Then Sf is a triangular j-patch.
1.\I=m 1>.I=m
>'j=O

Proof. See [BCX93]. 0

Lemma 2.2 Let ](p) = I:1J.j=n b>.B~(a) be defined on the tetmhedron [PIP2P3P4], then

b(n-l)ei+ej = bne; + ~(Pj - Pi)T'V](pi), j = 1,2,3,4; j i- i

3
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(2.6)

(2.5) can be found in
(see [FargO] p.310).

+ n(L,) (p; - p,fv' f(p,)(Pk - p,), j # i, k # i

[Guo91a](p.23). (2.6) is derived from dlrectional derivative formulas

Lemma 2.3 ([Far90} p.SIB) Let f(p) = L:1'I=n a,B1(a) and 9(P) = L:1'I=n b,B1(a) be two
polynomials defined on two tetrahedra [PIP2P3P4] and [P~P2P3P4]) respectively. Then
(i) f and 9 are Co continuous at the common face [P2P3P4] if and only if

a, = b" for any >. = 0>',>'3>'" 1>'1 = n (2.7)

(ii) f and 9 are C1 continuous at the common face [P2P3P4] if and only if (2.1) holds and

bI>'2>'a>'t = 131 a1>.2).~).t +,6'2aO).2).~).4+0100 + ,6'3aO>'2-'3-'dOOl0 +,6'4aO).2).3-'4+0001 (2.8)

(iii) f and 9 are C2 continuous at the common face [P2P3P4] if and only if (2.1)-(2.8) holds and

b1).2-'a-'4 ,6';a2).2-'3-'4 + 2,6'1,6'2 aO).2-'3-'t+11oo + 2,6'1,6'3aO).2-'3-'4+101O +2,6'I.134 aO).2).3).4+1001
+ .I3iaO),2>'a>'t+0200 + 2.132,6'3aO),2).3).4+0110 + 2,6'2,6'4aO-'2-'3-'t+OI01 (2.9)
+ .I35ao).2),3>'4+0020 + 2,6'3.134aO-'2-'3-'4+0011 + .I3iaO).2>'3).4+0002

where.13 = (,6'I,.I32,.I33,.I34? are defined by the following relation

P; ={J,p, +{J,p, +{J3P3 +(J,p" IfJI =1

In Lemma 2.3, if,6'2 =,6'3 = 0, that is Pl,P4 and PI are collinear, then (2.8) and (2.9) become

aO-'2-'3).4+0001 = !-tl Ul).2).3).( +P2 bl).2-'3-'4

pia2>.2>'a-'t - PlaO),2).3).(+1001 = !-t~b2-'2-'3).4 - P2bO-'2-'3),4+1001

respectively, where PI = - §;,,u2 = J(, that is P4 = !-tlPt +P2P~'

2.2 Geometry of Simple Polyhedra

(2.10)

(2.11)

Definition 2.2 A point P is separable from other points of interest if there exists a plane 7l" that
separates p and the other points. It is unseparable from them otherwise.

Definition 2.3 The edge angle of edge E of a polyhedron is inner dihedral angle between the two
faces incident at E

Definition 2.4 On a polyhedron P, an edge E is a ridge if its edge angle is less than or equal to
7l"; E is a valley otherwise.

Definition 2.5 For a vertex V of a planar polygon, a corner guard Gv of V is a point in the
interior Q from where corner V is visible) namely, the two edges incident to V are visibLe. A
corner guard set is a set of corner guards from which all the corners are visible. A corner guard
net is a connected planar graph inside Q such that any corner V is visible from at least one of its
vertices.

For a convex polygon or a star-shaped polygon, a minimum corner guard set consists of just a
single point. Especially for a convex polygon, any point in the interior polygon forms a minimum
(singleton) corner guard set. Figure 2.2 illustrates different kinds of polygons and their corner
guard regions.

4



•
Figure 2.2: Polygons and Their Corner Guard Net. Shaded parts are possible regions to position
guards

3 Smoothable Simplicial Hull

Definition 3.1 Let [PiP;] be an edge of a polyhedron P with endpoint vertex normals ni and nj.
If (Pi - Pi)Tni (Pi - Pi l nj ~ 0, then the edge is convex. Otherwise l it is nonconvex. If the edge
satisfies the convex condition. and at least one of (Pi - Pi)Tnj and (Pi - Pi?nj 'is positive, then we
say the edge [PiP;] is positively convex. If both of them are zero then we say it is zero convex. If
at least one of them is negative, the edge is negatively convex.

Definition 3.2 Let [PiPiPk] be a triangular face of a polyhedron P. If its three edges are non­
negatively (positively or zero) convex and at least one of them is positive convex, then we say the
face [PiPjP.d is positively convex. If all the three edges are zero convex then the face is zero convex.
If its three edges are nonpositively (negatively or zero) convex and at least one of them is negatively
convex, the face is negatively convex. Otherwise, [PiPiPk] is non-convex.

Note, that here we are overloading the term convex to characterize the relations between the
vertex normals and edges of faces. We distinguish between convex and non-convex faces in the
simplicial hull below where we build one tetrahedra for convex faces and double tetrahedra for
non-convex faces.

Definition 3.3 A polyhedron P with vertex normals is edge-convex if every edge is convex.

