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We consider a string editing problem in a probabilistic framework. This problem is
of considerallle interest to many facets of science, most notably molecular biology and
computer science. A string editing transforms one string Into another by performing a
series of weighted edit operations of overall maximum (minimum) cost. The problem is
equivalent to finding an optimal path in a weighted grid graph. In thls paper, we provide
sevNa] results regarding a typical behavior of such a path. In particular, we observe that
the optimal path (i.e., edit distance) is almost surely (a.s.) equal to an for large n where 0'

is a constant and n is the sum of lengths of both strings. More importantly, we show that
the edit distance is well concentrated around its average value. In the so called independent
model in which all weights (in the associated grid graph) are statistically independent, we
derive some bounds for the constant 0'. As a by-product of OUI results, we also present a
precise estimate of the number of alignmcnts between two strings. To prove these findings
we use techniques of random walks, diffusion lim..iting processes, gellcrating functions, and
the method of bounded difference.

• A preliminary version of this paper was prc~cntcd at Combinatorial Pallern Matching conference,

Padova, 1993.
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1. INTRODUCTION

St1-ing editing problem arises in many applications, notably in text editing, speech recog­

nition, machitle vision and, last but not least, molecular sequence comparison (d. [36]).

Algorithmic aspect ofthis problem has been studied rather extensively in the past (ef. (2]'

[30]' [32], [33] and [36]). In fact, many important problems on words are special cases of

string editing, including the longest common subsequence problem (cf. [1]. [14]) and the

problem of approximate pattem malching (cf. [12] and [34]).

In sequel we review the string editing problem, its importance, and its relationship to

the longest path problem in a special grid graph.

Let b be a string consisting of £ symbols on SOlDe all)habel I: of size V. There are three

operations that can be performed all a string, namely deletion of a symbol, insel'tion of a

symbol, and substitution of one symbol for another symbol in :E. With each operation is

associated a weight function. We denote by WI(bi), WD(bi) and WQ(Ui, bj ) the weight of

insertion and deletion of the symbol b; E :E, and substitution of Ui by bj E :E, respectively.

An edit script on b is any sequence w of edit operations, and the total weight of w is the

sum of weights of the edit operations.

The string editing problem deals with two strings, say b of lengtll e (for eong) and a

of length s (for short), and consists of finding an edit script W max (Wmi7l) of minimum

(maximum) total weight that transforms a into b. The maximum (minimum) weight is

called the edit distance from a to b, and its is also known as the Levenshtein distance. In

molecular biology, the Levenshtein distance is used to measure similarity (homogeneity) of

two molecular sequences, say DNA sequences (cf. [33]).

The string edit problem can be solved by the standard dynamlc programming method.

Let CWIlX(i, j) denote the maximum weight of transforming the prefix of b of size i into the

prefix of a of ,i,e j. Then, (cf. [21, [30], [36]).

Clllax(i,j) = max{Cmax(i - l,j - 1) +WQ(Ui, bj) ClllllX(i - l,j) + WD(ai) ,

for all 1 ~ i ~ eand 1 ~ j ~ s. We compute ClllIlX(i, j) row by row to obtain finally the

total cost Cmax = ClllIlX(e,S) of the maximum edit script. A similar procedure works for the

minimum edit distance,

The key observation for us is to note t]lat interdependency among the partial optimal

weights Cmax(i,j) induce an ex s grid-like directed acyclic graph, called further a gl"i.d

graph. In such a graph vertices arc points in the grid and edges go only from (i, j) point
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Figure 1: Example of a grid graph of size e= 3 and s = 2.

to neighboring points, namely (i,j + 1), (i + l,j) and (i + l,j + 1). A horizontal edge

from (i,j -1) to (i,j) carries the weight WI(bj ); a vertical edge from (i,j -1) to (i,i) has

weight WD(al)j and finally a diagonal edge from (i - l,j - 1) (i,i) is weighted according

to WQ(ai,b j }. Figure 1 shows an example of such an edit graph. The edit distance is the

longest (shortest) path from the point 0 = (0,0) to E = (e, s).

In this -paper, we analyze lhe string edit problem in a probabilistic framework. We

adopt the Bernoulli model for a random string, that is, all symbols of a string Ute. generated

independently with probability Pi j01' symbol i E E. A standard probabilistic model assumes

that both strings are generated according to the Bernoulli scheme (cr. [3], [6], [7], [8],

[14], [22], [35], [36]). We call it the string model. Such a framework, however, leads

to statistical dependency of weights in the associated grid graph. To avoid this problem,

most of the time we shall work wlthin the framework of another probabilistic model which

postulates that all weights in the associated grid graph are statistically independent. We

call it independent model. This is closely related to a model in which only one string is

random, say b, while the other one, say a, is determlnistic. Indeed, in such a situation all

weights in a "horizontal" strip in the associated grid graph are independent, while weights

in a "vertical" strip are dependent (e.g., if a = 101, and b is random, then the "1 "s in the

string a match independently all "1 "5 in b, but clearly the first "1" and the third "1" in a

have to match "l"s in b at the same places). We call such a model semi-independent.

Most of the results in this paper deal either with the independent model or the string
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model. We believe that better understandlng of the indepcndent model should be the first

step to obtain valuable results for the semi-independent model. Certainly, results of the

semi-independent model can be further used to deduce probabilistic behavior of the string

model (cf. Theorem 2.2). In passing, we note that the semi-independent model might be

useful in some applications (e.g., when comparing a given string to all strings in a data

base).

In the independent model the distributions of weights WD(ai), W/(bj) and WQ(ui,bj)

depend on the given string a. However, to avoid complicated notations we ignore this fact ­

whenever the independent model is discussed - and consider a grid graph with weights WI,

WD and WQ. In other words, we concentrate on finding the longest path in a grid graph

with independent weights WI, WD and WQ, not necessary equally distributed. By selecting

properly these distributions, we can model several variations of the string editing problem_

For example, in the standard setting the deletion and insertion weights are identical, and

llSUally constant, while the substitution weight takes two values, one (high) when matching

between a letter of a and a letter of b occurs, and another value (low) in the case of a

mismatch (e.g., in the Longest Common Subst1'ing problem, one sets Wj = W D = 0, and

WQ = 1 when a matching occurs, and WQ = -00 in the other case).

