
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1993

An Optimal O(log log n) Time Parallel Algorithm for Detecting all An Optimal O(log log n) Time Parallel Algorithm for Detecting all

Squares in a String Squares in a String

Albert Apostolico

Dany Breslauer

Report Number:
93-073

Apostolico, Albert and Breslauer, Dany, "An Optimal O(log log n) Time Parallel Algorithm for Detecting all
Squares in a String" (1993). Department of Computer Science Technical Reports. Paper 1086.
https://docs.lib.purdue.edu/cstech/1086

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AN OPTIMAL 0 (LOG LOG N) TIME
PARALLEL ALGORITHM FOR DETECTING

ALL SQUARES IN A STRING

Alberto Apostolico
Dany Breslauer

CSD·TR-9~73
December 1993

An Optimal o(log log n) Time Parallel Algorithm
for Detecting all Squares in a String

Alberto Apostolico*
Purdue University and
Universitit d.i Padova

Dany Breslauert

lEI - CNR

December 4, 1993

Abstract

An optimal O(loglogn) time concurrent-read concurrent-write parallel algorithm
for detecting all squares in a string is presented. A tight lower bound shows that over
general alphabets this is the fastest possible optimal algorithm. When p processors are
available the bounds become 0(fnl;gnl +loglogrl+p/n12p).

1 Introduction

A nonempty string of the form xx is called a repetition. Some strings, such as an = aaa··· aa,
contain O(n2

) repetitions since they have O(n) repetitions starting at most positions. A
square is defined as a repetition xx where x is primitivel . Strings that do not contain any
repetition are called repetition-free or square-free. For example, I aa', 'abab' and' baba' are
squares which are contained in the string 'baababa'.

It is trivial to show that any string whose length is larger than three over alphabets of
two symbols contains a square. However, there exist strings of infinite length on three letter
alphabets that are square-free, as shown by Thue [28, 29J at the beginning of the century.
Since then, numerous works have been published on the subject and repetitions in strings
have been found relevant to several fields, including coding theory, formal language theory,
data compression and combinatorics [1, 6, 7, 14, 15, 21, 22, 27].

The alphabet that the input symbols are chosen from has an important role in the design
of efficient string algorithms. The literature distinguishes between four types of alphabets:

·Partially supported by NSF Grants CCR-89·00305 and CCR-92.01078, by NATO Grant CRG 900293
and by the National Research Council of Italy.

tpartially supported by the IBM Graduate Fellowship while studying at Columbia University and by the
European Research Consortium for Informatics and Mathematics postdoctoral fellowship. Part of this work
was done while visiting at the Universita de L'Aquila, L'Aquila, Italy, in Summer 1991.

1 A string 2: is primitive if x = uk for some integer k implies that k = 1 and x = u.

1

constant size alphabets that have a bounded number of symbolsj fixed alphabets where the
symbols are assumed to be integers from a restricted rangej ordered alphabets where the
alphabet is (arbitrarily) totally ordered and the only access an algorithm has to the input
symbols is by order comparisons; and general alphabets where the only access an algorithm
has to the input symbols is by equality comparisons.

In the last decade, several sequential algorithms that find all squares in strings have
been published. Algorithms that were discovered by Apostolico and Preparata [4] and
by Crochemore [13, 15] find all squares in a string of length n over ordered alphabets in
O(nlogn) time. Rabin [26] gave a randomized algorithm that takes O(nlogn) expected
time over constant size alphabets. Any sequential algorithm that lists all squares in a string
of length n must take at least n(nlog n) time, since there exist strings, such as the Fibonacci
strings [13], that contain n(n log n) distinct squares.

Main and Lorentz [24] discovered an algorithm that finds all squares in strings over
general alphabets in O(n log n) time. They also proved that over general alphabets n(n log n)
comparisons are necessary even to decide if a string is square.free. In another paper, Main
and Lorentz [25] show that the problem of deciding whether a string is square-free can be
solved in O(n) time over constant size alphabets. Crochemore [15] also gave a linear time
algorithm for the latter problem.

In parallel, algorithms by Crochemore and Rytter [16, 17] test if strings over ordered
alphabets are square-free in O(logn) time using n processors. These algorithms use O(nI+')
space. Apostolico [2] designed an algorithm that tests if a string is square-free and also
detects all squares within the same time and processor bounds using linear auxiliary space.
Apostolico's algorithm [2] assumes that the alphabet is ordered, a restriction that is not
necessary to solve this problem. Apostolico's algorithm for testing if a string is square-free
is more efficient over constant size alphabets and achieves the O(log n) time bound using
only njlogn processors. All these parallel algorithms are designed for the CReW·PRAM
computation model.

A parallel algorithm is said to be optimal, or to achieve an optimal speedup, if its time­
processor product, which is the total number of operations performed, is equal to the running
time of the fastest sequential algorithm for the same problem. All the parallel algorithms
that are mentioned above achieve an optimal speedup. Notice that squares can be trivially
detected in constant time using a polynomial number of processorSj our goal is to develop
parallel algorithms that are efficient with respect to both time and processor complexities.

In this paper we develop an optimal parallel algorithm that finds all squares in a string
in O(log log n) time. The new algorithm not only improves on the previous best bound of
O(log n) time, but it is also the first efficient parallel algorithm for this problem over general
alphabets. We derive a lower bound that shows that over general alphabets this is the fastest
possible optimal algorithm by a reduction to a lower bound that was given by Breslauer and
Galil [11] for the string matching problem. If p processors are available, then the bounds
become 0(fnl;,nl + log logr1+p/nl 2p).

