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A characterization of connecting maps
as nonlinear roots of the identity

J. Peters

Abstract. In order to define the smoothness of a piecewise poly-
nomial surface, the domains of adjacent pieces must be related to one
another by connecting maps; such maps reparametrize the surface
pieces by mapping the domains of adjacent pieces to a joint domain.
We characterize the subclass of connecting maps that can be used
ta surround a point by three or more pieces. The characterization of
connecting maps for second order continuity suggests a lower bound
on the degree of any curvature continuous surface assembled from
polynomial pieces.

§1. Motivation

A popular approach to modeling smooth parametric surfaces 1s to as-
semble them from polynomial patches pr : Qx € R? —» IR?. To determine
the smoothness of transition from one patch to its neighbor, the domains of
acdjacent patches must locally be mapped to a joint domain so that directions
of differentiation are well defined. Thus connecting maps ¢ : Qx — R? play
a central role in the construction of smooth parametric surfaces, affecting for
exainple the polynomal degree and the shape of the surfaces. Of partienlar in-
terest for constructions is the subclass of connecting maps that can be used to
smoothly surround a point by three or more patches. The paper characterizes
this subclass.

When three or more patches join smoothly at a common point, the pair-
wise continuty constraints between the patches form a circular system. Cor-
respondingly, the composition of all n connecting maps must map any initial
domain to itself and must agree with the identity map, id, at the preimage of
the comumon point up to the given order of continuity (see (2, Theorem 7.1]).
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2 J. Peters

This motivates viewing the connecting maps as roots of the identity. In partic-
ular, if all connecting maps at the point act identically on their domains, and
hence are indistinguishable except for their subscripts, we call them uniform
roots of the identity.

Based on the characterization of uniform and special non uniform roots
of the identity, we find that a particular directional derivative of a connecting
map between two vertices of different degree canmot be linear. Since this
derivative features prominently in the continuity constraints between acdjacent
patches, a simple argument implies that the formal degree of a curvature
continuous surface built from polynomial pieces exceeds the degree of the
boundary curves by four.

The paper is organized as follows. Section 2 formalizes the notion of con-
necting maps and gives a closed form expression for the constraint on their
composition. Section 3 looks at linear roots of the identity and identifies
uniform linear roots as rotations. Sections 4 and 5 characterize second-order
uniform and special non-uniform roots. This characterization is used in Sec-
tion G to derive a lower hound on the degree of curvature continuous piecewise
polynomial surfaces.

§2. Roots of the identity

To formalize the constraint on the connecting maps let £ = 1..n and denote
by ¢« the connecting map between the domain Qx—1 C IR? of the (k — 1)st
patch pr—y and the domain © of the adjacent patch pr. Circularity implies
that Qp = Q, and that é,,0é,_,0...0d; maps from Q,, to Q,,. Let D;

be the derivative in the direction of the ith unit vector e;. To avoid 191)et1t1011
we follow the convention that all functions are evaluated at the origin 0 =

0 - ; .
0] which is the parameter value corresponding to the common point of all

patches. We normalize ¢; such that ¢; = ¢;(0,0) = 0 for [ = 1..n. Thus
Jr¢ = (D}" D;é)m+n$r

is an ordered collection of Taylor coefficients of a connecting-map ¢ expanded
at 0 up to the rth Taylor term. The composition coustraint on admissible ¢;
18

Jrid = J (oL 1) = Jr(¢n 0 puar 0. 0 1), (C)
where o is the symbol for composition. Note that by the above convention,
both sides of Constraint C are evaluated at 0. Forr =0, Cis

= 0= 1. (2.0)

Denote the components of any counecting map ¢ as ¢!l and ¢! and define

D41l p,gll , o1 -
D¢ = Dl Dol ) For » = 1 and ¢ € {1,2}, since the derivative of

the identity map at 0 is the identity matrix and the 7#h column of the identity
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matrix 1s the ith unit vector e;, the additional constraints are by the chain
rule

ei = Di(ojay 1) = ([ Do) (2.1)
=1

For » = 2, and 4,7 € {1,2}, since id has no quadratic terms, the chain rule
and the product rule yield

0 = D;Di(ojLy 1) = D (J[ oD’ ul([] Ped)es, (J] Don)es).  (2.2)

k=1 1<k >k >k

Here () indicates that each of the two components of the Hessian D?¢p(,) is
a bilinear form with two vector-valued arguments.