Our results can be summarized as follows: Applying the Subadditive Ergodic Theorem

we note that for the string model and the independent model Cmax r-v an almost surely

(a.s.), where n = e+ s (d. Theorem 2.1 and Theorem 2.2). Our main contribution lies

in establishing bounds for the constant a (cf. Theorem 2.7) for the indepcndent model

(d. Theorem 2.2 for a possible extension to the string model). The upper bOlllld is rather

tight as verified by simulation experiments. More importantly, using the powerful and

modern method of bounded differences (cf. [29]) we establish for all three models a sharp

concentration of Cmax around its mean value undcr a mild condition on the tail of the

weight distributions (cf. Theorem 2.3)_ This proves the conjecture of Chang and Lampe

[13] who observed empirically such a sharp concentration of Cmax for a version of the string

edit problem, namely the approximate string matching problem.

Our probabilistic results are proved in a unified manner by applying techniques of ran­

dom walks (cf. [18J, [20]), generating functions (d. [19], [26], [27]), and bounded differenccs

(cf. [29]). In fact, these techniques allow us to establish further results of a more general

interest. In particular, we present an asymptotic estimate for the number of paths in thc

grid graph (cf. Theorem 2.4), which coincides with the number of sequence alignments (cf.

[15], (16], [36]). Finally, for the independent model we establish the limiting distribution of

the total weight (cf. Theorem 2.5) and the tail distribution ofthe total weight (cf. Theorem
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2.6} of a randomly selected path (edit script) in the grid graph.

The string edit problem and its special cases (e.g., the longest comIllon subsequence

problem and the approximate pattern matching) were studied quite extensively in the past,

and are subject of further vigorous research due to their vital application in molecular

biology. There are many algorithmic solutions to the problem, and we only mention here

Apostolico and Guerra [lJ, Apostolico el al. [2), Chang and Lampe [13], Myeres [30],

Ukkonen [34J, and Waterman [36]. On the other hand, a probabilistic analysis of the problem

was initiated by Chvatal and Sankoff [14J who analyzed the longest common subsequence

problem. After an initial success in obtaining some probabilistic results for this problem, and

its extensions by a rather straightforward applications of the subadditive ergodic theorem,

a deadlock was reached due to a strong interdependency between weigllts in the grid graplL

To the best of our knowledge, there is no much literature on the probabilistic analysis of

the string edit problem and its variations with a notable exception of a recent marvelous

paper by Areatia and Waterman [7] (cf. [35]) who proved their own conjecture concerning

phase transitions in a sequence matching.

There is, however, a substantial literature on probabilistic analysis of pattern matching.

We mention here a series of papers by Areatia and Waterman (d. [5], [6]) and with Gordon

(cf. [3], [4]), as well as papers lly Karlin and his co-authors (cf. (11J, [21], [22]). Another

allproach for the probabilistic analysis of ]Jattern matching with mismatches was recently

reported by Atallah et al. in [8J.

This paper is organized as follows. In the next section, we present our main results and

discuss some of their consequences. Most of our proofs a-ppear in Section 3.

2. MAIN RESULTS

We study a grid graph of size eand s (e ;::: s) as shown in Figure 1. 1\11 of OUT results,

however, will be expressed in terms of n = e+ sand d = e- s. We assign to every edge

in such a graph a real number representing its weight. A family of such directed acyclic

weighted graphs will be denoted by Q(n, d) or shortly Q(n). We write G(n) E Q(n, d) for a

member of such a family.

For the independent model we assume that weights are independent from edge to edge.

Let FI(·), FD(-) and FQ(-) denote distribution functions of WI, WD and WQ respectively.

We assume that the mean values ?nI, ?nD and ?nQ, and the variances S~, sb and s~,

respectively, are finite. The distribution functions are not necessary identical.

The edit distance can be viewed as an optimization problem on the grid graph. Indeed,

let B(n, d) or shortly B(n) be the set of all directed paths from the starting point 0 of the
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grid graph to the end point E. (It corresponds, as we know, to a script in the original string

edit problem.) The cardinality of B(n), that is, the total number of paths between 0 and

E, is denoted by L(n, d). A particular "path from 0 to E is denoted ~ P, Le., P E B(n,d).

Note that the length IPI of a path P satisfies e :::; IPI S; L+ r = n. Finally, let N/(P),

ND(P) and NQ(P) denote the number of horizontal edges (say I-steps), vertical edges (say

D-steps), and diagonal edges (say Q-steps) in a path P.

With the above notation in mind, the problem at hand can be posed as follows:

C~.. = max {W,,(P))
PEB(n)

Cillin = min {Wn(P)}
PEB(n)

(I)

where W,.(P) denotes the total weight of the path P which becomes

Nj(P) ND(P) NQ(P)

W,,(P) = I: WI{i) + I: Wv(i) + I: WQ(i).
i=l i=l ;=1

We write Wn to denote the total weight of a randomLy selecLed path, that is,

(2)

(3)
1

P,{Wn < xl = ( ) I: P,{Wn(P) < x}.
L n, d PeB

Our results crucially depend on the order of magnitude of d with respect to n. We

consider separately several ca.<>es. Below we define two of them that are analyzed in details

in this paper:

CASE (A), d = 0(0'), and let x = dJ.,filn = (dl0' whe,e (= 2' / 4
.

CAS;; (B), d = 0(n), and let x = dIn.

Three other case, described below, arc discussed in our extended technical report [28J:

CASE (C): d = n - O(n1-e"), that is, for some constant x we have d = n( 1 - x/ne").

CASE (0): d = 0(1) (we shall reduce this case to Case (A)).

CASE (E): s = 0(1) (we shall reduce this case to case (C)).

Now, we are in a position to present OllT results. To simplify further our presentation,

we concentrate mainly on the longest path Cmax. We start with a simple general result

concerning the typical behavior of Cm"x. The more refined results containing a computable

upper bound for ECmn.x (in tIle independent model) are given at the end of this section (cf.

Theorem 2.7).

Theorem 2.1. In the st1'ing model and the independent model, the following hoLds

li G'mn.x li ECrn"x.
m--= m =a

n .....oo n n .....oo n

6
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pmvidcd fls has a limit as n --.,. 00.