The paper is organized as follows. Section 2 overviews some known parallel algorithms
and tools that are used by the new algorithm. Section 3 presents a simple version of the

2

algorithm that tests if a string is square-free and Section 4 develops a more complicated
version that finds all the squares. Section 5 is devoted to the lower bound and Section 6
gives tight bounds for any given number of processors. Concluding remarks are given in
Section 7.

2 The CRCW-PRAM model

The algorithms described in this paper are for the concurrent-read concurrent write parallel
random access machine model. We use the weakest version of this model called the common
CRCW-PRAM. In this model, many processors have access to a shared memory. Concurrent
read and write operations are allowed at all memory locations. If few processors attempt to
write simultaneously to the same memory location, then they all write the same value.

The square detection algorithm uses a string matching algorithm. The input to the string
matching algorithm consists of two strings, pattern{1..m] and text[1..n), and the output is
a Boolean array match[1..n] that has a 'true' value at each position where an occurrence
of the pattern starts in the text. We use Breslauer and Galil's [10] parallel string matching
algorithm that takes O(log log n) time using an n/loglogn-processor CRCW-PRAM. This
algorithm is the fastest optimal parallel string matching algorithm on general alphabets as
shown by Breslauer and Galil [11]. If p processors are available, then the time bounds for
the ,tring matching problem are 0(fnfpl +loglog[I+pln12p).

The square detection algorithm also uses an algorithm of Fich, Ragde and Wigderson
[19] to compute the minima of n integers in the range I, ... ,n, in constant time using an n­
processor CRCW-PRAM. This minima algorithm, for example, can find the first occurrence
of a string in another string: after the occurrences are computed by the string matching
algorithm mentioned above, look for the smallest i such that match[i] = 'true'.

Finally, we use the following theorem:

Theorem 2.1 (Brent (B]) Any parallel algorithm of time t that consists of a total of x
elementary operations can be implemented on p processors in rx/pl + t time.

If we get back to the example above, which finds the first occurrence of one string in an
other, we see that the second step of finding the smallest index of an occurrence takes constant
time using n processors, while the use of the string matching procedure takes O(log log n)
time using n/loglogn processors. By Theorem 2.1 the second step can be slowed down to
work in O(log log n) time using n/loglogn processors.

3 Testing if a string is square-free

This section describes an algorithm that tests if a string S[l..n] is square-free. The algorithm
that finds all squares is more involved and is given in the Section 4.

Theorem 3.1 There exists an algorithm that tests if a string S[1..n] over a general alphabet
is square-free in O(log log n) time using n log nfIog log n processors.

3

Proof: The algorithm consists of independent stages which are computed simultaneously.
In stage number TI, 0 ::; Tf ::; POg2 n1- 1, the algorithm looks only for repetitions xx, such
that 217J -1:5 Ixl < 217J+1 -1 and 17J = 2lj. If some repetition is found, then a global variable
is set to indicate that the string is not square-free. Notice that the complete range of possible
lengths of x is covered and if there exist a repetition it will be discovered.

We show how to implement stage number TJ in T7J = O(loglogllj) time and O(n) op­
erations. Since there are O(1ogn) stages, the total number of operations is O(nlogn).
By Theorem 2.1, the algorithm can be implemented in maxT7/ = O(1oglogn) time using
nlog n/ log logn processors. 0

3.1 The stages

We describe stage number Tf, 0 ::; TJ ::; pog2 nl - 1, that looks only for repetitions xx, such
that 217/-1 ::; lxl < 21lj+1 -1. To simplify the presentation, assume without loss of generality
that the algorithm can access symbols whose indices are out of the boundaries of the input
string. Comparisons to such symbols are answered as unequal.

Partition the input string S[1..n] into consecutive blocks of length 17J' That is, block
number k, for 1 :'0 k < [nll,J, is Silk -1)1, + l..kl,]. Let B = S[1' ..1' + I, - 1] be one of
these blocks. A repetition xx is said to be hinged on B if 21lj - 1 ::; Ixl < 211)+1 - 1 and B is
fully contained in the first copy of x. Stage number TJ consists of sub-stages which are also
computed simultaneously. There is a sub-stage for each block of length 17J' Each sub-stage
checks if there is any repetition which is hinged on the block that it is assigned to.

p,

P2
P3

p,

I
B

r
PI

~I
l' l' + 21, - 1 1'+41,-2

Figure 1: The sub-stage which is assigned to the block B = S[1' ..1' + I, - 11
finds all occurrences of B that start between positions P+21lj-l and P+417J-2.

The sub-stage which is assigned to the block B starts with a call to the string matching
algorithm to find all occurrences of Bin S[P + 217J -l..P + 51lj - 3]. Let PI < P2 < ... < pr
be the indices of these occurrences. Then P + 21lj - 1 ::; Pi < 'P + 41'1 - 1, for i = 1"", r.
See Figure l.

Notice that for each repetition xx that is hinged on B there must be an occurrence of B
at position P + Ixl. This occurrence is included in the {Pi} sequence.

4

Lemma 3.2 For each Pi, one can test in constant time and 0(l7J) operations if there is any
repetition xx that is hinged on B} such that Ixl = Pi - P.

