Combinatorial Optimization Problems for Which Almost Every Algorithm is Asymptotically Optimal

Wojciech Szpankowski

Purdue University, spa@cs.purdue.edu

Report Number:
93-077
COMBINATORIAL OPTIMIZATION PROBLEMS FOR WHICH ALMOST EVERY ALGORITHM IS ASYMPTOTICALLY OPTIMAL

Wojciech Szpankowski

CSD TR-93-077
December 1993
(Revised April 1994)
COMBINATORIAL OPTIMIZATION PROBLEMS FOR WHICH ALMOST
EVERY ALGORITHM IS ASYMPTOTICALLY OPTIMAL!

April 5, 1994

Wojciech Szpankowski

Department of Computer Science
Purdue University
W. Lafayette, IN 47907
U.S.A.
spa@cs.purdue.edu

Abstract

Consider a class of optimization problems with the sum, bottleneck and capacity objective functions for which the cardinality of the set of feasible solutions is m and the size of every feasible solution is N. We prove that in a general probabilistic framework the value of the optimal solution and the value of the worst solution are asymptotically almost surely (a.s.) equal provided $\log m = o(N)$ as N and m become large. This result implies that for such a class of combinatorial optimization problems almost every algorithm finds asymptotically optimal solution! The quadratic assignment problem, the location problem on graphs, and a pattern matching problem fall into this class.

*This research was primarily done while the author was visiting INRIA, Rocquencourt, France, and he wishes to thank INRIA (projects ALGO, MEVAL and REFLECS) for a generous support. In addition, support was provided by NSF Grants CCR-9201078, NCR-9206315 and INT-8912631, by Grant AFOSR-90-0197, and in part by NATO Collaborative Grant 9057/89.
1. INTRODUCTION

We consider in this paper a class of optimization problems that can be formulated as follows: for some integer \(n \) define either \(Z_{\text{max}} = \max_{\alpha \in B_n} \{ \sum_{i \in S_n(\alpha)} w_i(\alpha) \} \) or \(Z_{\text{max}} = \max_{\alpha \in B_n} \{ \min_{i \in S_n(\alpha)} w_i(\alpha) \} \) (\(Z_{\text{min}} \) respectively), where \(B_n \) is the set of all feasible solutions, \(S_n(\alpha) \) is the set of all objects belonging to the \(\alpha \)-th feasible solution, and \(w_i(\alpha) \) is the weight assigned to the \(i \)-th object in the \(\alpha \)-th solution. For example, in the traveling salesman problem [14], \(B_n \) represents the set of all Hamiltonian paths, \(S_n(\alpha) \) is the set of edges belonging to the \(\alpha \)-th Hamiltonian path, and \(w_i(\alpha) \) is the length (weight) of the \(i \)-th edge. Traditionally, the former problem is called the optimization problem with sum-objective function, while the latter is known as the capacity optimization problem. In addition, \(Z_{\text{min}} = \min_{\alpha \in B_n} \{ \max_{i \in S_n(\alpha)} w_i(\alpha) \} \) is named the bottleneck optimization problem.

Combinatorial optimization problems arise in many areas of science and engineering. Among others we mention here: the (capacity and bottleneck) assignment problem [9, 24], the (bottleneck and capacity) quadratic assignment problem [10, 17, 18], the minimum spanning tree [6], the minimum weighted \(k \)-clique problem [6, 15], geometric location problems [16], and some others not directly related to optimization such as the height and depth of digital trees [13, 20], the maximum queue length [19], hashing with lazy deletion [1], pattern matching [3], edit distance [23], and so forth. We analyze this class of problems in a probabilistic framework which assumes that the weights \(w_i(\alpha) \) are random variables drawn from a common distribution function \(F(\cdot) \). We also assume that the cardinality of the feasible set is \(m \) (i.e., \(|B_n| = m \)) and the cardinality of \(S_n(\alpha) \) is \(N \) for every \(\alpha \in B_n \).