Definition 3.4 A face-tetrahedron [PiPiPkq!l is a tetrahedron that is built based on 0. triangular
face [PiPiPk] E P. A face-tetrahedron [PiPiP,I,:qE) is {positively I zero I negative InOfi-)} convex if the
face [PiPiPk] is {positively I zero I negative I non-)} convex. A face-tetrahedron is U-nonconvex(U
for upper) if (1) it is outside P and has one positively convex edge; or (2) it is inside P and has
one negatively convex edge. A nonconvex face-tetrahedron is L-nonconvex(L for lower) if (1)it is
outside the triangulation P and has two positively convex edge; or (2) it is inside P and has two
negatively convex edge.
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Definition 3.5 A convez face-tetrahedron [PIP2P3P4] is tangent-containing if the tangent planes
at the three interpolatory vertices PI, P2 and P3 are tangent with [PIP2P3P4]; A pair of LU face­
tetrahedra [PIP2P3P4q4] is tangent-containing if the tangent planes at the three interpolatory vertices
PI, P2 and P3 are tangent with either [PIP2P3P4] or [PIP2P3Q4];

The term simplicial hull is loosely defined as a contiguous collection of tetrahedra(simplices)
constructed on a base simplicial polyhedron. We define one kind of simplicial hull that we shall use
here and refer to it as smoothable simplicial hull.

Definition 3.6 A smoothable simplicial hull 1:: = (T,Sj,Se, 'Rtf> 'RIfe) where
(1) T = [PiPjPk] is an edge-convex triangulation;
(2) Sf = [PiPjPkql] is a collection of face tetrahedra, where [PiPiPk] E T;
(3) Se = [PiPiqkSI) is a collection of edge tetrahedra pairs, where [PiPj] E T and [PiPjqk] E Sf;
(0 1l!j = T X SI 1S a relation between T and SI, which can be described as (i) (single sided)
there is one tangent-plane-containing face~tetrahedron [PiPjPkqd E SJ is built on a convex face
[PiPjPk] E T and (ii) (double sided) there are a tangent-plane-containing pair of LU-face-tetrahedra
[PiPjPkqE], [PiPjPkq!l E SJ are built on a nonconvex face [PIP2P3] E T, one on each side;
(5) 'RfJe = Sf X Sf X Se is a relation between face-tetrahedra and a pair of edge tetrahedra,
which can be described as (i) (non-intersection) two face-tetrahedra [PiP;Pkqt), [PiPjPmqn] E SJ
that share a common edge [PiPj] E T does not intersect each other and (ii) a pair of edge-tetrahedra

[PiPjq/Sr], [PiPjqnSr] E Se where Sr = (ql~qn)J are built between the pair of edge-sharing face­
tetrahedra that are both inside or both outside the triangulation T.

4 Simple Polyhedron with Convex Faces and "Above Face" Ver­
tex Normals

In this section, we present an algorithm for constructing a. smoothable simplicial hull from a simple
polyhedron P with three restrictions. (i) every face is convex. (ii) every vertex normal is "above"
the incident faces, namely for every vertex V. A vertex normal ny is above its incident faces fi if the
inner product of nv with aU the face normals of fi is positive. The vertex normal can be computed
in different ways such as face normals or local interpolation by a sphere [BI92b, BCX93, Pet90].
(ill) the polyhedron is manifold (i.e. two faces incident per edge,etc)

Algorithm 1 INPUT: A simple polyhedron P with convex faces and "above face" vertex normals.
(1) Compute the centroid Ci of each face fi.
(2) For every vertex V, if it is a trihedral vertex! go to (3); othennise go to (4). Go to (6) if

every vertex is done.
(3) Build face-tetrahedron rCIC2C3Vj, where Cj is the centroids of a-face fi E P around V.

(See Figure 4.3) Go back to (3) for the next vertex.
(4) Let Iv = V + nvt, be a straight line pass through verlex V in the direction of the normal

nv· Compute the projection Pc; on Iv of each of the centroids Cj of the faces Ii around V. (Pc; =
V +nvti). Ifti > 0 for all i or ti < 0 for all i, then V is separable from the centroids C i of the
faces Ii around V, by a plane 7l" parallel to the tangent plane at V, othennise V is unseparable. In
the case of a separable vertex V, let V be the projection closest to V, or the one with the smallest
ti in absolute value; (V = V + nvr J where r E it;) and WI = min{ltd}). In the case of an

6
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Figure 4.3: Construct a Face-tetrahedron on a Trihedral Vertex
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Figure 4.4: Construction of Face-tetrahedron on a Non-trihedral Vertex
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Figure 4.5: Face-tetrahedron around a Non-trihedral Vertex
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unseparable vertex VI let V = V. Let Co, denote a pseudo centroid, and be a point between V and
V. (Go = "V +(1- "W for some" E (0,1)). Let nv be the normal at Go. Go to (5).