Proof. Let us consider the f X s grid with starting point 0 and ending point E (cf. Fig.

1). Call it GTid(O, E). We also choose an arbitrary point, say A, inside the grid so that

we can consider two grids, namely Grid(O,A) and GTid(A,E). Actually, point A splits

the edit distance problem into two sub}lTolllems with objective functions Cmax(O, A) and

Cma",(A, E). Clearly, Cmax(O, E) ~ Cmax(O, A) +Cmnx(A, E). Thus, under our assumption

regarding weights, the objective function emax is supcradditive, and direct application of

Supemdditivc Ergodic Them·em (cf. [25]) proves our result.•

Remark L Observe that we cannot directly apply subadditive ergodic theorem to semi­

independent model since weights are not stationary in this case. However, using an inductive

argument, one can obtain similar results as above for the semi-independent model. In

particular, since for the semi-independent model ECmn", is superadditivc, we immediately

prove that ECwa.'{ '" etC. 0

In the string and semi-independent models, weights depend on strings a and h, hence

the constant Cl: is a function of a and b. Furthermore, the string model can be reduced

to the semi-independent model as follows. Let a be a given string (i.e., not random), and

let P(a) be the probability of a occurrence in our standard Bernoulli model (e.g., for the

binary alphabet 1: = {a,b} we have P(a) = p1a1(1_ p)lbl where p is the probability of a

occurrence, and lal (Ibl) is the number of a's (b's) in the string a). Let Cl:a be the constant

in the semi-independent model.

Theorem 2.2. In the string model, the constant Ct can be estimated as follows

" = I: "nP(a)
aO'

whe1Y~ }{ is the set of all possible stl-ings a oJ length s over the alphabet :E.

Proof. Observe the following

" P() - E - E (U ECnm . i) _U E(EC",d_L...J Qa a - ct: a - ill - ill - a
aeX • (--->00 f n (...... 00 f '

(5)

where the first equality is just defmition of the expected value, the second follows from

Remark (, wIllie the last is a simple consequence of the bounded convergence theorem and

lin --.,. 1. •

Finally, for the string and independent models we can report the following finding con­

cerning the concentration of the edit distance. It proves the conjecture of Chang and Lampe
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[13]. The proof of this result uses a powerful method of bounded differences or Azuma's type

inequality (cf. [29]).

Theorem 2.3. (i) If all weights arc bounded random variables, say max{Wj, WD, W Q } ~ 1,

then for aTbitra1']} £ > 0 and large n

(6)

(ii) If the weights are unbounded but such that for large n, Wmflx -= max{Wj, WD , WQ}

satisfies the following

101' somC {j > 0 and a junction U(n) --+ 0 as n --+ 00, then

Pr{lCmax - ECn1axi > EECmax } ~ 2 exp( -/37l) + U(n) (8)

fm' any E > 0 and somc f3 > O.

Proof: We consider only the string model. Part (i) is a direct consequence of the following

inequality of Azuma's lype (cf. [29]): Det Xi bc i.i.d. random va1'i.ables such that for some

function f(·, ... , .) the following is t1'UC

(9)

when! Ci < 00 are constants, and Xi has thc same distribution as Xi. Then,

..
Pr{lf(X" ... ,X..) - Ef(X" ... ,X.. )I20 t}" 2exp(-2t'/I>1) (10)

i=1

jor some t > o. The above technique is also called the method of bounded differences.

Now, for part (i) it suffices to set Xi -= bi for I $. i $. e, and Xi -= ai_f for e+ 1 ~ i ::; n,

where ai and bi are the i symbols of the two strings a and b. Under our Bernoulli model,

the Xi are i.i.d. and (9) holds, with f(·) -= G'max. More precisely,

where Wmflx(i) is the ith independent version of Wmax defined in the theorem. Clearly, for

part (i) we have Ci -= 1, thus we can aPI)ly (10). Inequality (6) follows from the above and

t -= EECmax -= O(n).

To prove part (ii), we start with (11). But, this time we have for some c

Pr{lG'max - EG'lll<J.X1 ;::: t} Pr{ICmax - ECmaxl ;::: t , 11~~Xn{Wma:r:(i)} $. c}

+ Pr{]Cmax - ECmaxl ;::: t , 11~I~ln{Wmax(i)} > c}

< 2exp(-2t2 jnc2
) +nPr{Wmax > c}.

8



Set now t = EECmax = O(n) and c = O(n1/ 2- 0 ), then

for some constant (3 > 0, and this implies (8) provided (7) holds.•

Remark 2. Theorem 2.3 holds also for the semi-independent model if one replaces in the

right-hand sicle of (6) 2 exp( -c2 n) by 2 exp(-c2e) and set ECIllI1X = o(e).

Hereafter, we investigate only the independent mocLel. For this model, we have obtained

several new results regarding the probabilistic behavior of (longest) path in a weighted grid

graph.

The next result presents limiting distribution of the total weight defined in (2). Its proof

is quite complicated, however, it applies only standard techniques. Therefore, at the rQferee

request, we omit completely the proof of this theorem. It can be found in our extended

technical report [28J.

Theorem 2.4. The limiting distribution oj lhe total weight satisfies

Wn - nl'w ~ N(O, I)
vnow

where N(O, 1) is the standaTd normal distribution, and

(12)

I'w
,
~w

mlj1-1 + 'lnDj1-D +mQ!-tQ ,

2 2 2 -2 ( )'!-tIS/ + j1-DsD + }..tQsQ + CTQ 'lnl + 'lnD - mQ

( 13)

(14)

where j1-/ = EN/(P), ltD = END(P), }..tQ = ENQ(P) and a~ = vU1·NQ(P). Explicit

formulas for these quantities can be found in the next section.•

Our next result enumerates the number of paths L(n,d) in the grid graph. It is also of

interest to some other problems since L(n,d) represents the number of ways the string a

can be transformed into b, and this problem was already tackled by others (d. [15J, [16],

[24], [36]) in the case of equal length strings (i.e., e = s). The formulation of this result

depends on a parameter u = din that takes different values for case (A) and (B), that is:

CASE (A), Set d = xJn/.,fi. Then, u = x/J.,fin = x/((vn).