Our interest lies in identifying a class of combinatorial problems for which \(Z_{\text{min}} \sim Z_* \) and \(Z_{\text{max}} \sim Z_*^* \) (a.s.) for \(N, m \rightarrow \infty \) where \(Z_* \) and \(Z_*^* \) are the worst solutions of the above optimization problems. This will imply that almost every solution of such an optimization problem is asymptotically optimal in the sense that the relative error \((Z_{\text{max}} - Z_*)/Z_{\text{max}} \) (resp. \((Z_{\text{min}} - Z_*^*)/Z_{\text{min}} \)) converges to zero in a probabilistic sense. As a simple consequence, one can pick any algorithm to solve these problems, and with high probability it will be asymptotically optimal!

More precisely, we prove that for the sum-objective function \(Z_{\text{max}} = N\mu + o(N) \) (a.s.) and \(Z_{\text{min}} = N\mu - o(N) \) (a.s.), and for the bottleneck and capacity optimization problem respectively \(Z_{\text{min}} \sim F^{-1}(1 - o(1)) \) and \(Z_{\text{max}} \sim F^{-1}(o(1)) \) (a.s.) provided \(\log m = o(N) \) where \(\mu \) and \(F^{-1}(\cdot) \) are the average value and the inverse of the distribution for weights \(w_i(\alpha) \).

There are many combinatorial problems that falls under our model. We mention here the quadratic assignment problem, a class of location problems, the pattern matching problem,
and so forth (cf. [4]). We shall discuss some details of these problems in the last section.

The formulation of the problem and its solution seemed to be new, even if the analysis present in this paper is quite simple. There are some scattered results in this direction (cf. [3], [10], [21]), but none of them addresses this issue in its generality. There is, of course, a huge volume of literature on combinatorial optimization problems (cf. [14]) but usually one assumes \(\log m = O(N) \) and every problem is treated case by case.

During the revision of this paper, we have learned that in 1985 Burkard and Fincke [4] studied exactly the same problem. However, the authors of [4] proved their result only for bounded distribution on \([0,1]\) and only for convergence in probability. These restrictions are crucial for the proof presented in [4]. Actually, our almost sure convergence solves the problem posed by Burkard and Fincke [4]. Needless to say, our technique of the proof is completely different and this allows to extend the results of Burkard and Fincke to a very general probabilistic framework.

2. RESULTS

We consider separately optimization problems with the sum-objective function, and the capacity and bottleneck optimization problems.

2.1 Optimization Problems with Sum-Objective Function

Let \(n \) be an integer (e.g., number of vertices in a graph, size of a matrix, number of keys in a digital tree, etc.), and \(S_n \) a set of objects (e.g., set of vertices, elements of a matrix, keys, etc). We shall investigate the asymptotic behaviour of the optimal values \(Z_{\max}(S_n) \) and \(Z_{\min}(S_n) \) defined as follows

\[
Z_{\max}(S_n) = \max_{\alpha \in B_n} \left\{ \sum_{i \in S_n(\alpha)} w_i(\alpha) \right\} \quad \text{and} \quad Z_{\min}(S_n) = \min_{\alpha \in B_n} \left\{ \sum_{i \in S_n(\alpha)} w_i(\alpha) \right\},
\]

where \(B_n \) is a set of all feasible solutions, \(S_n(\alpha) \) is a set of objects from \(S_n \) belonging to the \(\alpha \)-th feasible solution, and \(w_i(\alpha) \) is the weight assigned to the \(i \)-th object in the \(\alpha \)-th feasible solution. We often write \(Z_{\max} \) and \(Z_{\min} \) instead of \(Z_{\max}(S_n) \) and \(Z_{\min}(S_n) \), respectively. Observe that \(Z_{\min} \) is the worst solution for the optimization problem \(Z_{\max} \) and vice versa.

Throughout this paper, we adopt the following assumptions:

(A) The cardinality \(|B_n|\) of \(B_n \) is fixed and equal to \(m \). The cardinality \(|S_n(\alpha)|\) of the set \(S_n(\alpha) \) does not depend on \(\alpha \in B_n \) and for all \(\alpha \) it is equal to \(N \), i.e., \(|S_n(\alpha)| = N\).