(5) Let e = VV1 be an edge incident to V and CI , C2 be the two centroids of the two faces
incident at edge e. Let To is the middle point between the intersection point of 'lrCo and M 1 the
middle point of edge e. Let TI be the projection of Mvv' I the midpont of VV' on 1I"Co 1 the tangent
plane of Co. Now we construct the face-tetrahedra based on the signs of the inner products between
the normal nco and C I , C2, To andTI . (i) (ncoCI)(nCoC2) ~ 0, namely the two inner product are of
one sign, and (nc,To)(nc.G,) ~ o. Build a face-tetrahedron [GoG,G,To]. (See Figure 4.4 (0) (d).)
(ii) (ncoCI)(ncoC2) ~ 01 (nco To)(nCoCI) > 0, To and TI are on one side of[CoCIC2]. Build face­
tetrahedron [T,GOG,G,]. (See Figure 4·4(c).) (iii) (nc,G,)(nc,G,) ~ 0, (nc,To)(nc.G,) > 0, To
and TI are on different sides of [COCIC2]. Build L-U-face-tetrahedra [TOCOCIC2] and [TICOCIC2].

One on eoch side of [GOG,G,]. (See Figure 4.4(b) and (e).) (iv) (nc,G,)(nc.G,) < O. Assume
that To is ('above" [TICOCIC2L namely e is a ridge. Move To along the direction of nco until
it is "above" 'lrCo 1 namely (nco To) > O. Move Tt along the opposite direction of nco until it is
"above" 'lrCo' namely (nCoTI) < O. If e is a valley, move To and TI in opposite directions. Build
L-U-foce-tetrahedra [TOGOG,G,] and [TrGoG,G,]. (See Figure 4.4(J).) (Figure 4.5 iIIvstrates that
"" face-tetrahedra are built around a vertex with -4 edges.) Go back to (3) for the next vertex.

(6) Build one pair of edge-tetrahedra belween each pair of adjacent face-tetrahedra of the same
orientation. (See Figure 6.9. Forget about the nodes on the tetrahedra for the moment.)

OUTPUT: A simplicial hull E.

Let T be the triangulation consists of the triangular faces [CI C2C3 ]'S and [COCI C2]'S, built in
step (3) and step (5) of Algorithm 1, with respect to dlfferent vertices and edges. Let Sf be the
collection of face· tetrahedra and Se be the collection of edge-tetrahedra. Conditions (2), (3) and
(5)(ii) of definition 3.6 are obviously satisfied by the construction of E. Along with the following
lemmas, we conclude that .E is a smoothable simplicial hull. See Appendix A for details and proofs
of the following lemma.

Lemma 4.1 Triangulation T is edge-convex.

Lemma 4.2 Every face-tetrahedron [PiPiPkql] E Sf is tangent-conlaining.

Lemma 4.3 The face-tetrahedra in Sf do not intersect each other.

Theorem 4.1 E is a smoothable simplicial hull.

For a simple polyhedron that does not satisfy the three restrictions, certain preprocessing steps
can be taken to enforce them. Appendix C gives an algorithm to transform an arbitrary polyhedron
to one that has "above face" vertex normals. The convex face restriction can be enforced by
subdividing nonconvex faces into convex ones. However, the next section discusses a modified
version of Algorithm 1 by which a simplicial hull can be constructed directly on a simple polyhedron
with "above face" vertex normals, which could have nonconvex faces.

In [BCX93], extra subdivision are needed if the adjacent triangular faces of the triangulation T
are coplanar to each other. Otherwise, all the bottom weights of the coplanar face-tetrahedra are
related to each other by the continuity constraints so that the locality property of the weight-setting

8



a non-lriangulaled cell

Figure 5.6: Triangulating a Mesh of Corner Guard Nets and Nontrihedral vertices

procedure is destroyed and also the single sheeted condition is jeopardized. For the smoothable
simplicial hull scheme presented in this section, as the triangulation of the polyhedron is also
constructed instead of being given. By selecting "good" centroid combinations, one can construct
a hull without any coplanar faces or only with some "trivial" coplanar cases. See Appendlx B for
details.

5 Extending the Algorithm to Include Polyhedra with Noncon­
vex Faces

In thls section, we extend our Algorithm 1 to allow nonconvex facets in polyhedron P.
Construction of the face-tetrahedron requires that the corner is visible from the centroid. While

every point in a convex polygon meets this requirement, it is not the case for a nonconvex polygon.
For each nonconvex polygon, we first construct a corner guard net (Definition 2.5), and set the
vertex normal of the corner guards as the face normal. For each convex polygon, take a centroid(as
we did in last section) to be the corner guard. For a vertex V, connect the neighboring corner
guards with respect to vertex V. If V is non-trihedral, connect Cv, pseudo centroid of V and the
surrounding corner guards. Now the corner guards and the pseudo centroids Cv's,are connected by
the corner guard net and the newly added edges, to form a mesh g'" with non-triangular cells (due
to multiple corner guards in some nonconvex faces. see Figure 5.6). Triangulating the four-sided
non-triangular cells, we obtain a triangulation Q. By similar arguments as in the last section, the
edges between corner guards of different faces, and the edges between corner guards and pseudo
centroids are all convex (Definition 3.1) And the edges in corner guard nets are zero convex by
construction. Hence g is edge-convex.

There are some nonconvex corners with respect to a nonconvex polygonal face. One example
is shown in Figure 5.7. Here two face-tetrahedra are needed although the vertex is trihedral.

Now we extend Algorithm 1 by replacing the centroids of non-convex faces by the corner guards.