CASE (B)' Set u = x.

Theorem 2.5. Lei L(u) = L(n,d) be the number afpaths in a gl·id graph (j E 9(n). Then,

(15)

9



whae

(16)f3,(u)
1 + 3u' +u/S(u' + I)

1 u'
2uf3,(u)

'i',(u) 'i',If3,(u)] = f3,(u) _ 1- u(l + f3,(u)) (17)

and C is a constant that is found in Section 3 (cf. (19)). In the above, V(u) is the variance

obtained from the generating function h(z) defined as h(z) = t/J2(z/h(u))(1h(fJ2(u)), that is,

V(u) = h//(l) - 0.25(1- u2) whe1"e hfl(z) is the second derivative oJh(z).•

For most of our computatiOlls, we only need the asymptotics of L(u) in the following a

less precise form

log L(u) = np(u) - 0.5logn +0(1) ,

where p(u) , for cases (A), (B) is respectively

(18)

p(u)

p(u)

-log(/2 - 1) ,
l+u

log1',(f3,(u)) - -2-logf3,(u).

(19)

(20)

The details of the above derivations can be found in Section 3.

Finally, in order to obtain an upper bound for the cost Cma.:o we need an estimate on

the tail distribution of the total weight Wn along a random path. Formula (2) suggests to

apply Cramer's large deviation result (d. Feller (18]) with some modifications (clue to the

[act that the total weight W" as in (2) is a sum of random nmnber of weights). To avoid

unnecessary complications, we consider in details only two cases, namely:

(a) all weights are identically distributed with mean m = m] = mD = mQ and the

cumulantJunclion w(s) = log Ee.s(W-m) for the common weight W - In;

(b) insertion weight and deletion weight are constant, say all equal to -1 (e.g., WI =

W/) = -1), and the substitution weight WQ - mQ has the cumulant function ili Q ( s) =

log Ecs(WQ-mQ). Such an assignment of weights is often encountered in the string

editing problem.

Theorem 2.6. (i) In the case (a) of all identical weights, define s· as the solution of

(21)

for a given a > 0, and let

Zo(a)

Ej (a)

Ei(a)

s"W'(s") - W(s") ,

-(s"m+ W(s")),
a~m2 +2u~ma + a~(I]i/(s·))2 +(1- /lQ)'11"(s")

2(1-I'Q)iib W"(S")

(22)

(23)

(24)

10



whe1'e I1Q = ENQ and;;:~ = var NQ. Then,

Pr{Wn > (1-I'Q)(a +m)nj ~

---:-:--:-:-r~I=~===c=7exp (-n( I -I'Q)Zo(o) +n E;2(a) )
2s"E2(a)aQJ~(I-I'Q)nW"(s") 4E2(a)

(25)

(ii) In case (b) of constant I-weights and D-weights, wc define s'" as a solution oJ

a = wQ(s") , (26)

and let

Zo(a) s"WQ(s") - WQ(s") , (27)

E,(a) s"(mQ + 2) + 2s"a" - W(s') , (28)

Ei(a)
a~(mQ+2)(mQ + 2 + 2a'" +4sK WQ(s"')) + a~a·(a· +4s"'I]iQ(s·)) + I.lQ 1]i3 (s*d

2I'Qa~'I'Q(s") ( 9)

Then,

where fJ = 211Q +mflQ - 1.•

Having the above esLimatcs on the tail of the lotal cost of a path in the grid graph

GE 9(n), we can provide a more precise information about the constanl 0' in our Theorem

2.1, lhat is, we compute an upper bound a and a lower bound Q of a for the independent

model. We prove below the following result, which is one of OUT main finding.

Theorem 2.7 Assume the independent model.

(i) Conside1' !i"St the identical weights case (a) above. Let a* be a solution of the following

equation
" Er(a")

(l-I'Q)Zo(a )=p+ 4Ei(a")' (31)

where p is defined in (I9)-(20), and Zo, E1 and Ei are defined in (22)-(24). Then, the

upper bound a of a becomes

" = (I - I'Q)( a" +m) + D(log njn) .

11
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In the case (b) oj constant I and D weights, let a* be a solution of the equation

" Ei(a")
pQZ,(a )=p+ ~Ei(a")

where Zo, E1 and Ei are as in (27-30). Then,

a = pQ(a" +NpQ) +O(logn/n) ,

whe1~ (3 is defined in Theorem 2.6(ii).

(33)

(3~ )

(11) The lower bound Q oj a can be obtained from a pariicular' solution to our optimization

problem (1). In particular, we have

where Ctgr is constructed from a greedy solution oj the problem, that is,

7Wgr = (£ +s(l- p))mma"

where p = Pr{WQ > WI and WQ > WD}, and mma" = Ernax{WJ, WD, WQ}.

(35)

(36)

Proof. We first prove part (i) provided Theorem 2.6 is granted (cf. Section 3 for the proof).

Observe tllat by Boole's inequality we have for any real x

P,{Cm., > x} ~ L P,{W,,(P) > x} = L(u)Pr{W" > x}
PEB

where the last equality follows from (3). We now consider only case (a). Let f3(a)

(I - pQ)Z,(a) and ,(a) = Ei(a)/(4Ei(a)). Then, hy Theorem 2.5 and 2.6(,) we have

P,{Cm .. > (1 - PQ)(a +m)u} ~ O(I/u) exp(u(p +,(a) - fI(a))) .

Setting in the above a = a" as defined in (31), we prove our result.

The lower bound can be established either by considering some particular paths P or

applying a simple algorithm like a greedy one. The greedy algorithm selects in every step the

most expensive edge, that is, the average cost per step is mma" = Emax{WD, WI, WQ }. Let

p = Pr{WQ > WI, WQ > WD}. Observe that ifthere are k D-steps, then necessarily, tIlere

are s - k Q-steps. But, the number of Q-steps is binomially distributed with parameters p

and s. Thus ,

""" = m",ox t,(e + k) (~)p'-'(! -p)' = 1+ s(! - p)umox ,
k=1

12



Table 1: Simulation results for exponentially distributed weights with means mI = mD =

1nQ = 1 for case (B) with d = O.6n.