(B) For all \(\alpha \in B_n \) and \(i \in S_n(\alpha) \) the weights \(w_i(\alpha) \) are identically and independently distributed (i.i.d.) random variables with common distribution function \(F(\cdot) \), and the mean value \(\mu \), the variance \(\sigma^2 \), and the third moment \(\mu_3 \) are finite.
Assumption (B) defines a probabilistic model of our problem (1). In our main result below, assumption (B) can be boldly relaxed by imposing only stationarity and some mixing conditions on the weights (which do not necessarily have to be identically distributed, too). Also, extensions of our assumption (A) are possible. We shall not explore these possibilities in the paper.

For our strongest result (i.e., the almost sure convergence) we need an additional assumption that basically says that our combinatorial structure has a monotonicity property:

(C) The objective function $Z_{\max}(S_n)$ (resp. $Z_{\min}(S_n)$) is a nondecreasing (resp. nonincreasing) with respect to n, and also $|B_{n+1}| \geq |B_n|$.

Most of combinatorial problems satisfy (C). For example, all problems discussed in Section 3 fall under (C).

Our main result can be summarized as follows.

Theorem 1. Under assumptions (A)-(C), as $N, m \to \infty$ with $n \to \infty$

$$Z_{\min} = N\mu - o(N) \quad \text{ (a.s.)} \quad Z_{\max} = N\mu + o(N)$$

provided

$$\log m = o(N).$$

If assumption (C) is dropped, then (2) holds in a weaker sense, namely $Z_{\max} \sim Z_{\min} \sim N\mu$ in probability (pr.).

Proof. We first prove (2) for the convergence in probability assuming only (A) and (B), and then by adding (C) we extend it to the almost sure convergence. Below, we consider only Z_{\max}. The lower bound trivially follows from the Ergodic Theorem (cf. [5]) and the fact that

$$\max_{a \in B_n} \left\{ \sum_{i \in S_n(a)} w_i(a) \right\} \geq E\left\{ \sum_{i \in S_n(a)} w_i(a) \right\} = N\mu. \quad \text{We focus now on the upper bound.}
$$

Note that we can rewrite (1) as

$$Z_{\max} = N\mu + \sigma \sqrt{N} \max_{a \in B_n} \left\{ \frac{\sum_{i \in S_n(a)} w_i(a) - N\mu}{\sigma \sqrt{N}} \right\}. \quad (4)$$

Let $X_\alpha = (\sum_{i \in S_n(a)} w_i(a) - N\mu)/\sigma \sqrt{N}$. Then, our optimization problem is equivalent to finding the maximum over $\{X_\alpha\}_{a \in B_n}$.

Let $F_N(x) = \Pr\{X_\alpha \leq x\}$. From Feller [8] (Chap. XVI.7) we know that for $x = o(\sqrt{N})$

$$\frac{1 - F_N(x)}{1 - \Phi(x)} = (1 + O(x/\sqrt{N})) \exp(\lambda_1 x^2/\sqrt{N}) \quad \text{where} \quad \lambda_1 = \frac{\mu_3}{6\sigma^4}, \quad (5)$$
and \(\Phi(x) \) is the distribution function of the standard normal distribution. Now, by (5) and Boole's inequality for \(x = o(\sqrt{N}) \)

\[
\Pr\{\max_{\alpha \in \mathcal{E}_n} X_\alpha > x\} = \Pr\{X_1 > x \text{ or } X_2 > x \text{ or } \ldots, \text{ or } X_m > x\} \leq m(1 - F_N(x)) = (1 + o(1))m(1 - \Phi(x)) \exp(\lambda_1 x^3/\sqrt{N}) .
\]

Define \(a_m \) as the smallest solution to the following equation

\[
m(1 - \Phi(a_m)) = 1 , \tag{6}
\]

and observe that asymptotically \(a_m \sim \sqrt{2 \log m} \) (cf. [11]). Then, the inequality in the last display becomes for any \(\varepsilon > 0 \) as long as \(a_m = o(\sqrt{N}) \)

\[
\Pr\{\max_{\alpha \in \mathcal{E}_n} X_\alpha > a_m(1 + \varepsilon)\} \leq (1 + o(1))m(1 - \Phi(a_m(1 + \varepsilon))) \exp(\lambda_1 a_m^3(1 + \varepsilon)^3/\sqrt{N}) .
\]