Algorithm 2 INPUT:A simple polyhedron P with "above face" vertex normals.
(1) compute the comer guard net of each faces.
(2) For every vertex V, if it is a trihedral vertex and each pair of edges form an angle::; Jr, go

to (3); if V is a trihedral vertex and one pair of edges e2 and ea form an angle greater than Jr, go

9
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Figure 5.7: A Hallway Corner

to (3')j Otherwise go to (4). Go to (5~ if every vertex is done.
(3~ Build two face-tetrahedra [GI G2G3V] and [GI G2G3ToJ, where To is a point between Mel'

the middle point of el, and the intersection of el and [G1G2G3V]. (see Figure 5.7)
(3) (4) (5) (replace centro;ds by corner guards).
(5') (See Figure 5.6) For each pair of adjacent face hand 12, let edge ViV2 be the edge they

share l GI and G2 be the corner guards of h with respect to vertices VI and V2, G3 and G4 be
the comer guards of 12 with respect to vertices VI and V2 • If GI '# G2 and G3 -:j:. G4 , build
face-tetrahedra [G1G2G3Ho] and [G2G3G4H1JI where Ho is a vertex between MYIY2' the midpoint
of VIV2, and top vertex of the face-tetrahedron shares edge [GI G3J that was built in Step (3) or
(5) of the algorithm, similarly, HI is on the other side of Mv,y'l' If G1 = G2 and G3 =fi G 4 , build
face-tetrahedron [GIG3G4MY1Y2]' lfGI '# G2 andG3 = G41 build face-tetrahedron [G1G2G3Mv'j'v2]'

(6) (same as in Algorithm 1)
OUTPUT: A simplicial hull:E.

It is not difficult to show that simplicial hull :E is also smoothable.

6 C 1 Mesh of Cubic Patches and C 2 Mesh of Quintic Patches

Once we have established a smoothable simplicial hull L for the given polyhedron P and a set of
point normals N, we construct a a l or C2 trivariate piecewise polynomial function f within L
such that f has the given C1 or C2 data at each vertex and the zero contour of f within L form
a a1 or C2 continuous surface with the same topology as T. We adopt the Cl cubic scheme from
[BCX93] using only the special cases needed for the new smoothable simplicial hull E.

For the construction of f within the tetrahedra built on two adjacent triangles(see Figure 6.8
for C 1 and Figure 6.9 for C2 • See also Figure 7.10 for examples of the al and C2 surfaces), let

VI = [PIP2P3P4], V2 = [P~P2P3P~], WI = [p~P2P3P41

W2 = [P~P2P3P~], V{ = [PIP2P3Q4J, V~ = lP~P2P3~]

and the polynomials Ii over Vi, gi over Wi and It over V/ be expressed in Bernstein-Bezier forms
with coefficients ai, bi and ci, respectively. Now we shall determine these coefficients step by step.

10
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Figure 6.8: Adjacent Tetrahedra, Cubic Functions and Control Points for two Non-Convex Adjacent
Faces

Denote
pr = PIpl + .oip2 + {3~P3 + .BlP4,
pt ,BfP~ + I3~P2 +{35P3 +131p~,

p~ j1.1P4 +JL2P4,

C1 cubic scheme(see Figure 6.8)

ill +ill +ill + ill = 1
ilr +il~ +ilj + ill = 1
PI +JL2 = 1

(6.12)

1. The number 0 weights are given by the function values at the vertices.

2. The number 1 weights are determined by formula (2.5).

3. The number 2 weights, that is ai?lO' are free.

4. The number 3 weights are determined by C 1 conditions (2.8).

5. The number 4 weights are free.

6. The number 5 weights are determined by C 1 conditions (2.8).

7. The number 6 weights are free.

8. The number 7 weights are determined by C 1 conditions (2.10).

The remaining weights with index '\1>'2>'3>'4 are determined by Cl condition (2.8) for >'4 ::; 1
and freely chosen for >'4 > 1.

C2 quintic scheme(see Figure 6.9)

1. The number 0 weights are given by the function values at the vertices. For examples, a~~ =
f(p;), i = 1,2,3.

2. The number 1 weights are determined by formula (2.5).

3. The number 2 weights are determined by formula (2.6).

4. The number 3 weights, that is a~jJ2o,a~iJlO and aW20' are free.
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5. The number 4 weights are determined by a1 conditions (2.8), that is

bF) _ of) F) aF) (i) aF) (i) of) (i) . - 1 2
1220 - "'I a 1220 +""2 a 0320 +""3 a 0230 +""4 a 0221 ' t - ,

b~1zo = Jtla~~~1 + Jt2a~;~1

It follows from these equations that

(1) (2) o(i) (i) a(i) (i) o(i) (i) o(i) F)
Jtla0221 +Jt2a0221 - "'4 a OZ21 =""1 al220 +""2 a 0320 +"'3 a 0230

for i = 1,2. The coefficient matrix A of (6.13) for the unknowns a~~21 is

(6.13)

[

(1)
A = 1'1 - (3,

1'1

This matrix is nonsingular if and only if PI, PIPz and P3 are not coplanar [BCX93]. Hence
(6.13) has unique solution under our assumptions.