200 50 1.588 1.909 2.45

400 100 1.588 1.808 2.45

600 150 1.588 1.899 2.45

800 200 1.588 1.926 2.45

1000 250 1.588 1.922 2.45

and this proves our result.•

We compared our bounds for Cmax with some simulation experiments. In the simulation

we restricted our analysis to uniformly and exponentially distributed weights, and here we

only report the latter results. They are shown in Table 1. It is plausible that the normalized

limiting distribution for Cmax is double exponential (i.e., c- C
-"), however, the normalizing

constants are quit hard to find.

The editing problem can he generalized, as it was recently done by Pevzner and Water­

man [32] for lhe longest COIllIllon subsequence problem. In terms of the grid graph, their

generalization boils down to adcling new edges in the grid graph that conned no-neighboring

vertices. In such a situation our Theorem 2.1 may not hold. In fact, based on recent results

of Newman (31] concerning the longest (unweightecl) path in a general acyclic graph, we

-predict that a phase transition can occur, and Cmax may switch from 0(n) to 0(log n). This

was already observed by Arratla and Waterman [7] for another string problem, namely, for

the score in the pattern matching problem.

3. ANALYSIS THROUGH THE RANDOM WALK APPROACH

In this section, we only analyze the independent model. To recall, we consider an eX s

grid graph with independent weights WI, WD and WQ. We represent a path in the grid

graph G as a random walle First of all, it is convenient to append our eX s graph to a full

ex egrid graph, with aU steps possible, as shown in Figure 2. It should be noted that in

our new representation, a Q-step is twice as long as I-step and D-step, and therefore the

increments in such a random walk are not independent (e.g., after the first cliagonal move,

the second one comes with probability one).

13
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0: accessible points

d=f.-s

e
Figure 2: An extended ex £ grid graph

We fLrst analyze a path without weights in the grid graph shown in Figure 2. We caU it

an unwcighted random walk (in short: R.W.) and denote as Y(.). To model a path P in

our original Tlroblelll , we must asSUTe that the random walk Y(-) coincides with the script

path P, we require that the random walk y(.) in Figure 2 ends at the point E of the grid

graph after n steps where n = 2£ - (e - s) = e+s. Thus, we impose the following constraint

Y(n) ~ d (37)

where d = e- s.

We fIrst consider an unconstrnint randoIll walk yo such that the condition (37) does

not hold, and that the probahilHies of I-step, D-step and Q-step T = .../2 - 1, T and 1"2

respectively, as shown in Figure 3. These probabilities are chosen in such a way that all

paths with the same length receive the same probability (e.g., a two-step path I&D ha.<>

probability r 2 , the same as one-step path Q oflength two).

3.1 Case (A): d = O(vn)

Consider first the unconstraint random walk yo (cf. Fig. 3). We make the following

scale changes l = *, y = j~ with ( = M to establish the following theorem, where ==>
v" .......00

represents the weak convergence of random functions in the space of all right continuous

functions having left limit and endowed with the Skorohod metrle (see Billingsley [9] Ch.III).

14
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Figure 3: Probal)ililies of I-step, D-slep and Q-step in the unconstraint random walk Y

Theorem 3.1. The unconstraint R. W. Y(-) possesses the following limiting behaviOl'

n --;. 00

whe1'e B(·) is a classical Brownian Motion (H.M.), and ( = .;:ii.
Proof. Le' p,(j) = Pr{Y(i) = j}. Thon, P'+' (j) = Tp;{j - 1) + Tp,(j + I) + T'P'_I (j) for

i 2'.2, and our result follows from standard arguments (d. [28]) . •.

Now, we take into account the constraint (37), that is, we set yen) = d = O(Jn). Let

x=d~
Vn

(38)

with ( = 21/4. To handle this constraint, we reCOffitmte the probabilities of the I, D,

and Q steps so that EY(n) = (L holds, and later we relax it so that our primary con­

straint (37) is true (cf. (tl8)). We define these Dew one-step probabilities as follows:

PI = Pr{first move is II yen) = d}, PD = Pr{first move is DI Y(n) = d}, and PQ =

Pr{first move is QI Y(n) = d}. Note that these probabilities depend on n, but we do not

show explicitly this dependency.

Lemma 3.2a. The new one-step probabilities become

1'1

PD

PQ

(39)

(40)

(41)

15



,
Proof. We know from Theorem 3.1 that f(t,x) = e~. This, and the above definitions of

VZ1Tt

PI, pn and PQ lead to the following

But ax! = -7 I, hence PI is now readily computed by setting t = 1 in the above. The two

other "probabilities are derived in a similar manner. •

Remark 3. In fact, using similar arguments to the ones in the proof of Theorem 3.1, we

can prove much stronger result. Namely, the constraint random walk Y(.) characterized by

the probabilities PI, PD, PQ has the limiting density given by J(y, v) = exp( - (y;;)2 )/.J2;"v,

which is exactly the density of a B.M. with drift x and variance v.

To estimate the large deviation of the total weight W" we need a precise evaluation of the

random variables NI, ND and NQ representing the number of I-steps, D-steps and Q-steps

in a path P. First of all, we compute the limiting distribution of the sum N 1 + ND + NQ.

Using the renewal theory (d. Feller [18J, p. 321,341, and Iglehart [20J Theorem 4.1) we

can easily prove that

n -+ co (42)

where N(m,a 2
) is a classical Gaussian variable wilh mean m and variance (VAR) a2

• In

the above, if is t.he average move step, that is, from Lemma 3.2 we have

d=PI+PD+2pQ = l+pQ,

'0 that if = 2(2 - v'2) + O(1/n), and

iJ2 = PQ(I- PQ) ,

hence iJ2 = v'2(lO - 7v'2) + O(I/n). Let

<>=.1;= I =2+v'2+ 0 (.!.)
d 1 +PQ 4 n

and

(43)

(44)

(45)

<= iJ2 = v'2+ 0 (,!,) (46)
d3 16 n

Then, from (42), we obtain NI + Nv +N Q ,-..; N(no:, nli) +0(1).

From the expression (2) on the total weight W Il , it should be clear that we need the joint

distribution of NI, Nv and NQ (cf. Louchard et ai. [27]). For this, we must consider two

16



constraints on N.: 1 one on the total number of steps, and the other related to Y(n) = d.