But asymptotically \(1 - \Phi(a_m(1 + \varepsilon)) \leq (1 - \Phi(a_m))e^{-2a_m^2} \), and together with (6), this implies

\[
\Pr\{\max_{\alpha \in \mathcal{E}_n} X_\alpha > a_m(1 + \varepsilon)\} \leq (1 + o(1)) \exp \left(-a_m^2 \left(2\varepsilon - \lambda_1 a_m(1 + \varepsilon)^3/\sqrt{N} \right) \right) .
\]

Finally, as long as \(a_m/\sqrt{N} = o(1) \) (cf. (3)) one can find such \(\delta > 0 \) that

\[
\Pr\{\max_{\alpha \in \mathcal{E}_n} X_\alpha > a_m(1 + \varepsilon)\} \leq \frac{1}{m^\delta}
\]

which completes the proof of (2) for the convergence in probability.

To prove the stronger almost sure convergence result, we need some additional considerations. Note that (7) does not yet warrant an application of the Borel-Cantelli Lemma, hence we apply the idea presented in Kingman [12]. Let \(Z_m = \max_{\alpha \in \mathcal{E}_n} \{X_\alpha\} \), and observe that under our assumption (C) the quantity \(Z_m \) is a nondecreasing sequence with respect to \(n \) (hence also with respect to \(m \) due to (C)) such that \(Z_m \sim \sqrt{2 \log m} \) (pr.) with the rate of convergence as in (7). Fix now \(s \), and find such \(r \) that \(s 2^r \leq m \leq (s + 1)2^r \). The subsequence \(Z_{s 2^r} \) almost surely converges to \(\sqrt{2 \log s 2^r} \) by the Borel-Cantelli Lemma. Due to monotonicity of \(Z_m \) we also have for any \(m \)

\[
\limsup_{n \to \infty} \frac{Z_m}{\sqrt{2 \log m}} \leq \limsup_{r \to \infty} \frac{Z_{(s+1)2^r}}{\sqrt{2 \log (s+1)2^r}} = 1 \quad \text{a.s.} \, ,
\]

and this completes the proof of the Theorem 1. •

Remark. In fact, from the proof one may conclude the following refinement of the upper bound: \(Z_{\max} - N \mu = O(\sqrt{2\sigma^2 N \log m}) \). It should be noted that the second term is of order \(O(N) \) when \(\log m = O(N) \), and our results brakes down. Nevertheless, even in the
case \(\log m = o(N) \) the second term may contribute significantly to the asymptotics, and in practice it cannot be completely ignored (cf. Section 3.3).

A direct consequence of our Theorem 1 is the following corollary.

Corollary. Let condition (3) holds. Then,

\[
\lim_{m \to \infty} \Pr \{ Z_{\max} - Z_{\min} \leq o(1) Z_{\min} \} = 1
\]

provided \(N, m \to \infty \).

The above corollary says that any algorithm of our optimization problem almost always finds a good (i.e., asymptotically optimal) solution, provided condition (3) holds. Below, we discuss three well known combinatorial problem that fall under our assumptions.

In passing, we note that assumption (B) can be substantially relaxed. Indeed, the lower bound holds for all weights that form a stationary ergodic sequence. For the upper bound, we need an extension of (5) which holds for some stationary sequences with appropriate mixing conditions (cf. [5]). Also, the identically distributed weights can be replaced by a more general assumption as long as (5) can be established.

2.2 Bottleneck and Capacity Optimization Problems

In this subsection we consider the capacity and optimization problems defined as

\[
Z_{\max}(S_n) = \max \min_{\alpha \in B_n, i \in S_n(\alpha)} w_i(\alpha) \quad Z_{\min}(S_n) = \min \max_{\alpha \in B_n, i \in S_n(\alpha)} w_i(\alpha),
\]

where the notation is exactly the same as in the previous section. In addition, we consider the worst solutions defined as

\[
Z^*(S_n) = \min \min_{\alpha \in B_n, i \in S_n(\alpha)} w_i(\alpha) \quad Z^*(S_n) = \max \max_{\alpha \in B_n, i \in S_n(\alpha)} w_i(\alpha).
\]

In sequel we write \(Z_{\min} \) and \(Z^* \) instead of \(Z_{\min}(S_n) \) and \(Z^*(S_n) \), and we concentrate on the bottleneck optimization problems.