Proof: Let l = Pi - P. We are looking for repetitions xx, such that Ixl = I. For all (in the
range P +1, - 1 S (S Pi check if S[(-1] = S[(J and if S[(] = S[(+1). Let (L be the largest
index in this range such that SIP + I, ..(L] = SIP + I, +1..(L + 1] and (R be the smallest
index such that S[(R..Pi - 1] = S[(R - I..P -1]. One can find (L and (R in constant time
and O(lrJ operations using the integer minima algorithm of Fich, Ragde and Wigderson.

We show that there are repetitions xx that are hinged on B, such that Ixl = I, if and only
if (R ::; (L + 1. Moreover, these repetitions start at positions s, for (R - I ::; s ::; (L - 1+ 1.

If there is a repetition xx that is hinged on B starting at position s, such that lxl = l,
then S[(- I] = S[(), for all (in the range s + I S (< Pi, and S[(] = S[(+ I], for all
(in the range P + l7J ::; (< s + l. But then, (L 2:: s + I - 1 and (R ::; s + I, and thus
(R - ISs S (L - I + I and (R S (L +1. See Figure 2.

oF I
oF

II I
(

, r I (, r I" ~
_ J

~

I 'L 'R
P Pi

Figure 2: If (R > (L + 1, then there is no repetition xx that is hinged on the
block E, such that Ixl = Pi - P.

On the other hand, if (R S (L + I, then S[(R - I..(L] = S[(R ..(L +I]. (Recall that there is
an occurrence of S[P..P+ 1, -I] at position Pi and thus S[P..P+ I, -IJ = S[Pi ..Pi +1, -1].)
The last equality means that there are repetitions xx, such that Ix] = l, starting at positions
s, for (R - 1 S s S (L - 1+ 1. 0

The algorithm can check if any of the Pi'S corresponds to a repetition in constant time
using Lemma 3.2, but it would make O(rl7J) operations if the length of the {Pi} sequence is
r. Luckily, for now, the algorithm has only to test if the string is square-free and it does not
have to check if all the Pi'S correspond to repetitionsj if r > 2, then S[l..n] must contain a
square as the following lemma shows.

Lemma 3.3 If the length of the {Pi} sequences r > 2, then S[1..n] contains a repetition.
This repetition is shorter than the repetitions that are supposed to be found in this stage.

Proof: Recall that P + 2/7/ - 1 ::; Pi < P + 4l7J - 1, for i = 1"" ,r. If r 2:: 3, then either
P2 - PI ~ l7J or P3 - P2 ~ 171 , But then, there is a repetition xx, such that Ixl = P2 - PI or
Ixl = P3 - P2 (respectively), starting at position PI or P2 (respectively). 0

The computation in each sub-stage of stage." can be summarized as follows:

5

1. Compute the {Pi} sequence.

2. If the {Pi} sequence has more than two elements, then by Lemma 3.3, the strjng S[I ..nJ
contains a repetition. This repetition will also be found by some stage number J1., J1. < .".

3. If the {pd sequence has at most two elements, check if these elements correspond to
repetitions using the procedure descdbed in Lemma 3.2.

Lemma 3.4 Stage number." is correct. It takes O(log log llJ) time and makes O(n) opera­
tions.

Proof: For correctness we have to show that if the string S[1..n] contains any repetition xx,
such that 21'1 -1 .$ Ixl < 21'1+1 -I, then some repetition will be found. Assume that there is
such a repetition. Since 2lIJ - 1 ::; lxi, there must be a block of length llJ that is completely
contained in the first x. The sub-stage which is assigned to that block will either find the
repetition xx or conclude that there is a shorter repetition by Lemma 3.3. In both cases
some repetition has been found. Notice that some repetitions can be detected by several
stages and sub-stages simultaneously.

Stage number." consists of Ln/l7)J independent sub-stages. In each sub-stage, step number
1 takes O(log log 17)) time and O(l7)) operation using Breslauer and GaliPs string matching
algorithm. Steps number 2 and 3 take constant time and make 0(17)) operations. Since all
the sub-stages are computed in parallel, stage number." takes O(log log 17)) time and makes
O(n) operations. 0

4 Detecting all squares

In this section we show how the algorithm that was given in Section 3 can be generalized to
find all squares in a string.

Beame and Hastad [5] proved a lower bound of f!(log n/ log log n) time for computing
the parity of n input bits on CRCW-PRAMs with any polynomial number of processors.
This lower bound implies that many "interesting" problems would require at least that time.
However, several string problems, including the problem of detecting all squares in a string,
have constant time solutions using polynomial number of processors.

While the problem of testing if a string is square-free has only a single output bit, the
problem of finding all squares has a more complicated output structure. If we wish to obtain
algorithms that get around Beame and Hastad's lower bound we can not count the number of
squares that are found and therefore we can not list them contiguously in an array. Instead
we will represent the output of the algorithm in a sparse array with O(n log n) entries. Notice
that this problem did not exist in the previous square detection algorithms since their time
bounds were at least O(logn).

Similarly to the testing algorithm, the square detection algorithm proceeds in independent
stages which are computed within the same time and processor bounds as before. Only now,
since the algorithm must find all the squares, the following difficulties arise.

6

1. The detection algorithm can not use Lemma 3.3 only to conclude that the string is not
square-freej it must find all the squares.

2. The algorithm has to verify which repetitions are squares. This was not necessary
before since a string is square-free if and only if it is repetition-free.

3. The squares have to be represented in a sparse array with O(nlogn) entries.

The first two issues will be addressed in Section 4.1 that describes the stages of the square
detection algorithm, while the third issue is discussed next.