More precisely, together with (38) we have the following constraint on the number of steps

n

d=x vn
(

(47)

(48)

We first consider only the constraint (<17). This will allow us to compl1te the asymptotic

joint distribution of NI, ND, NQ, as stated in the next theorem. The proof can be founel in

Appendix A.

Theorem 3.3a. The number of r, D and Q steps, N [, N D, NQ are asymptotically Gaussian,

with mean nJ-L/, nJ-LD, nJ-LQ respectively, where

I'D

J-LQ =

.,fi( ( 1)PJ(2,,-1)=pI/(l+PQ)=- 1+ ",x+O(-)
4 yn n

.,fi( ( ')po(2" - 1) =po/(J+ PQ) =""4 1- vn x + 0(;;:)

2 - J2 1
(l-")=PQ/(l+PQ)= +0(-)

4 n

(49)

(50)

(51)

where PI = pr!(PI+PD), PD = po/(PJ+PD). M01'eover', a: is given by (45). The asymptotic

covariance matrix is given by

with

-2PI~ )
-2PDK

~

(52)

em

3.,fi 23/4 1
(2" -1)p,(1- pI) +4~pj = - + -x+ 0(-)

16 8 n
3J2 23/' 1

(2" - l)po(l- po) +4"pj, = - - -x + 0(-)
16 8 n

2~- (2,,-1)p,po - 2~(pj +pj,) = .,fi +O(.!.)
16 n

where K. is given in (46).•

To cOIDvlete our study of the number of steps in the grid graph, we must take into

account the constraint (<18). Set 1/. = (N. - nj1-.)/vn. Observe that by Lemma 3.2a and

Theorem 3.3a, E(N1-ND) = ¥x+O(1) as it should be, so (48) and (47) imply respectively

that 1/1 = 1/D and 7]1 = -7]Q.

ITo simplify our uolal.ion, we often write X, La denote any of XI, XD or XQ.
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(53)

To derive the constrained density of 1JQ, we first write the joint asymptotic density

f(nr,nQ) of(1JQ,11I), which by Theorem 3.3a becomes

exp {-2(1 lR2) (~- 2R;~;% +;i)}
f(nI,nQ) = 2 VI R' Q

1rC1fC1Q

with R = !2.9..... Setting 1J1 = -1JQ, we finally obtain the asymptotic density of 1JQ, as stated
"IUQ

below.

Lemma 3.4a Under constraint (.4-8), we have

with

~~ = (1 _ R') (!, +2 ~I~ + -..1,) -1 ~ v'2/16 + O(I/n) ,
(Tf (TIU'Q (TQ

where all the quantities in the above were defined before.•

(54)

(55)

We delay the discussion of the number of paths L(n, d) (d. Theorem 2.5) until the next

subsection since the recurrence on L(n, d) is of the same kind as the one needed to study

the behavior ofWn in the case (B). It will turn out that the asymptotics of L(n,d) for (A)

can be deduced from the asymptotlcs of L(n, d) obtained in case (B).

Finally, we prove our last result concerning the large deviation of the total weight

distribution (cf. Theorem 2.6). As discussed in Section 2, we only consider two cases,

namely: (a) identically dlstributed weights, that is, WI =d WD =d WQ = W where =d

means equal in distribution; and (b) constant D-weight and I-weight, i.e., WD = WI =-1.

Let us first establish notation needed to express a large deviation result. Define En =

L:f=, Wei) where Wei) is an independent copy of W. Let w(z) = log Ee::(W-m) be the

cumulant function of W - m where m = EW, and let s be the unique solution, if exists, of

the following equation

a = ,"'(8)

fm any a > O. Finally, let Z(a) = -(,"(8) - 8,"'(8)). Then (ef. Feller [18])

I
Pr{S" ~ n(a +m)) ~ exp( -nZ(a)) .

sJ21rnw"(s)
(56)

In our case, the total weight Wn(NQ) of a random path in a grid graph with exactly NQ

diagonal edges becomes WIl(NQ) = L:~l WI(i)+L:::~ WD(i)+L:~~ WQ(i) = 'L::;;:Q W(i)

(ef. (47)). Note that NQ is a random variable, hence the unconditional total weight Wn
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can be computed from an estimate of the conditional total weight Wn(NQ) and the limiting

distribution of NQ (cf. Lemma 3.4a). But, NQ = nJLQ +T/Qvn and by Lemma 3.4a T/Q is

asymptotically normal with mean 0 and variance crb. We must now translate (56) into our

new situation. Let n =""In where ""I = 1 - iLQ. Define ii such that

(n-vn1]Q)ii, i.e.

(m+a)1]Q m+aT/~ O(~~)a+ -+---+-
""I vn ""1 2 n n3

/
2

Let also 5- and 8 be solutions of the following equations a = llI'(8-) and ii = '11'(8). Using

Taylor's expansion of llI(s) and 111'(8) around 8", we obtain

s ~ s· + a' +m '/Q _ 1 (a' +m)[-2(>ji'(,·))2 + (a +m)>ji"V)] ~b +0(_1_). (57)
71{>"(,·),fii 2 72(1{>"(,.))3 n n3/ 2

With the notation as above, we reduce the problem to the following one

00 n--fii.'I/
Pr{Wn 2: 7(a+m)n) ~ 100 Pr{ ~ (W(i)-m) 2: (ii-,fii~)al~Q ~ ~)dF'Q(~)

where F'Q (~) ~ '!>(~)(J+0(1/,fii)) (cf. Lemma 3.4a) ,!>(.) stands for the normal distrihution

with mean zero and variance a~_ The probability under the above integral can be estimated

as in (56). Using, in addition, the well known formula

100 ft (q2)
-00 exp( _p2 x2 ± qx )dx = p exp 4p2

after tedious algebra, we obtain our result (25) presented in Theorem 2.6.

In a similar manner we deal with the second case (b). However, this time the starting

equation is Wn{.NQ) = L;:~ WQ(i) - (n - 2NQ). The details are left to the reader.