As above we adopt assumption (A)-(C), however, we slightly modify the assumption (B). Namely,

\((B') \) The weights are i.i.d. random variables with distribution function \(F(\cdot) \) that is a strictly increasing (continuous) function.

Then, we prove the following result.
Theorem 2. (i) For the bottleneck optimization problems under assumptions (A), (B') and (C), as $N, m \to \infty$ with $n \to \infty$

$$Z_{\text{min}} = F^{-1}(1 - o(1)) \quad (a.s.) \quad Z^* = F^{-1}(1 - o(1)) \quad (11)$$

provided (3) holds, that is, $\log m = o(N)$. Actually, $F^{-1}(1 - \log m/N) \leq Z_{\text{min}} \leq F^{-1}(1 - 1/N)$ (a.s.). Thus, $\lim_{m \to \infty} \Pr\{Z_{\text{min}} - Z^* \leq o(1)Z_{\text{min}}\} = 1$.

(ii) For the capacity optimization problem under the same assumptions as in (i) we have $Z_{\text{max}} \sim Z_* \sim F^{-1}(o(1))$. Also $\lim_{m \to \infty} \Pr\{Z_{\text{max}} - Z_* \leq o(1)Z_{\text{max}}\} = 1$.

Proof. We only prove part (i). The important property of the bottleneck (and capacity) optimization problems --- that allow us to obtain the above results under our general probabilistic framework (e.g., assumption (B')) --- is the so-called *ranking-dependence* (cf. [22]). By this we mean that the optimal solution depends only on the rank of the weights $w_i(\alpha)$ but not on specific values of $w_i(\alpha)$. More formally, if I is the set of strictly increasing functions, then for every $f \in I$ the following is true

$$f(Z_{\text{min}}) = \min_{\alpha \in I} \{\max_{i \in S_n} f(w_i(\alpha))\}. \quad (12)$$

Since by assumption (B') the distribution function $F(\cdot)$ and its inverse $F^{-1}(\cdot)$ are strictly increasing, we can prove our theorem for a particular distribution (e.g., exponential or uniform), and then transform by $F^{-1}(\cdot)$ to any distribution. This is our plan.

Let $X_\alpha = \max_{i \in S_n} w_i(\alpha)$. Then,

$$\Pr\{Z_{\text{min}} \leq x\} \leq m \Pr\{X_\alpha \leq x\} = m (F(x))^N.$$

Let b_n be a solution of the following equation $mF^N(b_n) = 1$. Then, for any $\varepsilon > 0$ and uniform distribution (we select here our distribution that fits best to our purpose), the above becomes

$$\Pr\{Z_{\text{min}} \leq (1 - \varepsilon)b_n\} \leq mb_n^N(1 - \varepsilon)^N = (1 - \varepsilon)^N = o(1)$$

where the first equality of the above follows from the fact that $1 = mF^N(b_n) = mb_m^N$. Solving this equation we obtain $b_n = m^{-1/N} = e^{-\log m/N} = 1 - O(\log m/N) = 1 - o(1)$ since by (3) $\log m = o(N)$. This proves the lower bound (a.s.).

To obtain the upper bound, we consider Z^*, and as before we obtain the following bound

$$\Pr\{Z^* > x\} \leq N m \Pr\{w_i(\alpha) > x\} = N m(1 - F(x)).$$

We observe that we could also bound Z_{min} by $Z_{\text{min}} \leq \max_{i \in S_n} w_i(\alpha) = X_\alpha$, and then in the last display Nm should be replaced by N. Now, we consider the *exponential distribution,*
and define a_n as a solution of $N \log m e^{-a_n} = 1$, that is, $a_n = \log m N$. Observe that the above becomes for any $\varepsilon > 0$

$$\Pr\{Z^* > (1 + \varepsilon)a_n\} \leq \frac{1}{(nN)^{2\varepsilon}} = o(1)$$

which proves the upper bound for the convergence in probability. To extend this result to the almost sure convergence, we follow the footsteps of our approach from the proof of Theorem 1. ■

3. APPLICATIONS

In this section we discuss in some details three optimization problems, namely, the quadratic assignment problem, the location problem, and the pattern matching problem. We restrict our discussion to optimization problems with the sum-objective function. An extension to bottleneck and capacity optimization problems is easy (cf. [4]).

