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Abstract

We consider a string editing problem in a probabilistic framework. This problem is
of considerable interest to many facets of science, most notably molecular biology and
computer science. A string editing transforms one string into another by performing a
series of weighted edit operations of overall maxitnum (minimum) cost. The problem is
cquivalent to finding an optimal path in a weighted grid graph. In this paper, we provide
several results regarding a typical behavior of such a path. In particular, we observe that
the optimal path (i.e., edit distance) is almost surely (a.s.) equal 1o an for large » where o
is a constant and # is the sum of lengths of both strings. More importantly, we show that
the edit distance is well concentrated around its average value. In the so called independent
model in which all weights (in the associated grid graph) are statistically independent, we
derive some bounds for the constant o. As a by-product of our results, we also present a
precise estimate of the number of alignments between two strings. To prove these findings
we use techniques of random walks, diffusion limiting processes, generating functions, and
the method of bounded difference.
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1. INTRODUCTION

String editing problem arises in many applications, notably in text editing, speech recog-
nition, machine vision and, last but not least, molecular sequence comparison (cf. [36]).
Algorithmic aspect of this problem has been studied rather extensively in the past (cf. (2],
{30, [32], [33] and [36]). In fact, many important problems on words are special cases of
string editing, including the longest common subsequence problem (cf. [1], (14]) and the
problem of approzimate pattern matching (cf. [12] and [34]).

In sequel we review the string editing problem, its importance, and its relationship to
the longest path problem in a special grid graph.

Let b be a string consisting of £ symbols on some alphabel ¥ of size V. I'here are three
operations that can be performed on a string, namely deletion of a symbol, insertion of a
symbol, and substitution of one symbol [or another symbol in £. With each operation is
associated a weight function. We denote by Wi(b;), Wp(b;) and Wg(a;, b;) the weight of
insertion and delelion of the symbol b; € ¥, and substitution of ¢; by b; € X, respectively.
An edit script on b is any sequence w of edil operations, and the total weight of w is the
sum of weights of the edit operations.

The siring editing problem deals with two strings, say b of length ¢ (for fong) and a
of length s (for short), and consists of finding an edit script wpaz (Whin) of minimum
(maximum) total weight that transforms a into b. The maximum (mirimum) weight is
called the edif distance from a to b, and its is also known as the Levenshtein distance. In
molecular biology, the Levenshtein distance is used to measure similarity (homogeneity) of
two molecular sequences, say DNA sequences (cf. [33]).

The string edit problem can be solved by the standard dynamic programming method.
Let Cinax(%,7) denote the maximum weight of transforming the prefix ol b of size 1 into the
prefix of a ol size j. Then, (cf. [2], [30], [36]).

Cmax(i:j) = ITla.X{Cmnx(‘l: - l,j - 1) + WQ(G;,bj) 1 Cmax(i - l:]) + WD(“I') H
) Cmﬂx(ilj - 1) + WI(bi)}

forall ] <¢< fand 1< j<s. We compute Cpax(f,7) tow by Tow to obtain finally the
total cost Crpiax = Cax(€, s) of the maximum edit script. A similar procedure works for the
minimum edit distance,

The key observation for us is Lo note that interdependency among the partial optimal
weights Cryax(2,7) induce an € x s grid-like directed acyclic graph, called further a grid
graph. In such a graph vertices are points in the grid and edges go only from (¢,7) point
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Figure 1: Example of a grid graph of size £ = 3 and s = 2.

to neighboring points, namely (4,5 + 1), ( +1,7) and (¢ + 1,7 + 1). A horizontal edge
Trom (2,7 — 1) to (i, 7) carries the weight W;(b;); a vertical edge from (4,7 — 1) to (4,7) has
weight Wp(e;); and finally a diagonal edge from (i — 1,5 — 1) (, j) is weighted according
to Wo(ai, b;). Figure 1 shows an example of such an edit graph. The edit distance is the
longest (shortest) path from the point O = (0,0) to E = (¢, s).

In ihis paper, we analyze the string edit problem in a probabilistic framework. We
adopt the Bernoulli model for a random siring, that is, all symbols of a string are generated
independently with probability p; for symboli € %. A standard probabilistic model assumes
that both strings are generated according to the Bernoulli scheme (c[. [3], [6], [7], [8],
[14], [22], [35], [36]). We call it the string model. Such a framework, however, leads
to statistical dependency of weights in the associated grid graph. To avoid this problem,
most of the time we shall work within the framework of another probabilistic model which
postulates that all weights in the associated grid graph are statistically independent. We
call it independent model. This is closely related to a model in which only one string is
random, say b, while the other one , say a, is deterministic. Indeed, in such a situation all
weights in a "horizontal” strip in the associated grid graph are independent, while weights
in a "vertical“ strip are dependent (e.g., if a = 101, and b is random, then the 1% in the
string a match independently all 1%s in b, but clearly the first 1% and the third "1“in a
have to match "1%s in b at the same places}). We call such a model semi-independent.

Most of the results in this paper deal either with the independent model or the string



model. We believe that better understanding of the independent model should be the first
step to obtain valuable results for the semi-independent model. Certainly, results of the
semi-independent model can be further used o deduce probabilistic behavior of the string
model (cf. Theorem 2.2). In passing, we note that the semi-independent model might be
useful in some applications {e.g., when comparing a given string to all strings in a data
base).

In the independent model the distributions of weights Wp(e;), W;(b;) and Wo(a;, b;)
depend on the given string a. However, to avoid complicated notations we ignore this fact -
whenever the independent model is discussed — and consider a grid graph with weights W;,
Wp and Wg. In other words, we concentrate on finding the longest path in a grid graph
with independent weights W;, Wp and Wy, not necessary equally distributed. By selecting
properly these distributions, we can model several variations of the string editing problem.
T'or example, in the standard selting the deletion and insertion weights are identical, and
usually constant, while the substitution weight takes two values, one (high) when matching
between a letter of a and a letter of b occurs, and another value {low) in the case of a
mismatch (e.g., in the Longest Common Substring problem, one sets W, = Wp = 0, and
Wg = 1 when a matching occurs, and Wy = —oo in the other case).