6. The number 5 and 6 weights have to be determined simultaneously. In determining these
weights, we need to consider all the C I and C 2 conditions related to the tetrahedra surround­
ing the vertex pz. Suppose there are k triangles(hence k edges) around pz and the convexity
change of the edges occurs T times, then by a1 and C Z conditions, we have 6k + T equations
That is, crossing each face, we have two equations, and crossing each triangle, we have one
equation. The number of related unknowns is also 6k +T. That is, k number 5 weights and
5k number 6 weights and one more unknown is related when a single convexity change of the
edges occur. See Appendix D for further details.

7. The number 7 weights are similarly determined as that of number 6 weights.

8. The number 8 weight a~?lZ are free.

9. The number 9 weights are determined by C1 and CZ conditions. Both the number of equations
and the number of unknowns are 6k. See Appendix E for details.

10. For the number 10 weights, we have six equations parallel to the equations (E.23)-(E.26)
with all the index changed by the rule

the index of the number 10 weright = the index of the number 9 - ez +e3 (6.14)

and seven independent weights. By chasing one of them, say b~?10' to be a free parameter,
the entire system can be solved.

11. The number 11 weights are determined in the same way as the that of number 9 weights.

12. The number 12 and 13 weights are free. The number 14 weights are determined by CI and

CZ conditions. That is b~?03 are defined by (2.8), and b~?oz are defined by (2.9). For b~?OI'
we have by (2.10) and (2.11)
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Figure 7.10: C 1 and C 2 Smooth Approximations of a Polyhedron

Hence
b

(l) 2b(2) 2b(2)
b(l) _ 4100 - Jl2 2102 +Jll 2102

3101 - 2Jll

b
(l) 2b(2) 2b(2)

b(2) _ 4100 + f-l2 2102 - Jll 2102
3101 - 2Jll

13. The number 15 weights are similar to that of number 14, the index 1s changed by the rule
(6.14).

14. The number 16 weights are free, the number 17's are determlned by C1 and C2 conditions.

15. The remaining weights with index ),,1),,2),,3"\4 are determined by C1 and C2 conditions (2.8)
and (2.9) for ),,4 ::; 2 and freely chosen for ),,4 > 2

In summary, the construction step 1-14 is according to the C1 and C2 conditions across the
common tetrahedra faces that are over or below the original triangulation. Step 15 is according to
the C1 and C2 conditions across the common tetrahedra faces that are on the original triangulation.
Therefore, the composite polynomial function is global C2 continuous.

7 Shape Control

7.1 Cutting the corner by different ratio

We can control how sharply the corners of the original polyhedral are cut. For a trihedral corner
that is to be smoothed in step (3) of the algorithm, we cut the corner by different extends to raise
or lower the A-patch defined inside the face-tetrahedron. The top of the surface can be as high as

14



Figure 7.11: Shape Control of Smooth Approximations of a Polyhedron

15



Corner Guord No!

Figure 7.12: Interpolation of a Corner Guard Net

the vertex V, or the top of the face-tetrahedron, or as low as the bottom of the face· tetrahedron.
For a nontrihedral corner that is to be smoothed in step (4) of Algorithm 1 and Algorithm 2, we
adjust parameter a to decide the position of Co on the line segment VV. Similarly, if Co is chosen
close to V, only a little is cut off from the corner, while if Co is chosen close to V, the corner is
nearly almost all cut off. See Figure 7.11. In the top left figure, the weights are set approximating
piecewise functional surface over the faces of the triangulation. In the top right figure, the upper leg
of the surface is dragged to a corner by changing the weights of the tetrahedron on this corner. In
the bottom left and bottom right figures, the whole surface is deformed in this manner in different
scales.

7.2 Interpolating points

We introduce a corner guard net in the case of nonconvex polyhedral faces. The final surface
interpolates the edges of the corner guard net. Actually, even in the case of convex face, we can
make it a corner guard net that we would like the smooth surface to pass through certain lines, or
even a region of the face. See Figure 7.12. In latter case, the corner guard "region" is covered by
a planar polygon in the final piecewise smooth surface.

8 Implementation

We have presented algorithms for approximating a three dimensional polyhedron with C 1 cubic
and C 2 quintic A-patches, respectively. These algorithms have been implemented in the SPLINEX
and SHIlP toolkits of our X-ll based distributed and collaborative geometric design environment
SHASTRA [AB93]. See Figure 7.10 and Figure 7.ll. We are using it for interactive free-form design.
SHllP is an X-ll based, interactive solid modeling system and is used to create a simplicial (face
triangulated) polyhedral model of the desired shape. This model could also be the triangulation
of an arbitrary surface in three dimensions. This triangulation is Cl smoothed by a client/server
call to a SPLINEX computation using inter process communication. SPLINEX is a an X-ll based,
interactive surface modeling toolkit for arbitrary algebraic surfaces (implicit or parametric) in
BB form. It allows for the creation of simplex chains (as for example the simplicial hull of the
triangulation) and the interactive change of control points and weights of the A-patches for shape
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control. SPLINEX also has the ability to distribute its rendering tasks (for the display of the
individual A-patches) on a network of workstations, to achieve maximal display parallelism.
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A Proofs Lemmas of Section 4

Lemma A.I (Lemma 4.1) Triangulation T is edge~convex.