The following lemma is used to justify the output representation used by the algorithm.

Lemma 4.1 (see, e.g., Crochemore and Rytter [iB}) If there are three squares xx, yy and
zz, such that Ixl < Iyl < 14 that start the same position of some string, then Ixl + Iyl :0; Izl·

Recall that in stage number TJ the algorithm looks only for squares xx, such that 2llj -1 $
Ixl < 2111+l -1 and III = 2lj. Therefore, by Lemma 4.1, there are no more than two squares
that start at each position of the input string and have to be discovered in the same stage.
Thus, the output can be represented in an array that will hold, for each position of the input
string and for each stage, the two squares that might be detected starting at the specific
position in the specific stage. (e.g., let u be pdrnitive and v a non-empty proper prefix of
u. Then the string ukvuk+lvu, k ~ 1, contains the two prefix squares ukvukv and ukvuukvu

whose lengths differ by 21ul. If k ~ 2, then it contains also the prefix square uu, and if
k = 2, then the inequality in Lemma 4.1 is tight. (In the extreme case, by letting u = lab'

and v = 'a', one gets arbitrary long pairs of squares whose lengths differ by 4.)
The bounds of the square detection algorithm are summarized in the following theorem.

Theorem 4.2 There exists an algorithm that finds all squares in a string S[l..n] over a
general alphabet in O(log log n) time using n log n/ log log n processors.

4.1 The stages

Consider a single stage. As in Section 3.1, the input string S[l..n] is partitioned into con­
secutive blocks of length llj and there is a sub-stage that is assigned to each such block. To
simplify the presentation we allow squares to be discovered by several sub-stages simulta­
neously: the sub-stage that is assigned to the block 13 discovers all the squares which are
hinged on this block. Later, we make sure that the information about each square is written
only once into the output array by reporting only those squares for which 13 is the leftmost
block fully contained in the square. Thus, stage number 1] finds all squares xx, such that
21, - 1 :0; Ixl < 21,+1 -l.

As already noted, each square that is hinged on 13 ties the block 13 to a specific replica.
The sub.stage that is assigned to B starts with a call to the string matching algorithm to
find the viable replicas of 13. Let PI < ... < PT denote their indices.

7

Definition 4.3 A string x is a rotation of another string £: (and vice versa) if x = uv and
i: = vu for some strings u and v.

Definition 4.4 A string S has a period u if S is a prefix of uk for some large enough k.
Alternatively, a string S[1..n] has a period of length 7r if Sli] = Sri +7r], faT i = 1, ... , n - 7r.

The shortest period of a string S is called the period of S.

Lemma 4.5 (Lyndon and Schutzenberger [23]) If a string of length m has two periods of
lengths p and q, and P + q ::; m, then it also has a period of length gcd(p} q).

The task of the sub-stage is to identify which of the p/s corresponds to squares that are
hinged on 8. In Lemma 3.2 we have shown that it is possible to verify efficiently that some
specific Pi corresponds to repetitions xx that are hinged on 8} such that Ixl = Pi - P. The
proof of Lemma 3.2 reveals that those differences Pi - P that pass the repetition-detection
test actually expose an entire sequence of repetitions which are consecutive rotations of the
same repetition. Such a sequence will be called a family of repetitions.

Lemma 4.6 A family of repetitions contains a square if and only if all the repetitions in the
family are squares.

Proof: Let xx be a repetition but not a square. Thus x = zl and I > 1. If x is a rotation
of x} then i: = v(uv)i(uv)/-i-1

U = (vu)/ where z = uv} and thus x is not primitive. 0
The last lemma means that if we wish to certify that repetitions are actually squares it is

enough to certify one repetition in each family. The next lemma shows how to test efficiently
that a given repetition is indeed a square by solving a single string matching problem.
(The technique for primitive certification proposed by Apostolico [2] uses information about
shorter squares which are discovered in other stages. We use a different method that keeps
the stages in the algorithm completely independent.)

Lemma 4.7 Given a repetition xx) let I be the index of the first occurrence of x m xx.
Then, xx is a square if and only if 1= Ixl·

Proof: Clearly} 1$ Ixl. If x = zi, then xx = z2i and x occurs at position Izl of xx. On the
other hand} if I < Ixl} then xx has periods of lengths 1 and Ix[and by Lemma 4.5, 1 divides
[xl. But then x = zl.l:1/1 is not primitive. 0

Given a replica of 13 at position Pi} we can find the family of repetitions xx, such that
Ixl = Pi - p} using Lemma 3.2} and then we can certify that these repetitions are actually
squares using Lemma 4.7. See Figure 3.

However, if the length of the {p;} sequence is large} then repeating the process above for
each Pi can be costly. Moreover} it is a problem even to find and to manipulate the {Pi}
sequence efficiently. The following lemmas will help to overcome this difficulty.

Lemma 4.8 Assume that the period length of a string W[1..I] is p. If W[1..I] OCCUTS only
at positions PI < P2 < ... < Pk of a string V and Pk - PI ::; rt/21, then the Pi'S form an
arithmetic progression with difference p.

8

, ,, ,
abc abc abc abc a-- -P PI P2

Figure 3: Repetitions must be certified to be squares. In this example, the
repetitions in the family that corresponds to P2 - P are not squares.