Our results can be summarized as follows: Applying the Subadditive Ergodic Theorem
we note that for the string model and the independent model Cp, ~ an almost surely
(a.s.), where n = £ + s (cf. Theorem 2.1 and Theorem 2.2). Qur main contribution lies
in cstablishing bounds for the constant e (cf. Theorem 2.7) for the independent model
(cf. Theorem 2.2 for a possible extension to the string model). The upper bound is rather
tight as verified by simulation experiments. More importantly, using the powerful and
modern method of bounded differences (cf. [29]) we establish for all three models a sharp
concentration of Chayx around its mean value under a mild condition on the tail of the
weight distributions (cf. Theorem 2.3). This proves the conjecture of Chang and Lampe
[13] who observed empirically such a sharp concentration of Cyyay for a version of the string
edit problem, namely the approximate string matching problem.

Our probabilistic results are proved in a unified manner by applying techniques of ran-
dom walks (cf. [18], [20]), generating functions (cf. [19), [26], [27]), and bounded differences
(cf. [29]). In fact, these techniques allow us to establish further results of a more general
interest. In particular, we present an asymptotic estimate for the number of paths in the
grid graph (cf. Theorem 2.4), which coincides with the number of sequence alignments (cf.
[15], {16], {36]). Finally, for the independent model we establish the limiting distribution of
the total weight (cf. Theorem 2.5) and the tail distribution of the total weight (cf. Theorem




2.6) of a randomly selected path (edit script) in the grid graph.

The string edit problem and its special cases (e.g., the longest common subsequence
problem and the approximate pattern matching) were studied quite extensively in the past,
and are subject of further vigorous research due to their vital application in molecular
biclogy. There are many algorithmic solutions to the problem, and we only mention here
Apostolico and Guerra 1], Apostolico et al. [2], Chang and Lampe [13], Myeres [30],
Ukkonen [34], and Waterman [36]. On the other hand, a probabilistic analysis of the problem
was initiated by Chvatal and Sankoff [14] who analyzed the longest common subsequence
problem. After an initial success in obtaining some probabilistic results for this problem, and
its extensions by a rather straightforward applications of the subadditive ergodic theorem,
a deadlock was reached due to a strong interdependency between weights in the grid graph.
To the best of our knowledge, there is no much literature on the probabilistic analysis of
the string edit problem and its variations with a notable exception of a recent marvelous
paper by Arratia and Waterman (7] (cf. [35]) who proved their own conjecture concerning
phase transitions in a sequence malching.

There is, however, a substantial literature on probabilistic analysis of pattern matching.
We mention here a series of papers by Arratia and Waterman (cf. [5], [6]} and with Gordon
(cf. [3], [4]), as well as papers by Karlin and his co-authors (cf. {11, [21], [22]). Another
approach for the probabilistic analysis of pattern matching with mismatches was recently
reported by Atallah et al. in [§].

This paper is organized as follows. In the next section, we presenl our main results and

discuss some of their consequences. Most of our proofs appear in Scction 3.

2. MAIN RESULTS

We study a grid graplh of size £ and s (€ > s) as shown in Figure I. All of our results,
however, will be expressed in terms of n = £+ s and d = £ — s. We assign to every edge
in such a graph a real number representing its weight. A family of such directed acyclic
weighted graphs will be denoted by G(n, d) or shortly G(n). We write G(n) € §(n,d) for a
member of such a family.

For the independent model we assume that weighis are independent from edge to edge.
Let Fr(-), Fp(-) and Fp(-) denote distribution functions of Wy, Wp and Wg respectively.
We assume that the mean values mj, mp and mg, and the variances 57, s3, and 55,
respectively, are finite. The distribution functions are not necessary identical.

The edit distance can be viewed as an oplimization problem on the grid graph. Indeed,
let B(n,d) or shortly B(n) be the set of all directed paths from the starting point O of the




grid graph to the end point E. (It corresponds, as we know, to a script in the original string
edit problem.) The cardinality of B(n), that is, the total number of paths between O and
E, is denoted by L(n,d). A particular path from O to E is denoted as P, i.e., P € B(n,d).
Note that the length |P| of a path P satisfies £ < |P| < [+ r = n. Finally, let N;(P),
Np(P) and No(P) denote the number of horizontal edges (say I-steps), vertical edges (say
D-steps), and diagonal edges (say @-sleps) in a path P.

With the above notation in mind, the problem at hand can be posed as follows:

Cmax = Pﬂe]g-{};){Wu(P)} 3 C'm.'m = Plené?n){wn(p)} (l)

where W,,(P) denotes the total weight of the path P which becomes

Ni(P) Np(P) No(P)
Wa(P) = Z Wi+ 3 Wp(i)+ Zj Wo(3) . (2)

We write W, to denote the total weight of a randomly selected path, that is,

1

Pr{W, <z} = I(n,d)

> Pr{Wa(P) < z} . (3)

PeB

Our results crucially depend on the order of magnitude of d with respect to n. We
consider separately several cases. Below we dcfine two of them that are analyzed in details

in this paper:

CASE (A): d=0(y/n), and let = = d\/v/2/n = (d//n where ¢ = 21/4.
CASE (B): d=0(n), and let z = d/n.

Three other case, described below, are discussed in our extended technical report (28):

CASE (C): d=n—0(n'"), that is, for some constant z we have d = (1 — z/2%).
CASE (D): d = 0(1) (we shall reduce this case 1o Case (A)).
CASE (E): s = O(1) (we shall reduce this case to case (C)).

Now, we are in a position to present our results. To simplify further our presentation,
we concentrate mainly on the longest path C,,,c. We start with a simple general result
concerning the typical behavior of Cy,ax. The more refined results containing a computable
upper bound for EChux (in the independent model) are given at the end of this section (cf.
Theorem 2.7).

Theorem 2.1. In the string model and the independent model, the following holds

lim Cmax _ lim ECmax _ a (as}, (4)

n—oo 71 n—oo 7




provided £/s has a limit as n — co.