Proof. There are 3 kinds of edges in T. (1) CiGj, edge between the centroids of two adjacent
faces Ii and Ii. GiG; is convex since the face normal of Ii and f; are the normals of Cj and Cj. (2)
Vei, edge between an uDseparahle vertex V and Gj, the centroid of a face Ii around vertex V. Edge
VC; is always convex as VG; is always perpendicular to the normal at Gj, or the face normal of /;.
(3) COCi, edge between Co, the pseudo centroid of a separable vertex V and Gj , the centroid of a
face Ii around vertex V. Without lost of generality, assume that t; :$; O. By the input assumption,

~

nvnc; .?: 0, namely nv is pointing above face Ii- So Co is under face Ii- Therefore CiCOnC; ::; O.
Let Pc, be the projection of Cj on line lv = V + nvt. By construction, !VCol < !Vpoil, hence

CoGino; S O. Remember that no; = nv. So edge COCi is convex. Therefore, every edge in T is
convex. T is an edge-convex triangulation. This settles condition (1) of definition 3.6. <>

Lemma A.2 In a polyhedron j for a corner V with normal nv I if the inner product between nv and
the face normal nJ; of any face Ji around V is positive j then the faces' projections on the tangent
plane of V do not overlap each other.

Proof. Assume that the lemma is not true. Then there must be two adjacent faces fi and
Ji+l whose projections overlap each other. One of them, say Ji, must "face downward", namely
nJ;nv < 0, a contradiction. <>

Lemma A.3 (Lemma 4.2) Every face-tetrahedron [PiPjPkqlJ E Sf is tangent-containing.

Proof. We divide the face-tetrahedra into following 5 groups. (1) [C1C2C3V], face-tetrahedra
built in step (3) of Algorithm 1. (2) [COTOC1C2J is the face-tetrahedron built in step (5)(i) of
Algorithm 1. (3) [COClC2Tl] is the face-tetrahedron built in step (5)(ii) of Algorithm 1. (4)
[COClC2To] and [COTlCl C2], a pair of face-tetrahedra built in step (5)(iii) of Algorithm 1. (5)
[COCl C2ToJ and [COTlClC2], a pair of face-tetrahedra built in step (5)(iv) of Algorithm 1 and
(nc,C,)(nc,C,) ~ O.

Let us look at the tangent plane of the centroids first. In c<U>e (1), by construction, CjtfnC; = 0
for i = 1,2,3. So it is tangent-containing. In case (2), (4) the tangent planes of Cl and G2 are

~

contained same as in case (1), GiTonc; = 0 for i = 1,2, for To is a point on edge e. In case (3),
without lost of generality, assume that (nooCt} S 0, (ncoC2) S 0, so that edge e is a ridge. As Tl

~

is the projection of M E e on Co's tangent plane 1i"Oo' MTl is paraUel to nv. Hence Tl is above or
~ ~

on face ft, or the inner product nclC1Tl > O. On the other hand, no j C1C2 :::; 0 as e is a ridge,
~

not C1Go :::; 0 as Go is below face 1;. Hence at C1, the tangent plane is contained. Symmetrically,
tangent plane is also contained at G2 . Similarly, we prove that in case (5), the tangent planes at
C1 and C2 are contained.

Now we consider the tangent plane of Co in cases (2)-(5). In case (2), 1r'Co intersects [TOCOC1C2]
~ ~

as the inner product ncoCoTo is of a different sign to that of the inner products n OoCOCl and

19



ncoCoC~. Hence [CoC1CzTo] is tangent-containing at Co. In cases (3), (4) and (5), tangent con-
~

tainment is obvious as ncoCr}I'l = o.
From the above discussion, Sf is tangent-containing, which settles condition (4) of definition 3.6.

o
Lemma A.4 (Lemma 4-3) The face-tetrahedra in SJ do not intersect each other.

Proof. Now we show that adjacent face-tetrahedra do not intersect each other. Let [Cl C2C3T1]

and [C1C2C4TZ] be two face-tetrahedra adjacent to each other. T1 and Tz can be either vertices
on some edges or projections on the tangent planes of some vertices. First, assume C1 and Cz
are the centroids of two adjacent faces incident at edge e, T1 and Tz are on the edge e(see Steps
(3) (5)(i)(ili)(iv) of Algorithm 1), or the projection of Me' the midpoint of e on the tangent plane
of C3 or Col (Steps (5)(ii)(ili)(iv) of Algorithm 1). Let u be the plane passing through Me and
perpendicular to e. In any combination of the above cases, TI and Tz are in different side of a.
Therefore the two tetrahedra do not intersect each other. Secondly, if C1 is a pseudo centroid,
Cz must be a regular centroid. T I and Tz are vertices on neighboring edges el and ez or on el

and ez's projections on 1I"C1I the tangent plane of the pseudo centroid CI . As the inner product
nco nc; > 0 for any surrounding face Ii , the projections of the surrounding faces and edges on 7iC1

do not overlap each other (Lemma A.2). Let u be the plane passing through CI and perpendicular
to 1I"C1 and bisecting the angle elCIez. In any combination, TI and Tz are on different sides of u.
Therefore Sf is not self-intersecting, which satisfies condition (5)(i) of definition 3.6. 0

B Elimination of Coplanarity

In [BCX93], extra subdivision is needed if the adjacent triangular faces of the triangulation Tare
coplanar to each other. Otherwise, the bottom weights of the face-tetrahedra are all related to each
other by the continuity constraints, so that the locality property of the weight-setting procedure
is destroyed and also the single sheeted condition is jeopardized. In the scheme presented in this
paper, however, as the polyhedron face is also constructed instead of being given, one can choose
to construct a triangulation without any coplanar faces or only with some "trivial" coplanar cases.