Since {; must share an edge with ¢(Qx—1), it is reasonable to stipulate
that ) and ¢r(Qr_1) share a coordinate direction corresponding to the com-
mon edge. This implies that the edge is traced with a common orientation
and parameter v:

0,0 = 5] (A1)

and that the transversal derivative (with respect to «) of ¢4 is constant for
varying v:

DDy ¢% = 0. (Az)

§3. Uniform linear roots of the identity

We first consider the case r = 1, the characterization of the linear compo-
nents of the connecting-maps. For now, we assume that the connecting maps
are umform, that is ¢; = $. Since the neighborhood of the origin is to be
covered exactly once, the linear part of ¢ is a rotation by 8 := 2z /n.

Proposition 3. If ¢; = ¢, ! = 1..n, and (A,) holds then (2.0) and (2.1) hold
if and only if

(1] 9 e
¢= [im ] = [_’ (-:.?; ? é] [:] + higher order terms

Proof: The assumption ¢(0,v) = (v,0) implies D¢ = [Iul 1]. Since D¢

g 0
has to have the eigenvalues e**?, ; := /=1, of a rotation matrix,
e:l:?t& — Uy eﬂ:r,ﬁ —y =0

must hold. From this constraint, u; = 2cos 8, wu = —1 follows. W

The linear part of ¢ can be diagonalized:

2cosf 1 —e 6 _ptf e~ —gm8 -
D¢'_[—1 0]_[ 1 1“0 e“’H 1 1]
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mnplying that

I I
D(oj_y9} = [[ Dé = [g‘j’;’g [1}]
k=1

e —e®] e 0 br_e—t8 _p817?
Tl 1 1 0 e 1 1

_;[F(Hl) F(1) ]
T FQ) | -F() -F{-1)

where

F(l) = e® — 70 = 2,5m(01).
Example. If { = n, then 8 = 27 and hence
" 1 0
Dot = 5 5]

as required for a first-order connecting-map by coudition (2.1). W

§4. Uniform quadratic roots of the identity

We now apply the calculus of the previous section to the case » = 2. In
particular, we want to characterize all uniform non-linear connecting maps
that satisfy (2.0-2.2} under the assumption of a connon direction.

Theorem 4. If ¢y = ¢, | = 1.n and (A,) and (A2) hold, theu (2.0), (2.1)
and (2.2} hold if and only if

for certain constants xq, xy, a.
Kn >3, then x1, x9, a can be chosen independently and arbitrarily;
K n =3, then x1 = 29 = 2a mmst hold.

Proof: The proof is structured as follows. First we express (2.2) in terms of
F(I) := 2¢5in(81} and use the diagonalization derived in the previous section.
Then we show that the sums of F(I} that multiply the constants xq, 22, and
a vanish except if n = 3. The case n = 3 is analyzed separately.
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Since D3¢ = 0 and D1 D242 = 0 by (A1) and (Asg), the kth summand
of the right hand side (2.2) can be expressed using the constants A;;(k) and

B;;i(k):

(Dg) ' D?$((Dg)" " es, (D)~ e;) (4.1)

_FT}ELE 1) _F}gi:k__lg) (D} pAi (k) + D1D26B; j(k)).

=F(1)
The constant A;;(k) is the entry in the ¢th row and jth column of the
matrix A(k) which tabulates all possible combinations of the first entry of
(ITi=ssq Pé)ei and ( 1=k41 Dé)e;j since these multiply D24, Sinee F(0) =
F(n)=F(n/2)=0,F(n+1) = F({) and F(=1) = - F(0),

A(k) = [F(F”(;f;f)l)] [Fin—k+1) F(n—k)]

[ Fn—-k+1) F(n——k)F(n-k—f—l)]
Fn-EFn-k+1) F(n—k)

_ [ FY{k—-1) Fk)F(k - 1)]
F(E)F(k —1) F2(k) '