Proof. Let us consider the £ x s grid with starting point O and ending point E (cf. Fig.
1). Call it Grid(Q, E). We also choose an arbitrary poinl, say A, inside the grid so that
we can consider {wo grids, namely Grid(O, A) and Grid(A, E). Actually, point 4 splits
the edit distance problem into two subproblems with objective functions Cphax(Q, A) and
Cmax(4, E). Clearly, Crax(0, E) 2 Cinax(0, 4) + Cruax(A4, E). Thus, under our assumption
regarding weighls, the objective function Ci,.x is superadditive, and direct application of

Superadditive Ergodic Theorem (cf. [25]) proves our result. ®

Remark 1. Observe that we cannot directly apply subadditive ergodic theorem to semi-
independent model since weights are not stationary in this case. However, using an inductive
argument, one can obtain similar results as above for the semi-independent model. In
particular, since for the semi-independent model EChay is superadditive, we immediately

prove that EC\ .« ~ af. O

In the string and semi-independent models, weights depend on strings a and b, hence
the constant « is a function of a and b. Furthermore, the string model can be reduced
to the semi-independent model as follows. Let a be a given string (i.e., nol random), and
let P(a) be the probability of a occurrence in our standard Bernoulli model (e.g., for the
binary alphabet ¥ = {a,b} we have P(a) = plol(1 — p)l¥l where p is the probability of @
occurrence, and |e| {|b]} is the number of ¢’s (#’s) in the string a). Let ey be the constant

in the semi-independent model.

Theorem 2.2. In the string model, the constant « can be estimated as follows

a= )Y azP(a) (5)

acH

where H is the set of all possible strings a of length 5 over the alphabet 3.

Proof. Observe the following
E nax . 'J rn‘mx
(lim Elmax 3) = fm ZECmad) _

£—00 ¢ n £—00 £ !

> @aP(a)=Eaa=E
acH

where the first equality is just definition of the expected value, the second follows from

Remark [, while the last is a simple consequence of the hounded convergence theorem and
ffn—1.1m

Finally, for the siring and independent models we can report the following finding con-

cerning the concentration of the edit distance. It proves the conjecture of Chang and Lampe




[[3]. The prool of this result uses a powerful method of bounded differences or Azuma's type
inequalily {cf. [29]).

Theorem 2.3. (i) If all weights arc bounded random variables, say max{Wy, Wp, Wp} < 1,

then for arbitrary £ > 0 and large n
Pr{|Ciax — ECmax| > €ECpax} < 2exp(—clan) . (6)

(ii) If the weights are unbounded but such that for large n, Wy = max{W;, Wp, Wy}
satisfies the following
nPr{Wiez > 2/*~%} < U(n) (M)

for some § > 0 and a function U(n) — 0 as n — oo, then
Pr{[Cmax — FCrmax| > EECmax} < 2exp(—fn’) + U(n) (8)
for any £ > 0 and some § > 0.

Proof: We consider only the string model. Part (i) is a direct consequence of the following
inequality of Azuma’s Lype (cl. [29]): Let X; be i.i.d. random variables such thal for some

Junction f(-,...,-) the following is true
|f(X15-"'.IXI".-"-aXﬂ.)_I(X])"";X;:"':Xn)l S Ci (9)

where ¢; < 0o are conslants, and X! has the same distribution as X;. Then,

Pr{|f(X1,-., X0n) = Ef(Xy,..., Xy)| 2 1} < 2exp(—20%/ > _ ) (10)

i=1
for some t > 0. The above technique is also called the method of bounded differences.
Now, for part (i) it suffices to set X; = b;for 1 <i < €,and X; = a;_sfor €+1 < i < n,
where ¢; and b; are the 7 symbols of the two strings a and b. Under our Bernoulli model,
the X; are i.i.d. and (9) holds, with f(-) = Cpax. More precisely,

ICmnx(X‘l: LS | X:‘: - '!Xﬂ.) - C"max(Xla .- 'vX:: L '5X‘-'1)| S fgfg‘;{mnﬂz(i)} - (11)

where W,,.-(%) is the ith independent version of W, defined in the theorem. Clearly, for
part (i) we have ¢; = 1, thus we can apply (10). Inequality (6) follows from the above and
t = eEChax = O(n).
To prove part, (ii), we start with (11). But, this time we have for some ¢
Pr{ICmax - JE'lcmiml 2 i} = Pr{lcmax - Ecmaxl 2 1 ? IIEPCXH{IM““’:(?:)} < C}
-4 Pr{]Cmax - ECmaxl 2 [ ’ 1‘2?‘2( {Wﬂlﬂx(i)} > C}
< 2exp(-—2t2/nc2) + nPr{Waz > €} .

8




Set now ¢t = eECh = O(n) and ¢ = O(nlfz“s), then
Pr{lcmax - Ecmaxl 2 EECmux} <2 exl)(—ﬂn‘s) -+ nPI‘{ Winaz > nlﬁ—s]_ .

for some constant # > 0, and this implies (8) provided (7) holds. &

Remark 2. Theorem 2.3 holds also for the semi-independent model if one replaces in Lhe
right-hand side of (6) 2 exp(—¢£2n) by 2exp(—&2¢) and set ECpax = o(e).

Hereafter, we investigate only the independent model. For this model, we have oblained
several new results regarding the probabilistic behavior of (longest) path in a weighted grid
graph.

The next result presents limiting distribution of the total weight defined in (2). Its proof
is quite complicated, however, it applies only standard techniques. Therefore, at the roferee
request, we omit completely the prool of this theorem. It can be found in our extended

technical report [28].

Theorem 2.4. The limiting distribution of the fotal weight satisfies

W, — nuw
——— — N(0, 1 12
T A0, 1) (12)
where N(0,1) is the standard normal distribution, and
pw = mipr+mppp + mopq (13)
O = st +upsh + pesy + d5(mi + mp — mg)? (14)

where ur = EN{P), up = ENp(P), po = ENg(P) and 55 = varNo(P). FEzplicit

formulas for these quantities can be found in the next section. B

Our next resull enumerates the number of paths L(n, d) in the grid graph. It is also of
interest to some other problems since L{n,d) represents the number of ways the siring a
can be transformed into b, and this problem was already tackled by others (cf. [15], [18],
[24], [36]) in the case of equal length strings (i.e., £ = s). The formulation of this result

depends on a paramecter u = d/n thal takes different values for case (A} and (B), Lhat is:

CASE (A): Set d = zv/n/v2. Then, u = z/v/v2n = z/(( /7).
CASE (B): Sel u = =z.