Coplanarity of a triangulation T could be described by a coplanar graph, denoted as g, which
has an edge f;jj if and only if face Ii and /; are coplanar to each other.

The vertices of the triangulation are the corner guards of the faces of the original polyhedron P
and pseudo centroids of the non-trihedral vertices of P. Those corner guards and pseudo centroids
are by no means in any unique positions related to the faces. One exception is the non-trihedral
vertex that is unseparable from its corner guards, but such kind of vertices are never adjacent to
each other in T. Hence coplanarity between adjacent facts in T can be eliminated by displacement
of the corner guards or the pseudo centroids.

In oUI implementation, instead of computing a corner guard, we compute a corner guard circle,
in which every point is a corner guard. Corner guard circles of a face are connected into a corner
guard circle net. We center a corner guard on each circle. But any of them can be moveed around
within the circle without affecting any other part of the corner guard net. However, while being
a complete solution to the coplanarity problem, displacement is not needed in the following two
"trivial" coplanar cases.

(1) A face-tetrahedron is coplanar to only one other face-tetrahedron, namely the coplanar
faces in T can be grouped into isolated pairs. In this case, the bottom weights of the two faces are
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dependent to each other, but they are not dependent to other face-tetrahedra.
(2) A group of coplanar faces whose edges between themselves are all zero convex. The continuity

constraint can be set among them by setting the bottom weights aUlD's to zero. Let us refer to such
a group as a zero coplanar group. A special case of this kind is a group like VGiGiH E T, where
vertex V is a non-trihedral vertex that is unseparable from the corner guards Gi around them, (see
Algorithm 2 step (4)) and VGiGiH E T, the triangular faces around V are on one common plane
1I"V. The norma] at each corner guard Gi is vertical to the edge, nGi(GiV) = O. Now if we set the
normal of V to be that of plane 11", then all the edge VGj are zero convex.

It can be shown that if [PiPiPk] is a face coplanar over a nonzero edge [PiPi) to a face in a zero
coplanar group, then Pk is not an unseparable vertex, and hence can be displaced to eliminate the
coplanarity over [PiPi]'

Lemma H.I A zero coplanar group can be always removed from a coplanar graph 9 by displacing
a vertex of the face coplanar to it.

We sum up the above discussion by modifying Algorithm 2 to resolve the coplanarity problem
without subdividing the triangulation. The significance of the corner guard circle in thls modifi­
cation is that after any displacement of a corner guard, the reconstruction of the simplicial hull is
needed except when a displaced vertex is adjacent to an unseparable vertex V E P.

Algorithm 3 INPUT:(same as in Algorithm 2)
(1 ') Compute the corner guard circle net of each faces.
(2)(3')(3) (same as (2)(3')(3) in Algorithm 2)
(.4') Let Iv = V +nvt, be a straight line passes through vertex V in the direction of the normal

nv. Let CGi be guard circle on Ii of vertex V. Compute the projection of guard circle CGi on lv,
which is a line segment and denoted as P&;Pbi Fg, = V +nvt?, Pb, = V +nvtt. Ift?, tt > 0 for
all i or tF, t1 < 0 for all i, then V is separable from the centroids Ci of the faces fi around V, by a
plane 11" parallel to the tangent plane at V, otherwise V is unseparable. In the case of a separable
vertex V, let V be the projection closest to V, or the one with the smallest t{ in absolute value;
V =V +nvt-, where t* E {tF, t1} and It"'[ =min{]t?l. It11}. In the case of an unseparable vertex V,
let V = V. Let Co, denoted as a pseudo centroid, be a point between V and V. Co = aV +(1- a)V
for some a E (0,1). Let nv be the normal at Co. Go to (5).

(5)(5') (same as in Algorithm 2.)
(5"}(i) Construct planar graph g.
(5")(ii) Look for zero coplanar groups. For each face-tetrahedron based on a face of an zero

coplanar groups, set weights aUlD = 0.0.
(5"}(iii) For each face F = [PiPiPk] E T that is coplanar to a zero coplanar group over edge

[PiPi], displace Pk within the corner guard circle as as to eliminate the coplanarity over edge [PiPj].
(5"}(iv) Break the rest of 9 into pairs by displace some corner guards within their corner guard

circles.
(5"}(v) For any unseparable vertex V adjacent to a displace guard Gi, reconstruct all the face­

tetrahedra sharing [VGiL as well as the edge-tetrahedra adjacent to them.
(6) (same as in Algorithm 2.)
OUTPUT: Simplicial hull:E without any coplanarity other than coplanar pairs or zero coplanar

groups.
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Figure C.13: A Complicated Corner

Figure C.14: Smooth an Unseparable Corner

C Transform Arbitrary a Simple Polyhedron into one that has
only "above face" vertex normal

Intersect the faces of a vertex V with a sphere S centered at V. The intersection is a non-self­
intersecting polygon P = Pt P2 •••Pn on the surface of S. For i = 1, ... , n, replace Pi by the mldpoint
of arc P j P(i+1)mod(n+l). Repeat this until P's projection on some big circle C does not overlap
itself. That means that if the plane of C is chosen as the tangent plane of V, then the projection
of V's surrounding faces do not overlap each other and the inner product of the normal at V and
any face normal around V is positive.