3.1 The Quadratic Assignment Problem

Let $A = (a_{ij})$ and $B = (b_{ij})$ be two real $n \times n$ matrices, and let $\pi(\cdot)$ be a permutation of $\{1, 2, \ldots, n\}$. Then, the quadratic assignment problem (QAP) is defined as

$$Z_{\min} = \min_{\pi \in \mathcal{B}_n} \left\{ \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{\pi(i)\pi(j)} \right\}$$

(13)

where \mathcal{B}_n is the set of all permutations of $\{1, \ldots, n\}$. Clearly, the QAP falls into our general formulation (1) with $N = n^2$ and $m = n!$. Note that $\log m \sim n \log n = o(n^2)$, so our condition (3) holds. Therefore, if our assumption (B) is satisfied (e.g., this will hold if the matrices are generated independently from a common distribution), then our Theorem 1 holds and $Z_{\min} \sim Z_{\max} \sim n^2 \mu$ (a.s.) where $\mu = Ea_{ij}Eb_{ij}$. In fact, from the remark after the Corollary, we know that $Z_{\min} - n^2 \mu = O(n^{3/2}/\sqrt{\log n})$, as also proved by Rhee [18] in a more sophisticated probabilistic model. For some other references see [10], [17].

In passing, we should note that the linear assignment problem (LAP) does not fall into our category. In this case, as single matrix A is given, and

$$Z_{\min} = \min_{\pi \in \mathcal{B}_n} \sum_{i=1}^{n} a_{\pi(i)}$$

Then, $N = n$ and $m = n!$, and hence $\log m \neq o(N)$. Theorem 1 does not apply to this situation. In fact, for the uniform distribution of weights we know that $1.43 \leq EZ_{\min} \leq 2$ (cf. [7]). It is conjectured that $EZ_{\min} \sim \pi^2/6 \approx 1.67\ldots$. On the other hand, it is easy to prove that for the exponential distribution of weights $Z_{\max} \sim n \log n$ (pr.) while for the normally distributed weights $Z_{\max} \sim n\sqrt{2\log n}$ (pr.) (cf. [9], [15], [21], [24]).
3.2 Location Problem on Graphs

A general location problem can be formulated as follows. Let \(x_1, x_2, \ldots, x_n \) be a given set of points. The median problem selects \(L \) points \(c_1, c_2, \ldots, c_L \) so as to minimize (maximize) the distance between these points and the points \(x_1, x_2, \ldots, x_n \). To formulate the problem in terms of our general optimization problem (1), we introduce a distance function (random variable) \(d(x_i, x_j) \) which represents weights for a pair \((x_i, x_j) \). As a feasible solution \(\alpha = (c_1, \ldots, c_L) \), we accept any choice of \(L \) points out of \(n \), so that cardinality of \(\mathcal{B}_n = \binom{n}{L} \). Then, we have (cf. [16])

\[
Z_{\text{min}} = \min_{\alpha \in \mathcal{B}_n} \sum_{i=1}^{n-L} \min_{1 \leq j \leq L} \{d(x_i, c_j)\}.
\]

Some simplification of the problem can be achieved if one considers the location problem on a (complete directed) graph. Indeed, let \(w_{ij} \) be a weight assigned to the \((i, j)\)-edge with the distribution function \(F(\cdot) \). By a feasible solution, we understand a subset \(\alpha = \{c_1, \ldots, c_L\} \subset \mathcal{M} = \{1, 2, \ldots, n\} \) of cardinality \(L \) of vertices in a complete graph \(K_n \). Then, the \(L \) median problem becomes (for the maximum)

\[
Z_{\text{max}} = \max_{\alpha \in \mathcal{B}_n} \sum_{i \in \mathcal{M} \setminus \alpha} \max_{j \in \alpha} \{w_{ij}\}.
\]