Theorem 2.5. Lel L(u) = L{n, d) be the number of paths in a grid graph G € G(n). Then,

B Copa(Bafu))"
L(u) = Ba(w)r(1+w)/2 V2rnV (1)

(1 +0(1/n)) (15)

9




where

u? U
fa(u) = 143 +u\/8(2+1), (16)

L —u?
_ W = 2ufs(w) -
7!’2(“) - ¢2[ﬁ2( )] t ﬂg(u) —1_ 'u(l + ﬁz(u)) ’ (1 )

and C is a constant that is found in Section 3 (cf. (79)). In the above, V(u) is the variance
oblained from the generating function h(z) defined as M(z) = Pa(2f2(u)) /2 Ba(2)), that is,
V(u) = h"(1} — 0.25(1 — u?) where h"(z) is the second derivative of h{z). =

For most of our computations, we only need the asymptotics of L{x) in the following =

less precise form

log L(x) = np(u) — 0.5logn + O(1), (18)

where p(z) , for cases (A), (B) is respectively
plv) = —log(v2-1), (19)
p(u) = loguha(fa(u)) ~ —"log fa(x) (20)

The details of the above derivations can be found in Section 3.

Finally, in order to obtain an upper bound for the cost Cpax, We need an estimate on
the tail distribulion of the total weight W, along a random path. Formula (2) suggests to
apply Cramer’s large deviation result (cf. Feller [18]) with some modifications (due Lo the
fact that the total weight W, as in (2) is a sum of random number of weights). To avoid

unnecessary complications, we consider in details only two cases, namely:

(a) all weights are identically distributed with mean m = my; = mp = mg and the

cumulant function ¥(s) = log Ee*™" =™ for the common weight W — m;

(b) insertion weight and deletion weight are constant, say all equal to —1 (e.g., Wr =
Wp = —1), and the substitution weight Wg —mgq has the cumulant function ¥g(s) =
log Be™a-me}, Sych an assignment of weighls is often encountered in the string

editing problem.

Theorem 2.6. (i) In the case (a) of all identical weights, define s™ as the solution of

a="(s"), (21)

for a given a > 0, and let
Zo(a) = "U(s*)-¥(s™), (22)
Ei(e) = —(s"m+ ¥(s7)), (23)

Fym? + 25y ma + G5(V(s")) + (1 - pg)¥"(s")
21 - k)3 V(") ’

Ej(a) = (24)

10




where pg = ENg and 63 = var Ng. Then,

Pr{iW, > (1-pg)le+m)n}~
1

25*Eq(a)dg \/1'1'(1 — g Jn (s

HO)
) exp (_n’(l - IU‘Q)ZU(E) + n4E§(E)) (25)

(ii) In case (b} of constant I-weights and D-weights, we define s* as a solution of

a=¥y(s"), (26)
and lei
Zo(a) = s"UH(s7)— Wo(s"), (27}
Ei(a) = s*(mg+2)+2s*a*— ¥(s7), (28)
F3a) = Gh(mg + 2)(mg + 2 + 2 + 457UH () + Gha(a” + 4s* TH(s™)) + Ho¥ao(s')
2 - 2qu"51115(s"‘) Ve
Then,

PriW,. > uqla+ f/ng)n} ~
1

257 Bo(a)ag \/Tran‘l'g

ex -n @ 1 EIZ(G) )

where 8 = 2ug + mug —1. 1

Having the above eslimates on the tail of the total cost of a path in the grid graph
G € G(n), we can provide a more precise information about the constanl e in our Theorem
2.1, that is, we compute an upper bound @ and a lower bound « of « for the independent

model. We prove below the following result, which is one of our main finding.

Theorem 2.7 Assume the independent model.
(i) Consider first the identical weights case (a) above. Let a* be a solution of the following
equation
E%(a*)
1— pug)Zo(a™) = p+ 2 —-L 1
( #Q) O(G ) Jo+ 4E%(a*) ¥ (3 )
where p is defined in (19)-(20), and Zo, Ey and E} are defined in (22)-(24). Then, the

upper bound & of o becomes

o= (I - pug)(e”+m)+ O(logn/n) . (32)

11




In the case (b) of constant I and D weights, let a* bec a solution of the equation

E2(a*)
Zo(a™) = 1 . 33
o] 0(“ ) P+ 4!3%(0*) ( )
where Zo, B, and E3 are as in (27-30). Then,
@ = pg(e” + B/rg) + Ollogn/n) , (34)

where 3 is defined in Theorem 2.6(i1).

(i) The lower bound a of a can be obtained from a particular solution to our optimizalion

problem {1}. In particular, we have
a = max{uw, {mp + smy, a,} , (35)
where oy, 15 constructed from a greedy solution of the problem, that is,
nogr = (€4 $(1 — p))moyaz (36)

where p = Pr{Wq > Wi and Wy > Wp}, and muar = E max{Wy, Wp,Wa}.

Proof. We first prove part (i) provided Theorem 2.6 is granted (cf. Seclion 3 for the proof).

Observe that by Boole's inequality we have for any real =

Pr{Chax > 2} < Z Pr{W.(P) > z} = L(z)Pr{W, > z}
PeB
where the last equality follows {from (3). We now consider only case {a). Let 8(e) =
(1 - 1q@}Zo(a) and y{a) = E¥{a)/(4E3(a)). Then, by Theorem 2.5 and 2.6(i) we have

Pr{Cuax > (1 = rg){(a + m)n} < O(1/n) exp(n(p + y(a) — B(a))) .

Setting in the above a = ¢* as defined in (31), we prove our result.

The lower bound can De established ejther by considering some particular paths P or
applying a simple algorithm like a greedy one. The greedy algorithm selects in every step the
most expensive edge, that is, the average cost per slep is M.z = Emax{Wp, W, Wg}. Let
p= Pr{Wqo > Wy, Wg > Wp}. Observe that if there are k& D-steps, then necessarily, there
are s — k& (J-steps. But, the number of @-steps is binomially distributed with parameters p
and s. Thus,

5

Rdgr = Minaz Z(E + k) (Z) ps‘_k(l - P)k =£+ S(l - p)nmaz )

k=1
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Table I: Simulation results for exponentially distributed weights with means m; = mp =

mg = 1 for case (B) with £ = 0.6n.