Map this process onto a vertex V. Let k be the number of iterations in the process. Initially,
j = O. (1) As shown in Figure C.14, on each edge Ei' take a point D{ so that ID{VI = 2k· 8, where
8 is some preselected step size. Determine M! so that IM!VI = (2k -1)8 and IDiM!] = ID{+lM!I.

Connect DiM! and D{+lM!, VM! and M!M!+l delete Div.
(2) if k is 0 stop. Otherwise k = k - 1 and j = j + 1 go to (1).

The polygon MfM; ...M!: forms a corner Vu
n which is smoothable. The newly introduced

vertices Mj are of vertex-degree 5 and D), D)+l' D}+l and Mj are coplanar, so that it can be
shown that Mj are also smoothable.
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(i)b2210

D Determining Number 5 and 6 Weights of Quintic

It follows from (2.8) and (2.9) that

(i) _ (i) (i) (i) (i) (i) (i) (il (i)
b1211 - PI a1211 +/32 a0311 + /33 U0221 + /34 a 0212

p~i)f3~i) a~iJI0 +2,Bfi) f3~i) a1~10 + 2,BIi)l3~i) al~2o + 2f3I i
).01;)a1111

+ /3~i)f3~i)ab11O + 2f3~i),B~i)ab~20 + 2,8~i),B1i)ab~11

+ f3~i) f3~i) a~J3o + 2f3~i) {J~i)abi121 + f3~i) f3~i) abi112
for i = 1,2. (D.16) can be written briefly as

b(;1 - 2p(i)pU) (i) + p{ilp(i) (il +
2210 - 1 4 U1211 4 4 a0212 "{

where i is the known terms in (D.16). Since

(D.15)

(D.16)

(D.17)

(D.18)

2 (1) (1) _ 2 (2) (2)
Jllbo212 - J.L1b1211 - f.l2b0212 - J1.2b1211 (D.19)

then by substituting (0.15) into (D.IS) and (D.19) and then eliminating b~110 from (D.l7) and
(D.18) we get three equations related to four unknowns which could be written as:

(D.20)

(D.2l)[-!L1(.s11) - ILl) JL2(.o12)- 1tz)] [ af~}2 ] - [,ulf3Il) , -JL2/312)] [ at?}l ] = ...
a0212 a1211

where··· are known terms. Since the coefficient matrix of (0.20) is nonsingular, by solving

[ab~)12 ab~dT from (0.20) and then substituting it into (0.21), we get one equation relating to

the unknowns ai~L, agL. Let the equation be in the form

(I) (2)
¢a1211 + 'ljJa1211 = w (D.22)

Therefore, these unknowns form a closed chain around the vertex P2. But one should note that
the chain will go to the other side ofthe triangles if the edges change their convexlty(from positive
convex to negative convex or from negative convex to positive convex). For example, if the edge
[P2P3] is positive convex, while the edge [PIP2] is negative convex, then the chain is changed by
adding one more equation related to the two unknowns ai~l1 and Ci~~l from C 1 condition

where
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Again, this equation is in the same form as (D.22). The coefficient matrix of all these equations
related to the vertex P2 is in the form of

whose determinant is TI~~l ¢i - (-ll+ r TI7~1 ¢i· This matrix is nonsingular in general if the points
given are in the general position. Hence the system can be solved.

In this specified case, ai;h2 and amJ2 do not involve in any equation, since there is no neighbor
tetrahedron. These two weights are defined by a C 2 condition crossing the face (PIP2P3].

E Determining Number 9 Weights of the Quintic Scheme

For i = 1,2,

(i)b2201

c;l _ C;) {il c;l c;l {il {il {il (il
b1202 - /31 a1202 + f32 a0302 + f33 a0212 + f34 a0203

f3~i) /3~i)a~~01 + 2f3~i) f3~i) a~~Ol +2f31i
)f3~i) ai~l1 + 2/3~i) f31i)a~~02

+ /3~i)/3~i)a~~01 +2/3~i)/3~i)a~~11 +2f3~i)f31i)a~102

+ f3~i)f3~i)ab~21 + 2/3~i)f31i)agJI2 + /31i)f31i)a~~03

(E.23)

(E.24)

and
(E.25)

(E.26)

b~;bo = ~lb~;hl +JL2b~;bl

JLibi~b2 - JLlb~;bl = JL~bi;b2 - JL2b~;bl
Substitute (E.23) and (E.24) into (E.26), we have

~liJl'I(~1 - iJl'»)b~~03 - ~,iJl'I(~, - iJl'l)b~~o3 = ...

This is a system that is in the same form as (D.22) and a system like (D.22) needs to be solved.
However l if the surrounding tetrahedra at the same side at P2 are not closed, the matrix A is in
the form of

[
A, 0]
o A,

[

4>1 ,p, ] [ ,p/+l ]_ _ cPl+2 ¢/+2
A1 - ,k- ..

4J1-l ¢I-l .. ..
~ ~ .

By chasing one unknown, say the l-th to be a free parameter, A can be written as A =

with

Hence the system of equations breakup into two smaller sub-systems. Each of them can be solved
separately.
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