Proof: Assume k 2': 2. We prove that P = Pi+l - Pi for i = 1"", k - 1. The string W has
periods of lengths P and q = Pi+! - Pi. Since P ::; q ::; rll21, by Lemma 4.5 it also has a
period of length gcd(p, q). But p is the length of the shortest period so p = gcd(p, q) and p
must divide q. The string V{P; ..Pi+! +1-1] has period of length p. If q > P, then there must
be another occurrence of W at position Pi +P of Vi a contradiction. 0

Recall that P + 2l1J - 1 ::; Pi < P + 411/ - 1. To utilize the last lemma it is convenient
to partition the sequence {Pi} and to regard the sub.stage as consisting of four consecutive
phases. Each phase handles viable replicas of B in a sub·block of size 11J/2 (hereafter, a 11//2­
block). We descdbe a generic phase, involving the occurrences of B at positions ql < .,. < qk,
where {qi} is a sub-sequence of {Pi} that lists all the occurrences that fall within a 11J/2-block.
(In the first stages there are fewer phases.)

Lemma 4.9 The sequence {qi} of occurresnes of B in a IlJ/2-block is an arithmetic progres­
sion with difference q, where q is the period length of B.

Proof: An immediate consequence of Lemma 4.8. 0

The sequence {qi} can be represented using three integers: the start, the difference and
the sequence length. This representation can be easily computed from the output of the string
matching algorithm (which is a Boolean vector) using Fich, Ragde and Wigderson's integer
minima algorithm in constant time using O(1lJ) operations. This idea has been successfully
applied also in efficient parallel algorithms for other string problems [3, 9, 12].

If the {qi} sequence does not contain any elements, then the phase does not need to do
anything. If there is one element ql, then the algorithm finds the family of repetitions that
are associated with the difference ql - P and certifies them to be squares as described above.
The next lemmas handle phases that have longer {qd sequences.

Assume that the length of the arithmetic progression {qi} is k 2: 2 and let q be the
difference of the progression. By Lemmas 4.8 and 4.9, the block B = S[P..P + IlJ - 1] and
the sub-string covered by the occurrences of this block at posi tions qi, S[ql ..qk + 11J - 1], have
period length q. The algorithm proceeds by checking how far this periodicity extends on
both sides of these strings.

Let CtL and Ctn be the positions where the periodicity of length q terminates on the left
and on the right of B, respectively, and let IL and IR be the positions where the periodicity of
length q terminates on the left and on the right of the sub-string S[ql ..qk+11/-1], respectively.

9

We are interested in these indices only if P - (qk - P) + 171 .$ aL, aR < ql + 171 , P .$ 'YL and
7R < 2qk - P, and these indices are undefined otherwise. Namely, if all indices are defined,
then SIaL +LaR - 1] has period length q, S[ad i SIaL + q], S[aR] i S[aR - q],

S['YL +L'YR -1] has period length q, S['YL] i S['YL +q], S!'YR] i S!'YR - q] and

It is possible to compute the indices aL, aR, 7L and 7R, or to decide which indices are
undefined, in constant time and 0(171) operations using Fich, Ragde and Wigderson's integer
minima algorithm.

The following lemmas classify the possible interactions between aL, aR, 7L and 7R and
their effect on the squares that are hinged on B.

Lemma 4.10 If one of aR and 7L is defined, then so is the other one} and an -7L .$ q.

Proof: By the definition of aR and 'YL, S[P"aR -1) and S['YL + Lqk + I, -1] have period
length q, S[aR] i S[aR - q] and S!'Yd i S!'YL +q].

If q < an-7L, then by the periodicity of S[P..an - 1] and since 7L +q < aR, we get that
S[7L] = S[JL + q], in contradiction to the definition of an and 7L· Therefore, aR -7L .$ q
or at least one of an and 7L is undefined.

If an is undefined, then S[P..ql + 171 - 1] has period length q and the argument above
shows that 7L can not be defined. The proof of the symmetric case is identical. 0

The following lemma identifies certain repetitions that can never be squares.

Lemma 4.11 If both aR and 7L are undefined, then none of the repetitions possibly hinged
on B is a square.

Proof: If aR and 7L are undefined, then S[P..qk + 171 - 1] has period length q. Consider any
q; and let I = q; - P. By the periodicity above and since S[P ..P +I, -1] = S[q; ..q; +I, -1],
we get that S[P..P+ q, - q;+I, -1] = S[q; ..q,+I, -1]. Thus, the sub-string S[P"qk+l, -1]
has period length 1. But q .$ 171 /2 < 1and by Lemma 4.5, q divides 1.

Let xx be a repetition that is hinged on B starting at position 5, such that Ixl = 1. Then
x = S[s"s +1-1] = SIs +1..1' + l-l]S(P"s +1-1] has period length q and therefore x is
not primitive. 0

If both aR and 7L are defined, then certain repetitions, which are characterized in the
next lemma, must align aR with 7R and aL with 7L. These repetitions are called synchronized
repetitions. See Figure 4.

It is convenient to state the next lemmas in terms of the positions where the repetitions
are centered; a repetition xx that starts at position 5 is centered at position s + lxl.

Lemma 4.12 If both aR and 7L are defined then:

10

[:::::::::::::::::: 1 [:::::::::::::::::: 1
[:::::: ::::::::::::::: 1 [:::::::::::::::::: 1

,R

Figure 4: There can be at most two families of synchronized squares. In
this example, one family corresponds to 'YL - CtL = qt - P and the other to
'Yn - an = q2 - P.