L4 5 & Ogim o
200 5H0] 1.588 | 1.909 | 2.45
400 (| 100 | 1.588 | 1.808 | 2.45
600 || 150 | 1.588 | 1.899 | 2.45
800 || 200 | 1.588 | 1.926 | 2.45

1000 || 250 | 1.588 | 1.922 | 2.45

and this proves our result. u

We compared our bounds for Cjyay With some simulation experiments. In the simulation
we restricted our analysis to uniformly and exponentially distribuled weights, and here we
only report the latter results. They are shown in Table 1. It is plausible that the normalized
limiting distribution for C\yax is double exponential (i.e., ¢° ), however, the normalizing
constants are quit hard to find.

The ediling problem can be generalized, as it was recently done by Pevzner and Water-
man [32] for the longest common subsequence problem. In terms of the grid graph, their
generalization boils down to adding new edges in the grid graph that connect no-neighboring
vertices. In such a situation our Theorem 2.1 may not hold. In fact, hased on recent resulls
of Newman (31] concerning the longest (unweighted) path in a general acyclic graph, we
predict that a phase transition can occur, and Ciay may switch from @(n) to O(log=). This
was alrcady observed by Arratia and Waterman [7] for another string problem, namely, for

the score in the pattern matching problem.

3. ANALYSIS THROUGH THE RANDOM WALK APPROACH

In this section, we only analyze the independent model. To recall, we consider an £ X s
grid graph with independent weights W;, Wp and Wg. We represent a path in the grid
graph G as a random walk. First of all, it is convenient to append our £ X s graph to a full
€ x € grid graph, with all steps possible, as shown in Figure 2. It should be noted that in
our new representation, a {J-step is twice as long as [-step and D-step, and therefore the
increments in such a random walk are not independent (e.g., after the first diagonal move,

the second one comes with probability one).
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Figure 2: An extended € x £ grid graph

We first analyze a path without weights in the grid graph shown in Figure 2. We call it
an unweighted random walk (in short: R.W.) and denote as Y(-}. To model a path P in
our original problem, we must assure that the random walk Y{-) coincides with the script
path P, we requirc that ihe random walk Y{(-) in Figure 2 ends at Lhe point E of the grid

graph after n steps where n = 2{ — (¢ —5) = £+ 5. Thus, we impose the following constraint
Y{n)=d (37)

where d = £ — s.

We first consider an unconstraint random walk Y(-) such that the condition (37) does
not hold, and that the probabilities of I-step, D-step and Q-step 7 = +/2 — 1, 7 and 72
respectively, as shown in Figure 3. These probabilities are chosen in such a way that all
paths with the same length reccive the same probability {e.g., a two-step path J&D has
probability 72, the same as one-step path Q of length two).

3.1 Case (A): d = O(\/n)

Consider first the unconstraint random walk ¥ () (cf. Tig. 3). We make the following
scale changes { = ,—';, Y= jﬁ with ¢ = 1//2 to establish the following theorem, where =
N—L0

represents the weak convergence of random functions in the space of all right continuous

functions having left limit and endowed with the Skorohod metric (see Billingsley [9] Ch.III).
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T=+2-1

Figure 3: Probabililies of /-step, D-slep and Q-step in the unconstraint random walk ¥

Theorem 3.1. The unconstraint R.W. Y () possesses the following limiting behavior

g}—}\(/—[ﬁﬂi])#B(L), n — oo

where B(-) is a classical Brownian Motion (B.M.}, and ¢ = \//2.

Proof. Let pi(j) = Pr{V (i) = 5}. Then, pipa (5} = 7pi(j — 1)+ 7pi(7 + 1} + m2pi_1(4) for
¢ 2 2, and our result follows from standard arguments (cf. {28]). m.

Now, we take into account the constraint (37), that is, we set Y(n) = d = O(y/n). Let

z= d% (38)
with ¢ = 2'/1. To handle this constraint, we recompute Lhe probabilities of the I, D,
and () steps so that EY(n) = d holds, and later we relax it so Lthat our primary con-
straint (37) is true (cf. (48)). We define these new one-step probabilities as [ollows:
pr = Pr{first moveis /| Y(n) = d}, pp = Pr{first moveis D| Y(n) = d}, and pg =
Pr{first move is Q| ¥(n) = d}. Note that these probabilities depend on 7, but we do not

show explicitly this dependency.

Lemma 3.2a. The new one-siep probabilities become

pr = T (1 + %m) + 0 (%) , (39)
Pp = T (1 - —\5—53) + 0 (%) , (40)
pQ = 24+ 0 (?_Il) . (41)
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Proof. We know from Theorem 3.1 that f({,z) = . This, and the above definitions of

p1, p and pg lead to the following

Pn—l(d - 1) T B l B .i (2 32f
PIETT S ol (pn(d) —~Of ot o +O( 3),2)) :

But d:f = —% f, hence pr is now readily computed by setting £ = 1 in the above. Tle Lwo

Q

otler probabilities are derived in a similar manner. m

Remark 3. In fact, using similar arguments to the ones in the proof of Theorem 3.1, we

can prove much stronger result. Namely, the constraint random walk Y'(-) characterized by
—z)?

the probabilities p;, pp, pg has the limiting density given by f(y,v) = exp(—-(g—"ﬁ)—)/-\/ 27w,

which is exactly the density of a B.M. with drift £ and variance v.