3.2 Case (B), d ~ O(n)

The main purpose of this section is to derive the limiting distribution of the total weight

for a given path P in a grid graph G E g, and the asymptotics for the number of paths

L(n,d)_ As in the previous subsection, we proceed in three steps: at first, we consider an

unweightecl unconstraint random walk, then we derive probabilities PI, PD and PQ for the

constraint unweighted random walk, and finally we deal with the total weight Wn -

Consider the unweighted random walk yo in the grid graph as in Figure 2 such that

Y(n) = d = nx for some x < 1. Naturally, in this domain of d and 1t we cannot use the

normal approximation, whleh works only up to O("In). We have to appeal to the large
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deviation arguments to obtain the probability distribution of the random walk Y(·). We

proceed along the lines of arguments suggested by Louchard [26J.

We consider the constraint random walk Y(n) = nx, however, it is convenient to gener­

alize our constraint to the following one

Y(m)=mu. (58)

,

One can imagine that the random walk Y(.) at step m has to be at position mu, where m

and u are functions of n and x (e.g., we shall assume later that mu = nx).

As in the case (A), the analysis of the number of steps N I , ND and NQ is crucial for

the total weight. Note that, under our constraint (58), we have N I + ND +2NQ = m and

NI - ND = mu. The above can he translated to the following constraint: NI + N Q =
~ (1 +u). Bearing this in mind, we transformed the random walk Y(·) into another random

walk yo that is defined in Figure 4 below (Le., its one-step moves are shown in Fig. 4).

Our interest lies in estimating Pr{Y(m) E mdu} or in terms of the new random walk Y(.)

j

, f----i--,?1Q

,

" 0o""'-c;-,-","------!,c-------,....

Figure 4: Definition of the new random walk Ye).

we evaluate the following

{
i'(m)-m/2 dU}

Pr{Y(m) E mdu} '" Pr m E 2

To analyze Y(·), we compute the probability Pi(j) = Pr{Y(i) = n.
that this probability satisfies the following recurrence

(59)

It is easy to see

We solve this recurrence by the mean of generating function approach.

L~ozjpi(j). Clearly

P'+lU) = Tp,U) +Tp,U - 1) +T'p,_,U - 1) , i ;::: 1 . (60)

Let 9'(Z) =

90(Z) 1, 9'(Z) = T(1 + z)

20
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Let now 11'(8, z) = L~o eigi(Z), and after some algebra one obtains

1
11'(8, z) = 1 _ (1 + z)8r _ z82r2

The roots of the denominator of the above become

O",(z) = _ (I +Z)T
2
± :JW;Tz)
ZT

(62)

where Wl(Z) = 1 + 6z + Z2. Then,

(63)(
a,(z) a,(z))

'I'(O,z) = 0 8,(z) + 0 O,(z)

where a,(z) = -(TVW,(Z))-', and a,(z) = -a2(z),

To extract the generating function 9;(Z) from (63), we expand 11'(8, z) in the powers of

8 to obtain
9 (z) __ aI(z) (_I_)m _a,(z) (_I_)m (64)

m - O,(z) O,(Z) O,(z) O,(z)

Since we are interested in large values of m, we deduce from (64) that the leading term of

the asymptotics can be extracted from the following

(65)m~oo9m(Z) ~ Or~z) = W,(z),

with 'l/Jl(Z) = Ij82(z). In the above, we omitted the function Ctl(z)j81(z) since it only

contributes a constant in the final asymptotlcs.

Our aim now is to assess asymptotically the probability Pm(k) = Pr{Y(m) = k}.

Clearly, it can be estimated as Pm(k) '" ['l/Jfl(z)]k where [f(Z)]k is the coefficient of zk

in the power expansion of J(z). Hence, we have to deal with evaluating the kth coefficient

of of 'I/J;n(z), where k = m(l + u)j2. To obtain such asymptotics we shall use the classical

"shift of the mean" technique (cf. Feller [18] p.548 and Greene and Knuth [19] p.79). For

the reader convenience, we discuss briefly this technique below. We follow the approach of

Greene and Knuth [19].

Let g(z) be the generating function of a random variable with mean equal to J1. and the

variance equal to (1"2. Then, gn(z) represents the generating function of the sum of n such

independent random variables. We estimate the coefficient of zl'n+T in gn(z) for such r that

J1.n+r is an integer. Call such a coefficient An,T. By the Cauchy formula Greene and Knuth

[19] derive the following

(66)
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where e is arbitrary small positive number. The reader should notice that this asymptotics

is valid only for T = O(In).

In our case, we need the kth coefficient of 1/Jin(z), where k = m(l +u)/2. Therefore, we

cannot directly apply (66) since we are not in the range O(vm). A solution to this dilemma

is proposed in [19] by a simple and elegant application ofthe "shift of the mean" technique,

which we discuss below.

Let us return to Greene and Knuth [19], and assume that one needs the kth coefficient

of gn(z). The shift of the mean technique computes the kth coefficient as follows

[ n(z)l_ = g«(3)" [(g«(3z))l
9 , (3' g«(3) "

(67)

where the parameter f3 allows to shift the mean of the distribution to a value close to kin,
and hence allows to apply the asymptotics (66). The choice of f3 is specified by the following

equation
(3g'«(3) k

g«(3) n

Now, we are ready to derive our asymptotics. Since we seek the k

coefficient of 1/Ji(z), we first apply (68) to shift the mean. Define f31(U) as

(68)

m(1 + u)/2

(69)

Finally, applying (66), we obtain our main result.

Theorem 3.1b We have proved

q'I(m,u)
- m mdu

Pr{Y(m) E mdu} = Pr{Y(m) -"2 E -2-)

(¥>,«(3,))" mdu (I +O(l/n))
f3~n(l+ti)/2J211"mV(u) 2

for all m, where

(70)

(72)

(71)
1 +3u' + u/8(u2+ 1)

1 - u2

2UT(3,(U)
¥>,[(3,(U)] = (3,(U) _ 1- u(1 +(3,(U))¥>1(U)

2T(3,(U) + (I + (3,(U))¥>,(U)

(3,(U)

for all u < 1.•
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Theorem 3.1b allows to analyze the constraint random walk Y(nl = d. In particular, as

for case (A), we can compute the probabilities PI, PD, and PQ of one-step moves. Setting

in Theorem 3.1b, m = nt, U = Tso that mu = nx, we obtain

w,(x, t)dx Pr{Y(nt) E ndx}

{
xI x nx x } vn),[/),('1)]

- exp ntpog;b,(-)- -log~,(-)l--log~,(-) .dx
t 2 t 2 t 2J2~tV('1)

This implies, for example, that

and in a similar fashion for D and Q. Mter some algebra, we finally derived the following

lemma.