1. Repetitions that are hinged on B and centered at positions hI such that h .$ 'YL, may
exist only if CtL is defined. These repetitions constitute a family of period corresponds
to qi - P, provided that there exists some i such that 'YL - CtL = qi - P.

2. Repetitions that are hinged on B and centered at positions h, such that Ctn < h J may
exist only if 'YR is defined. These repetitions constitute a family of period qj - P J

provided that there exists some j such that IR - CtR = qj - P.

Notice that if Ctn < IL, then repetitions whose center h satisfies CtR < h .$ 'YL may exist
only if both CtL and IR are defined and if ,n - Ctn = IL - Cl.L·

Proof: Let xx = S[h -l..h + 1- 1] be a repetition that is hinged on B and centered at
position h, such that Ixl = qi - P, and let 1= Ixl.

Assume P+1Jj ::; h::; 'YL. The proof distinguishes between two cases. If CtL is undefined or
if aL < ,L-I, then by the periodicity in the definition of aL and ,L, SbL-I+q] = sl,L+q]
and SI,L -I] = SbL - 1+ q]. Since there is the repetition xx, also SI,L -I] = SI'L]. Thus
SI,L] = SI,L +q] in contradiction to the fact that SbL] # SbL +q] by the definition of 'L.

Similarly, if Cl.L > IL -1, then by the periodicity in the definition of CtL and IL, S[CtL +q] =
SiaL + I +q] and SiaL + I] = SiaL + I +q]. Since there is the repetition xx, also SiaL] =
SiaL +Il. Thus, SiaL] = SiaL +q] in contradiction to the fact that SiaL] # SIaL +q] by
the definition of Cl.L.

Therefore, such a repetition xx may exist only if CtL = IL - 1, or in other words if
'YL - Cl.L = qi - P for some i. Since Cl.L and IL are given, there is at most one such qi.

The proof of the second part where an < h is similar. 0
As a consequence of the last lemma, there can be at most two repetition families (in

each phase) that have to be verified and certified to be squares. However, there are squares
which might have been missed since Lemma4.12 did cover all eventualities. If 'YL < Cl.R, then
there might exist repetitions whose center h satisfies 7L < h ::; CtR. These repetitions are

11

called unsynchronized repetitions. We classify these repeti tions next and show that if such
repetitions exist , then they must be squares.

Lemma 4.13 If aR and IL are defined and IL < aR, then there might be a family of
repetitions associated with each of the differences 1 = qi - P, and center at positions h such
that IL < h ::; aR. These repetitions in every such family are all squares, and they are
centered at positions h, such that max(aL + I,IL) < h :5 min(a:RliR -I). Notice one such
family is not empty if and only if I < a:R - aL and I < IR - IL·

Proof: Consider repetitions S[h - I ..h - I] = S[h..h + I - I] that are associated with the
difference I = qj-P and whose centers h satisfy IL < h ::; an. We show that such repetitions
exist if and only if aL +1< h and h ::; IR -1. (Ignoring the constraints involving undefined
indices.)

If h ~ aL+I, then S[aL] = S[aL +/]. Since on < h, we know that S[aL+IJ = S[aL +I+q].
But then, S[aLl = S[aL+q], in contradiction to the definition of aL. SimilarlYI it is impossible
that om - I < h.

On the other hand, if max(aL + I,n) < h ~ min(an,yn - I), then S[h -I..h - I] and
S[h..h +1-1J have period length q. Since S[P..P + I, -I] = S[q; ..q; + I, -I] we get that
S[h -I..h -I] = S[h..h+I-I]. (The same reasoning holds also if aL or ,n are not defined.)

It remains to show that these repetitions are actually squares. If S[h -l..h -1] = zi for
some j > 1, then S[h -I..h -1] has periods of length q and Izi and hy Lemma 4.5, q divides
14 But then, S[h - q..h -1] = S[h..h+q-l] and an -,L ?: 2q, in contradiction to Lemma
4.10. 0

Notice that testing each candidate family requires O(q) comparisons.
The computation in each sub-stage of the square detection algorithm can be summarized

as follows:

1. Compute the {pJ sequence and proceed in four phases.

2. In each phase, find the arithmetic progression {qj}.

3. If the {qi} sequence has a single element ql, then find the repetition family that cor­
responds to ql using Lemma 3.2 and certify that these repetitions are squares using
Lemma 4.7.

4. If the {q;} sequence has at least two elements, then:

(a) Find the synchronized repetition families using Lemma 4.12 and certify that these
repetitions are squares using Lemma 4.7.

(b) Find the unsynchronized squares using Lemma 4.13.

Lemma 4.14 Stage number 7J is correct. It takes O(log log 11/) time and makes O(n) opera­
tions.

12

Proof: It is clear that if the string S[l..n] contains any square xx, such that 21J/ -1 ::; Ixi <
21J/+l - I, then there must be a block B of length lJ/ that is the leftmost block completely
contained in the square. We have seen that the sub-stage that is assigned to the block B
will find xx.

Stage number TJ consists of Lnj lJ/J independent sub-stages. Each sub-stage might make
at most nine calls to Breslauer and Galil's string matching algorithm: one to find the {Pi}
sequence and at most two in each phase to certify squares using Lemma 4.7. These calls
take O(log log lJ/) time and make 0(111) operations. The rest of the work in each sub-stage
takes constant time and 0(1J/) operations. Since all the sub-stages are computed in parallel,
stage number 1] takes O(log log lJ/) time and makes O(n) operations. 0

Remark. Assume that the sequence {qi} has k> 1 elements and difference q. If an and
iL are defined, then some synchronizing repetitions might have to be certified to be squares.
It easy to check that for the repetitions xx that arise in this case, if x = zi, then j ::; E for
some small positive constant E. Thus, it is sufficient to verify that x =I zi, for j = 2, ... ,I'::, in
order to certify that x is primitive. This is more efficient than the general square certification
method suggested in Lemma 4.7.