To estimate the large deviation of the total weight W,, we need a precise evaluation of Lhe
random variables N7, Np and Ng representing the number of J-steps, D-steps and (Q-steps
in a path P. First of all, we compute the limiting distribution of the sum N; + Np + Ng.
Using the renewal theory (cf. Feller (18], p. 321, 341, and Iglehart [20] Theorem 4.1) we

can easily prove that

2

N;-I-ND—I-NQNN(E n—)—l—O(l), n — 00 (42)

where N(m,o?) is a classical Gaussian variable with mean m and variance (VAR) ¢2. In

the above, d is the average move sicp, that is, from Lemma 3.2 we have
{=pr+pp+20q=1+pq, (43)
so that d = 2(2 — v2) 4+ O(1/n), and
5* = po(1—po) , (44)
hence 2 = v/2(10 — 7v/2) + O(1/n). Let

«= .:_; 1+[pQ 2 +4f (n) (43)

and

c=5=Y40(d) (46)

Then, from (42), we obtain N7+ Np + Ng ~ N(na,ns) + O(1).
From the expression (2) on the total weight Wy, it should be clear that we need the joint
distribution of Ny, Np and Ng (cf. Louchard et al. [27]). For this, we must consider two

16




constraints on N.:! one on the total number of steps, and the other related to Y (n) = d.

More precisely, together with (38) we have the following constraint on the number of steps

Nr+Np+2Ng = n (47)
N-Np = d=2 Y (48)
We first consider only the constraint (47). This will allow us to compute the asymptotic

joint distribution of Ny, Np, Ng, as stated in the next theorem. The proof can be found in
Appendix A.

Theorem 3.3a. The number of I, D and Q steps, Ny, Np, Ng are asymplotically Gaussian,

with mean np;, npp, npg respectively, where

wo= wea- D=0+ =Y (14 Serod) . wy)
wp = mola==po/t+r)= Y (1-Larod), G0
pe = (1-)=no/(1470) = 252 +od) 1)

where pr = pr/(pr+pp), P = Pp/(pi+pp). Moreover, a is given by {{5). The asymplotic

coveriance matriz is given by

I 0'? Cip —2PIK
n- D Cip a'f) —2ppK (52)
Q Cro —2ppk K
with
_ ~ . 3‘\/_ 23{4
o} = (a- Uil - 1) + 45} = 2+ a4 0()
. _ _ _ 3f 23/4 1
ob = (2a—1)pp(l - pp) +4rp}h = 26~ 5 *to()
Tt
\/_

Crp = 26— (20~ 1)prPp - 26(P] + Pp) = ¢ + O(= )
where & is given in (46). n

To complete our study of the number of steps in the grid graph, we must take into
accouni the constraint (48). Set 5. = (N. — np.)/+/n. Observe that by Lemma 3.2a and
Theorem 3.3a, E(N;—Np) = a:—I—O(l) as it should be, so (48) and (47) imply respectively
that 7y = 77p and 91 = —ng.

'To simplify our nolalion, we often write X. Lo denote any of Xy, Xp or Xg.
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To derive the constrained density of 79, we first write the joint asymptotic density

f(nr,ng) of (ng,nr), which by Theorem 3.3a becomes

nz
oxe { -zt (3 - 20332 + )}
2norogV1 — RZ

f(nr,ng) = (53)

with R = &9— Setting n; = —ng, we finally obtain the asymptotic density of ng, as stated

below.

Lemma 3.4a Under constraint (48), we have

g ~ N(0,53) +O(%) (54)
with -1
63 = (1- R?) (: +2 ‘;'gg + ) =v2/16 + O(1/n) , (55)
S - B

where all the quantities in the above were defined before. m

We delay the discussion of the number of paths L(n,d) (cf. Theorem 2.5) until the next
subsection since the recurrence on L(n,d) is of the same kind as the one needed to study
the behavior of W, in the case (B). It will turn out that the asymptotics of L(n,d) for (A)
can be deduced from the asymptotics of L(n, d) obtained in case (B).

Finally, we prove our last result concerning the large deviation of the total weight
distribution (cf. Theorem 2.6). As discussed in Section 2, we only consider two cases,
namely: (a) identically distributed weights, that is, W; =¢ Wp =¢ Wg = W where =4
means equal in disiribution; and (b) constant D-weight and J-weight, i.e., Wp = W; = —1.

Let us first establish notation needed to express a large deviation result. Define §,, =

i=1 W(i) where W(4) is an independent copy of W. Let ¥(z) = log Ee-(W="™) be the
cumulant function of W — m where m = EW, and let s be the unique solution, if exists, of
the following equation
a = TU'(s)

for any a > 0. Finally, let Z(a)} = —(¥{s) — s¥(s)). Then (cf. Feller [18])

Pr{S, 2 n(a +m)} ~ exp(—nZ{a)) . (56)

1
s/ 2mn¥¥(s)
In our case, the total weight W,(Ng) of 2 random path in a grid graph with exactly Ng
diagonal edges becomes W, (Ng) = SoN1 Wi(s)+ T N2 b WD(‘-’—)‘I‘Z 1 Wo(i) = ?__INQ W(i)
(cf. (47)). Note that Ng is a random variable, hence the unconditional total weight W,
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can be computed from an estimate of the conditional total weight W, (Ng) and the limiting
distribution of Ng (cf. Lemina 3.4a). But, Ng = nug + 7o/ and by Lemma 3.4a g is
asymptotically normal with mean 0 and variance Ea. We must now translate (56) into our

new situation. Let & = yn where ¥ = 1 — ug. Define d such that

e+ mynng = (- vano)d, e
i = a+(m+a)n_q+m+aﬁ T}%
- v VR oyt om n3/2

Let also s and s be solutions of the following equations @ = ¥(s™) and & = ¥/(s). Using

Taylor’s expansion of ¥(s) and ¥’(s) around s*, we obtain

o tmng L@+ A et m N o 1y
NN P =

With the notation as above, we reduce the problem to the following one

s=8t —— (57)

fi—y/mn
Pr{W, > v(a+m)n} = f Pr{ Z (W(E) —m) > (7 — vVanalng = 7}dFaq(n)

where Fy, () = ©(7)(14+-0(1/+/n})) (cf. Lemma 3.4a) $(-) stands for the normal distribution
with mean zero and variance 55. The probability under the above integral can be estimated

as in (56). Using, in addition, the well known formula

[= <] ﬁ q2
exp(—p°a? + gz)dz = Y— ex s
f_m p(—p*2? & gz) b B e

after tedious algebra, we obtain our result (25) presented in Theorem 2.6.
In a similar manner we deal with the second case (b). However, this time Lhe starting

equation is W,(Ng) = E:\;‘i Wo(i) — (n — 2Np). The details are left to the reader.
3.2 Case (B): d = O(n)

The main purpose of this section is to derive the limiting distribution of the total weight
for a given path 7 in a grid graph Ge G, and the asymptotics for the number of paths
L(n,d). As in the previous subsection, we proceed in three steps: at first, we consider an
unweighted unconstraint random walk, then we derive probabilities p;, pp and pq for the
constraint unweighted random walk, and finally we deal with the total weight W,.