Lemma 3.2b. The probabilities PT, PD and PQ become

for all:l: < 1. •

PI

PD

PQ

T~,(X) + O(l/n)
",,(x)

T

= ",,(x) + O(lln)

T'~,(X) +O(l/n)
"'1(x)

Concerning the limiting joint distribution of the number of I-steps, D-steps and Q-steps,

we proceed as before. We use the same notation as in Theorem 3.3 with appropriate values

for probabilities PI, PV and PQ from Lemma 3.2b. Tills leads to the following results.

Theorem 3.3b. The number oj I, D and Q steps, NT,ND, NQ respectively, a7"€ asymptoti­

cally Gaussian, with mean np.J, np.D, nllQ respectively, where these quantities are computed

according to (49)-(51), (52) with new probabilities PI, PD and PQ, as in Lemma 3.2b.•

Lemma 3.4b We have 1/Q = N(O, ab) with ab given by (55) with probabilities Ph PD and

PQ as in Lemma 3.2b.•

Finally, we prove Theorem 2.5 that enumerates the total number of path L(u). As

discussed in Section 2, this estimate is necessary to evaluate our upper bound Q in Theorem

2.7. We start the analysis with setting up a recurrence for L(u). Let Ji(j) be the total

number of paths from 0 to i in i steps of the associated random walk in our grid graph
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G. Then, L(u) = f,,(d). Hereafter, we set d = un. Clearly, !i(j) satisfies the following

recurrence

f;+l(j) = f;(j) +f;(j - 1) + f;-,(j - 1) (73)

with ft(l) = 1. Tills recurrence was already studied by Laquer [24] for d =O(n). Observe

that the above recurrence is similar to the one consider before, and we can use the same

technique to attack it. Set 9i(Z) =:L~o zj fi(j) and let tp(8, z) = :L~o 8i9i(Z). After the

some algebra we obtain

with W2(Z) = 1 + z2 +6z and

<>,(Z) <>,(z)
1'(8,z) = 8 8,(z) + 8 8,(z) (74)

(75)8",(z)
1 + z ± Jiv,(z)

-2z

where 0'2(Z) = -ljvw2(z) and O'l(Z) = -0'2(Z). As n becomes larger, the dominant

contribution comes from (74), and asymptotically we have

gn(Z) - A(Z) [8,;zJ = A(Z)"'~(z)

with A(Z) = -<>,(z)/8,(z).

To extract the coefficient of 9,,(Z) we shall apply the "shift of the mean" method, as

described before. We first consider only the coefficient at 9n(Z)j),,(z) = 82""(z). Call it leu).

Applying equation (67), as in (69), we estimate the new mean value with 1Pl(Z) replaced by

1P2(Z) and the new fJ2(U) becomes

fJ (u) = j + 3u' + uJB(u' + I)
2 1 2-u

(76)

and then
2ufJ,(u)

"" (u) = "'2 IfJ2(U)I = "fJ2'(u'):-I;-'--'-'u('"'I'c+-fJ"2'(u"))

Let V(u) be the variance related to the generating function ~rJ2;V as defined in Theorem

2.5. With tills in mind, it is easy to see that

I(u) = "'2(fJ2(U))n (1 +O(I/n)) = exp(np(u))(l+ O(I/n)) (77)
fJ,(u)"(1+U )/2 J2rrnV(u) J2rrnV(u)

where p(u) is a function of u and it is given by (20).

Now, we compute the coefficient at 9,,(z) = ).(z)82""(z), that is, we include the correction

coming from ),,(z). Note that ),,1 (z) = ).(z)j>"(1) can be viewed as the generating function of

a random variable. Let its probability distribution be denoted by p>.(i). Since the product
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Df tWD generating functiDns translates intD the cDnvDlutiDn Df the appropriate cDefficients,

we have L(u) = L~op,\(i)l(u- i/n). By (77) we finally Dbtain

~

.\(1)I: p,(i) exp (n(p(u) - p'(u)i/n + O(n-'))) (1 + O(n- I
))

;=0

.\(e-"(tl)) exp(np(u))(l+ 0(n- 1)) , (78)

where p'(u) is the derivative Df p(u). FrDm tbe above, we cDnclude that the CDnstant C in

TheDrem 2.5 becDmes

(79)

This cDmpletes the prDof of TheDrem 2.5 for case (A) and (B) (in case (A) p(u) is given by

(19)).

APPENDIX A: Proof of Theorem 3.3a

From (42) and (47) after setting NT = NI + ND, we see that

n NT"2 + 2 = n - NQ -N(na,nK) + 0(1)

I'T = E(NT)/n = n(2a - 1) +0(1)

a} VAR(NT)/n ~ 4K

(80)

(81)

But given NT, the number Df I-steps NI is a binDmial random variable with parameter

'iiI, and mean NT'iiI and the variance NT'iiIii! (where iiI = 1 - PI). By (81) we have

E(NI) = nJLTPI = nlh(2Q - 1). We alSD Dbtain E(N'fINT) = NTPliiI +NfPl and E(NJ) =

nJLTPlqI + ft1(ncrt + n2JL}). Thls finally leads tD

The number of D-steps is analyzed in a similar fashiDn. TD compute the covariance CID

between N[ and N D, nDte that

ncr? =: VAR(NT) = VAR(NI + ND) = n(crl + crb +2CID)

Dr 4fi: '" 2(2Q - l)p[q} +4fi:(P1 + jib) +2ClD. Finally,

and with (80), we Dbtain COV(NINQ) = -!COV(N}NT) '" -p[2fi:n.

25



To complete the proof, it suffices to check the asymptotic Gaussian property of NI, ND, NQ.

For NQ, this follows from (80). For NI, which js binomially distributed with parameter PJ,
we obtain, conditioning on NT

But, by (80),

(82)

hence by (82) we obtain

which proves the asymptotic Gaussian property of NJ' •
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