5 The lower bound

We prove a lower bound for testing if a string is square-free by a reduction to Breslauer and
Galil's [11] lower bound for string matching. Breslauer and Galil show that an adversary can
fool any algorithm which claims to check if a string has a period that is shorter than half of
its length in fewer than f!(rnjpl +log logrl+p/n12p) rounds with p comparisons in each round.
The lower bound holds for the CRCW·PRAM model in the case of general alphabets where
the only access an algorithm has to the input string is by pairwise symbol comparisons.

We will not report the details of that lower bound. We only use the fact that the adversary
generates a string S[l..n] that has the following property: If Sri) = S[i], then S[k] = Sri],
for any integer k, such that k =i (mod Ii - il) and 1 ~ k ~ n.

Lemma 5.1 The string generated by Breslauer and Galil's adversary has a period that is
shorter than half of its length if and only if it contains a square.

Proof: If the string generated by the adversary has a period which is shorter than half of
its length, then it contains a square that starts at the beginning of the string.

On the other hand, assume that a square xx starts at position s of S[l..n]. Namely,
Sis +k] = Sis +Ixl +k] for k = 0,···, lxi-I. But then, by the property mentioned above,
the string generated by the adversary has a period of length Ixl, which is smaller than half
of the string length. 0

Now, we are ready to prove the lower bound.

Theorem 5.2 Any parallel algorithm that tests if a string S[l..n] over general alphabets is
square-free must take f!unl;gnl +log logfl+P/nl 2p) rounds with p comparisons in each round.

13

Proof: Main and Lorentz [25) show that any sequential algorithm that tests if a string over
general alphabets is square-free must make O(nlog n) comparisons. Tills gives an immediate
lower bound of ocrnl;gnl) rounds with p comparisons in each round.

By Lemma 5.1, the string that is generated by the adversary of Breslauer and Galil has a
period that is shorter than half of its length if and only if it contains a square. Breslauer and
Galil show that after O(log logrHp!nl 2p) rounds the adversary still has the choice of forcing
the string to have a period that is shorter than half of its length or not to have any such
period. Therefore, any algorithm that tries to decide in fewer rounds if a string is square-free
can be fooled. By combining these two bounds we get the claimed lower bound. 0

Corollary 5.3 Any optimal parallel algorithm that tests if a string S[l..nJ is square-free
must take O(log log n) rounds.

Proof: By Theorem 5.2, the lower bound is O(log log n) even with nlogn comparisons in
each round. 0

6 The number of processors

This section derives tight bounds for any given number of available processors.

Theorem 6.1 If p processors are available, then the lower and upper bounds for testing if
a string is square-free and for detecting all squares are ecrn1;gnl + log logr1+p!n12p).

Proof: The lower bound was given in Theorem 5.2. It remains to prove the upper bound.

1. If p:::; I:;fo~nn' then by Theorem 2.1, the optimal algorithms of Sections 3 and 4 can be

slowed down to run in o(nl;gn) time, matching the lower bound.

2. If ,:~f:gnn < p::; nlogn, then the lower bound is O(1og log n), matching the time bound

of the algorithms with only ,:;f:gnn processors.

If p > n log n, then we must go back to the algorithms given in Sections 3 and 4. The
processors are distributed equally among the stages. In stage number 1], the processors are
distributed equally among the sub-stages, giving ~17j processors to each sub-stage.

Since sub-stages that handle strings of length O(171) have more than 17j processors available,
the sub-stages take constant time except for the calls to Breslauer and Galil's string matching
algorithm. These calls take T7j = O(log logrl+p/nlognl 2~l7j) time. Therefore, the whole

algorithm takes maxT7j = O(loglogrHP/nlognll::n) time.

3. If p > nlogn, then one can verify that loglogrl+P/nlognll::n E 0(1oglogrl+P/n12p),
establishing that the lower and upper bounds are the same.

4. If p > nl+~ for some fixed t; > 0, then the upper bound is 0(1). 0

14

7 Concluding remarks

The algorithm described in this paper uses a string matching procedure as a "black-box"
that has a specific input-output functionality, without going into its implementation details.
Breslauer and Galil's string matching algorithm is the fastest possible over general alphabets,
however, it is unknown at the moment if a faster algorithm exists over constant size alphabets.
If such an algorithm exists, it could be used in a faster algorithm for finding squares. Notice
that a fast CReW·PRAM implementation requires the computation of certain functions such
as the log function and integral powers within the time and processor bounds. Regardless of
the feasibility of such computation, the algorithm that was described in this paper is valid
in the parallel comparison decision tree model.

Our parallel square detection algorithm resembles the sequential algorithms of Main and
Lorentz [24, 25]. (The testing algorithm is in fact a parallel implementation of the testing
algorithm in [25].) Still, the sequential implementation of our parallel algorithm is interesting
on its own. By using a time-space-optimal string matching algorithm, such as the algorithm
of Galil and Seiferas [20], we obtain a time-space-optimal algorithm for detecting squares.
No such algorithm was known before.