Consider the unweighted random walk Y (-} in the grid graph as in Figure 2 such that
Y(n) = d = nz for some ¢ < |. Naturally, in this domain of d and » we cannot use the

normal approximation, which works only up to O(y/n). We have to appeal to the large
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deviation arguments to obtain the probability distribution of the random walk Y(:). We
proceed along the lines of arguments suggested by Louchard [26].
We consider the constraint random walk Y (») = nz, however, it is convenient to gener-

alize our constraint to the following one

Y(m)=mu. (58)
One can imagine that the random walk Y (-) at step m has to be at position mu, where m
and u are functions of n and  (e.g., we shall assume later that mu = nT).

As in the case (A), the analysis of the number of steps Ny, Np and Ng is crucial for
the total weight. Note that, under our constraint (58), we have N+ Np + 2Ng = m and
Ni - Np = mu. The above can be translated to the following constraint: N7 4 Ng =
3-(1+u). Bearing this in mind, we transformed the random walk Y (-) into another random
walk 17’() that is defined in Figure 4 below (i.e., its one-step moves are shown in Fig. 4).
Our interest lies in estimating Pr{Y(m) € mdu} or in terms of the new random walk Y()

4
il

Figure 4: Definition of the new random walk ¥ ().

we evaluate the following

(59)

Pr{Y(m) € mdu} = Pr {}’(—m)”"—/? € @}

™m 2

To analyze Y(-), we compute the probability p;(7) = Pr{¥(s) = j}. It is easy to see
that this probability satisfies the following recurrence

Piyi(d) = () +7pif — )+ 2pia(G—1), i>1. (60)

We solve this recurrence by the mean of generating function approach. Let gi{z) =
R0 pi(j). Clearly

go(z) = 1, n(z)=7(1+2) (61)
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giz1(z) = 79:d2)+ T2g:(2) + TP2gi1(2), i1

Let now (f,z) = 322, 8°9:(z), and after some algebra one obtains

1
l0,2) = 1 — (14 z)8r — 28212

(62)

The roots of the denominator of the above become

_(Q+zr+ vwi(z)

Bia(z) = 2272

where wy(z) = 1 + 6z + z2. Then,
6. = (7250 + 705 (69
where a2(2) = —(7un(z)) 7, and a1(z) = —as(z).

To extract the generating function g;(z) from (63), we expand ¢(#, z) in the powers of

# to obtain () = _(2) ( 1 )"‘ _o(2) ( 1 )m (64)
o 0:(2) \&i(2)) ~ 8a(z) \Ba(2)

Since we are interested in large values of m, we deduce from {64) that the leading term of

the asymptotics can be extracted from the following
1

with (2} = 1/82(2). In the above, we omitted the function ay(z)/#(z) since it only
contributes a constant in the final asymptotics.

Our aim now is to assess asymptotically the probability pn (k) = Pr{¥(m) = k}.
Clearly, it can be estimated as pn,(k) ~ [$7*(2)]x where [f(2)]x is the coefficient of z*
in the power expansion of f(z). Hence, we have to deal with evaluating the kth coefficient
of of 1P*(2), where & = m(L + u)/2. To obtain such asymptotics we shall use the classical
“shift of the mean” technique {cf. Feller [18] p.548 and Greene and Knuth [19] p.79). For
the reader convenience, we discuss briefly this technique below. We follow the approach of
Greene and Knuth [19].

Let g{(z) be the generating function of a random variable with mean equal to u and the
variance equal to o?. Then, g*(z) represents the generating function of the sum of n such
independent random variables. We estimate the coefficient of 2#™*™ in g™(z) for such r that
pn+7 is an integer. Call such a coefficient A,, ;. By the Cauchy formula Greene and Knuth
[19] derive the following

1 —7
Any = 3e-1 66
! ov2rn P (20211) +O(n ) (66)
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where ¢ is arbitrary small positive number. The reader should notice that this asymptotics
is valid only for = O(\/n).

In our case, we need the kth coefficient of $}*(z), where k = m(1 + u)/2. Therefore, we
cannot directly apply (66) since we are not in the range O{y/m). A solution to this dilemma
is proposed in {19] by a simple and elegant application of the ”shift of the mean” technique,
which we discuss below.

Let us return to Greene and Knuth {19], and assume that one needs the kth coeflicient

of g"(2). The shift of the mean technique computes the kth coefficient as follows

- G2 ()],

where the parameter 8 allows to shift the mean of the distribution to a value close to &/=,

and hence allows to apply the asymptotics (66). The choice of 3 is specified by the following

equation
Bg'(B) _k
g(B)y n’
Now, we are ready to derive our asymptotics. Since we seek the & = m(l + u)/2
coefficient of $*(z), we first apply (68) to shift the mean. Define §;(u) as

VA IR

(68)

= 69
P1(B1) 2 (99)
Finally, applying (66), we obtain our main result.
Theorem 3.1b We have proved
Vi(m,u) = Pr{Y(m) € mdu} = Pr{¥(m) - = € m;’“}
m d
T ) L )
el V2rmVin) 2
for all m, where
(Bu(w) = 1y0s(w) ) 0

2161 (u) + (1 + Bru) ) (=)
81 () 14 3u +u\/8(u2+ 1) (71)

1— w2

u(x) = dlbi(u))=

2urf ()
Ar(u) - 1 = u(l + f(u))

(72)

forallu<|].m
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Theorem 3.1b allows to analyze the constraint random walk Y (=) = d. In particular, as
for case (A), we can compute the probabilities pr, pp, and po of one-step moves. Setting

in Theorem 3.1b, m = nt,z = £ so that mu = nz, we obtain

Uy(z,t)dz = Pr{Y(nt) € ndz}

~ exp {ntlog u(5) - 3 log (Sl - S log(5)} LI g

2,/2rtV (2)

This implies, for example, that

and in a similar fashion for [} and Q. After some algebra, we finally derived the following

lemma.
Lemma 3.2b. The probabilities p;, pp and po become
(=)

o= B2 oam
Pp = ¢—1($—)+0(1/n)

_ T*Bu(=) n
PO= +0(1/n)

Jorallz <1. 1

Concerning the limiting joint distribution of the number of I-steps, D-steps and (Q-steps,
we proceed as before. We use the same notation as in Theorem 3.3 with appropriate values

for probabilities py, pp and pg from Lemma 3.2b. This leads to the following results.