Note that \(|\mathcal{B}_n| = \binom{n}{L} \sim n^L / L! \) for bounded \(L \). Let us define \(W_i(\alpha) = \max_{j \in \alpha} w_{ij} \). Note that under assumption (B) the distribution \(F_W(x) \) of \(W_i(\alpha) \) is \(F^L(x) \). The average value \(EW \) of \(W_i(\alpha) \) is rather easy to evaluate in most interesting cases. For example, if the weights are exponentially distributed, then \(EW = H_L \) where \(H_L \) is the \(L \)-th harmonic number; if the weights are uniformly distributed on \([0,1]\), then \(EW = L/(L+1) \), and so forth (cf. Galambos [11]). Since, \(m = |\mathcal{B}_n| = n^L / L! \), and \(N = n - L \), then for bounded \(L \) our condition (3) of Theorem 1 holds, and therefore

\[
Z_{\text{min}} \sim Z_{\text{max}} = (n - L)EW + O(\sigma_W \sqrt{2nL \log n}) \sim (n - L)EW \quad \text{(a.s.)}.
\]

In particular, \(Z_{\text{min}} \sim Z_{\text{max}} \sim (n - L)H_L \) (a.s.) for the exponential distribution of weights, and \(Z_{\text{max}} \sim Z_{\text{min}} = (n - L)L/(L+1) \) (a.s.) for the uniformly distributed weights.

3.3 Pattern Matching Problem

We consider the following string matching problem: Given are two strings, a text string \(a = a_1a_2\ldots a_n \) and a pattern string \(b = b_1b_2\ldots b_K \) of lengths \(n \) and \(K \) respectively, such that symbols \(a_i \) and \(b_j \) belong to a \(V \)-ary alphabet \(\Sigma = \{1, 2, \ldots, V\} \). The alphabet may be finite or not. Let \(C_i \) be the number of positions at which the substring \(a_i a_{i+1} \ldots a_{i+K-1} \) agrees with
the pattern b. That is, $C_i = \sum_{j=1}^{K} \text{equal}(a_{i+j-1}, b_j)$ where $\text{equal}(x, y)$ is one if $x = y$, and zero otherwise (the index j that is out of range is understood to stand for $1 + (j \mod n)$).

We are interested in the quantity

$$M_{m,K} = \max_{1 \leq i \leq n} \{ C_i \} = \max_{1 \leq i \leq n} \{ \sum_{j=1}^{K} \text{equal}(a_{i+j-1}, b_j) \}$$

which represents the best matching between b and any K-substring of a, and could be viewed as a measure of similarity between these strings. Clearly, the above problem falls into our general formulation with $m = n$ and $N = K$.

We analyze $M_{m,K}$ under the following probabilistic assumption: symbols from the alphabet Σ are generated independently, and symbol $i \in \Sigma$ occurs with probability p_i. This probabilistic model is known as the Bernoulli model [20]. It is equivalent to our assumption (B). From Theorem 1 we conclude that $M_{n,K} \sim K P$ (a.s.) provided $\log n = o(K)$, where $P = \sum_{i=1}^{V} p_i^2$ is the average value of a match in a given position. The case $\log n = O(K)$ was treated in Arratia et al. [2].

From the proof of Theorem 1 we also conclude that for the case $\log n = o(K)$ we have $M_{n,K} \sim K P + O(\sqrt{2(P - P^2)K \log n})$ (pr.). However, a precise estimate of the second term in the above asymptotics is quite involved. Recently, Atallah et al. [3] proved that for a wide range of input probabilities p_i the following is true: $M_{n,K} \sim K P + \sqrt{2(P - T)K \log n}$ (pr.) where $T = \sum_{i=1}^{V} p_i^2$.

ACKNOWLEDGMENT

The author would like to thank P. Jacquet (INRIA, Rocquencourt) for interesting discussions concerning this paper, and M. Golin (Hong Kong University) for pointing out the necessity of assumption (C) for our (a.s.) result. We also thank to A. Frieze (Carnegie-Mellon) for encouraging to publish this note.

References