8 Acknowledgments

We thank Zvi Galil, Roberto Grossi and Kunsoo Park for their valuable comments.

References

[1] A. Apostolico. On context constrained squares and repetitions in a string. R.A.I.R.O.
Informatique theorique, 18(2):147-159, 1984.

[2] A. Apostolico. Optimal Parallel Detection of Squares in Strings. Algorithmica, 8:285­
319, 1992.

[3] A. Apostolico, D. Breslauer, and Z. Galil. Optimal Parallel Algorithms for Periods,
Palindromes and Squares. In Proc. 19th International Colloquium on Automata, Lan­
guages, and Programming, pages 296-307. Springer-Verlag, Berlin, Germany, 1992.

[4] A. Apostolico and F.P. Preparata. Optimal off-line detection of repetitions in a string.
Theoret. Comput. Sci., 22:297-315, 1983.

[5J P. Beame and J. Hastad. Optimal bound for decision problems on tbe CRCW-PRAM.
J. Assoc. Comput. Mach., 36(3):643-670, 1989.

[6] D.R. Bean, A. Ehrenfeucht, and G.F. McNulty. Avoidable patterns in strings of symbols.
Pacific J. Math., 85:261-294, 1979.

15

[7] J. Berstel. Sur les mots sans carre definis par un morphism. In Proc. 6th International
Colloquium on Automata, Languages, and Programming, number 71 in Lecture Notes
in Computer Science, pages 16-25. Springer-Verlag, Berlin, Germany, 1979.

[8] R.P. Brent. Evaluation of general arithmetic expressions. J. Assoc. Comput. Mach.,
21:201-206, 1974.

[9] D. Breslauer. Efficient String Algorithmics. PhD thesis, Dept. of Computer Science,
Columbja University, New York, NY, 1992.

[101 D. Breslauer and Z. Galil. An optimal O(log log n) time parallel string matching algo­
rithm. SIAM J. Comput., 19(6):1051-1058, 1990.

[111 D. Breslauer and Z. Galil. A Lower Bound for Parallel String Matching. SIAM J.
Comput., 21(5):856-862, 1992.

[12] D. Breslauer and Z. Galil. Finding all Periods and Initial Palindromes of a String in Par­
allel. Technical Report CUCS-017-92, Computer Science Dept., Columbia University,
1992.

[13] M. Crochemore. An optimal algorithm for computing the repetitions in a word. Inform.
Process. Lett., 12(5):244-250, 1981.

[14] M. Crochemore. Sharp characterizations of squarefree morphisms. Inform. Process.
Lett., 18:221-226, 1982.

[15] M. Crochemore. Transducers and repetitions. Theoret. Comput. Sci., 12:63-86, 1986.

[16] M. Crochemore and W. Rytter. Efficient parallel algorithms to test square-freeness and
factorize strings. Inform. Process. Lett., 38:57-60, 1991.

[17] M. Crochemore and W. Rytter. Usefulness of the Karp-Miller~Rosenberg algorithm in
parallel computations on strings and arrays. Theoret. Comput. Sci., 88:59-82, 1991.

[18] M. Crochemore and W. Rytter. Periodic Prefixes in Texts. In R. Capocelli, A. De Santis,
and U. Vaccaro, editors, Proc. of the Sequences '91 Workshop: ({Sequences II: Methods
in Communication) Security and Computer Science", pages 153-165. Springer-Verlag,
1993.

[19] F.E. Fich, R.L. Ragde, and A. Wigderson. Relations between concurrent~write models of
parallel computation. In Froc. 3rd ACM Symp. on Principles of Distributed Computing,
pages 179-189, 1984_

[20] Z. Galil and J. Seiferas. Time-space-optimal string matching. J. Comput. System Sci.,
26:280-294, 1983.

16

[21] M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, MA.,
U.S.A., 1978.

[22] M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, MA., U.S.A., 1983.

[23J R.C. Lyndon and M.P. Schutzenberger. The equation am = bnc! in a free group. Michi­
gan Math. J., 9:289-298, 1962.

[24] G.M. Main and R.J. Lorentz. An O(nlogn) algorithm for finding all repetitions in a
string. J. Algorithms, 5:422-432, 1984.

[25] G.M. Main and R.J. Lorentz. Linear time recognition of squarefree strings. In A. Apos­
tolico and Z. Galil, editors, Combinatorial Algorithms on Words, volume 12 of NATO
AS] Series F, pages 271-278. Springer-Verlag, Berlin, Germany, 1985.

[26] M.O. Rabin. Discovering Repetitions in Strings. In A. Apostolico and Z. Galil, editors,
Combinatorial Algorithms on Words, volume 12 of NATO AS] Series F, pages 279-288.
Springer-Verlag, Berlin, Germany, 1984.

[27] R. Ross and R. Winklmann. Repetitive strings are not context-free. Technical Report
CS-81-070, Washington State University, Pullman, WA, 1981.

(281 A. Thue. Uber unendlicbe zeicbenreiben. Norske Vid. Se/sk. Skr. Mat. Nat. /(1. (Cris­
liania), (7):1-22, 1906.

[29] A. Thue. Uber die gegenseitige lage gleicher teile gewisser zeichenreihen. Norske Vid.
Se/sk. Skr. Mat. Nat. J(/. (Cristiania), (1):1-67, 1912.

17

	An Optimal O(log log n) Time Parallel Algorithm for Detecting all Squares in a String
	Report Number:
	

	tmp.1307986960.pdf.JADcs