Theorem 3.3b. The number of I, D and () steps, Ny, Np, Ng respectively, are asymptoti-
cally Gaussian, with mean nyy, npp, npg respectively, where these quantities are computed

according to (49)-(51), (52} with new probabilities p;, pp and pg, as in Lemma 3.2b. W

Lemma 3.4b We have 59 = N(0,5%) with 6% given by (55) with probabilities pr, pp and
po as in Lemma 3.25. 1

Finally, we prove Theorem 2.5 that enumerates the total number of path L{u}. As
discussed in Section 2, this estimate is necessary to evaluate our upper bound @ in Theorem
2.7. We start the analysis with setting up a recurrence for L{u). Let f;(j) be the total

number of paths from O to j in ¢ steps of the associated random walk in our grid graph
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G. Then, L(u) = fu(d). Hereafter, we set d = un. Clearly, fi(j) satisfies the following
recurrence

fi1(G) = i)+ G- D+ fina(G - 1) (73)
with f1{1) = 1. This recurrence was already studied by Laquer [24] for & = O(n). Observe

that the above recurrence is similar to the one consider before, and we can use the same
technique to attack it. Set gi{2) = 332, 27 fi(§) and let (8, 2) = 246 ¢:(2). After the
some algebra we obtain

ol0,5) = 725+ 750 )

with wy(z) = 1 + 2% 4- 6z and

b1a(z) = l1+z :I_:2\z/‘wziz), (75)

where ay(z) = —1/y/w2(z) and o1(2z) = —az(z). As n» becomes larger, the dominant
contribution comes from (74), and asymptotically we have
1

) = M@

() ~ 22) |

with A(2) = —aa(2)/02(2).

To extract the coefficient of g,(2) we shall apply the "shift of the mean” method, as
described before. We first consider only the coefficient at g,(z)/A(z) = 6;™(z). Call it I(=).
Applying equation (67), as in (69}, we estimate the new mean value with ,(z) replaced by

2(z) and the new f;(u) becomes

Balu) = 1 4 3u? + uy/ (ui ¥ 1) (76)

b —u?
and then 2ufa(u)
o) = 2[Fa(u)] = Ba(u) — 1 —u(l + fF(w))

Yo (faz

Let V(u) be the variance related to the generating function 22725 as defined in Theorem

2.5. With this in mind, it is easy to see that

_ ’(,bz(ﬁZ(u))n
(u) = Ba(u)"0+9/2, 2rnV (w)

(14 0(1/n)) = %\/%(1 +o(1/n))  (77)

where p(u) is a function of % and it is given by (20).

Now, we compute the coefficient at g,(z) = A(2)6;"(2), that is, we include the correction
coming from A(z). Note that A1(2) = A(2)/A(1) can be viewed as the generating function of
a random variable. Let its probability distribution be denoted by py(z). Since the product
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of two generating functions translates into the convolution of the appropriate coefficients,
we have L{u) = 272, pa(é)(u — i/n). By (77) we finally obtain

Hup/amnV (@) = MUY m()exp (n(olu) - /()i/n-+ O(n=2)) (1 + 0(n~))

Me™'C)) exp(np(w))(1+ O(n7")) (78)

where p(%) is the derivative of p(). From the above, we conclude that the constant C in

Theorem 2.5 hecomes
C = Ae " ™). (79)

This completes the proof of Theorem 2.5 for case (A) and (B) (in case (A) p(u) is given by
(19)).
APPENDIX A: Proof of Theorem 3.3a

From (42) and (47) after setting Nr = Ny + Np, we see that

g+~A;—T=n—Nq~N(na,nn)+O(l) {80)
pr = E(Nr)/n=n{2a-1)+0(1) (81)
O_% = VAR(Nt}/n~ 4k

But given N7, the number of I-steps Ny is a binomial random variable with parameter
Pr, and mean Ntp; and the variance Nyprgr (where § = 1 — p;). By (81) we have
E(N1) = nprpr = npr(2a — 1). We also obtain E(N?|N1) = Nrpiqr + N25% and E(N}) =
nurprdr + pi(no% + n?pd). This finally leads to

of = n (urhris + pjok) ~ n((2e — 1)prq; + pi4r)

The number of D-steps is analyzed in a similar fashion. To compute the covariance Crp

between N; and Np, note that
nay = VAR(N1) = VAR(Ny + Np) = n(a} + o + 2C1p)
or 4k ~ 2(2a — 1)prgr + 4x(p% + p%) + 2Cyp. Finally,
COV(N;Nr) = p1E(NE) — E(N;)E(N7) = nprof ~ prisn ,

and with (80), we obtain COV(NNg) = —LCOV(N;Nt) ~ —pr26n.
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To complete the proof, it suffices to check the asymptotic Gaussian property of N1, Np, Np.

For Ng, this follows from (80). For N;, which is binomially distributed with parameter D1,

we obtain, conditioning on Ny

| | 6 _ e 1

.8 6 1
E {EXP NT[ﬁmﬁ ~ 5o Prdr+ O(w)l} (82)
But, by (80),

E[eipNT] - e'-ﬂ#TP—%ﬂU%-Pz'l'O(PS%?')
hence by (82) we obtain
N /o7 - o & _ 2 -2 1
Ele ]=exp ”IPTEPI - ?(PIQ!#T + o7P7) + O(ﬁ)
which proves the asymptotic Gaussian property of N;. m
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