Similarly B; ;(k) 1s the ,7 entry of

B(k) = [F (F”(; k ;;)1)] (—F(n—k) —F(n—k—1)]

+[ —F(n— k) ][F(n—k-I—l) F(n - k)],

—Fn-Fk-1)
_ 2F(E)F(k — 1) Pk + 1)F(k — 1) + F2(k)
- [F(k+1)F(k— 1) + F2(k) 2F(k)F(k+ 1) ]

Combining all the summands, we have D;D;(o}L¢) =

v F(k)xy 4+ F(k — 1ag ] F(k _
(F(1)) ; [—F(J(c ) 1), ~(F(k ) %)z, ] Aij(k) +a [—F(k ) 1)] Bij(k)

Now we note that the multiplyers of «, x; and 2z, are of the form

H

> sin(k8) sin((k + 1)8) sin((k + m)6)
k=1

=m Zsin(kﬁ) + vy Z sing(kﬂ) + oy Z cos(k8) + aq E (:()53(k9)

k=1 k=1 k=1 k=1

for constants a1, a3 a3 and .
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Clazm: If n > 3, then

" " n ]

Zsin(kﬂ) = Z cos(kf) = Z sin®(k8) = Z cos®(k§) = 0.

k=1 k=1 k=1 k=1

proof of claim: Let Ja denote the imaginary part of « and Ra the real part

of a. Then

n—1 t,JmB -1
Zsm(kﬁ Z‘\‘r etho oy 1):[},
k=1 =0

since nd = 27 and similarly 37, _, cos(k8) = 0. Since

dcos’ o = cos3a + 3cosa, 4sin® o = —sin3a + 3sina,
n n—1 n3e
et — 1
E cos® (k@) = E R k38 = R—p— =0
k=1 e? —1

and similarly Y p_, sin®(k8) = 0.
end of proof of clarm

The claim proves the theorem for n > 3. If n = 3, then E:= Leos? (k) =
$3 # 0 and we need to analyze (2.2), 0 = D;Di(¢ o ¢ 0 @), in detail. We list
the threecasesi=j=1,i# j,andi =37 = ‘) of (2.2), one per column below,

and use the fact that F(O) =0 and F(2) = —F(1).

0 0 O 2 0 =2 -1 1 @0 0 -1 1
[0 0 U]_[Q -2 0:|“’+[0 1 _1].L1+[_1 0 1].1,2.

We see that (2.2} holds if and only if 21 = 23 = 2¢. B

§5. Non uniform quadratic roots of the identity

Next, we characterize first order uniform, but second order non uniform
connecting-maps that satisfy (2.2) for the special case of fourth roots.

Proposition 5. If n = 4 and Ji¢; = J1¢ for | = 1.4, then (2.0-2.2) hold if

and only Iif )
;| 2cosf 1| |u
R . 0f|v

1 [, 1 ap] [u
+§[u U]_ak 0][1}]61

1 -:::2,,{- 0] |
el 4l

+ h.o.t.

and
o = @3, Uz =y, I;j= —&; 2, fori,7 € {1,2},




=1
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Proof: We follow the structure of the proof of Theorem 4. Since F(1)=1=

F2(k -1 0 : 01
Agy= | TN L B = e g
Setting
a 11 T2 ]
= 1% : 2 i €Ty,2 ’ T 1= T2
ag 1,3 +2,3
a4 T4 a4

the equations 2.2 and 4.1 simplify to

0 10 -1

DiDy(ojd)= |y o 1 0]“

D1D1(0}1=1¢): -1 0 -1 0].’1:14-[0 0 0 0]:E2
0 1 0 1 0 0 0 O

D1 Dy(o}_¢) = 0 0 0 U]:""-I_[{] -1 0 —1];32

Setting the expressions to zero proves the claim. B

The next section usecs the following simple extension of the Proposition.

Corollary 5.2. If n = § and every odd conuecting map is the identity, then
Proposition & applies to the even munbered connecting maps.

§6. Degree bounds for curvature continuous surfaces

We now apply the theorems developed in Sections 4 and 5 to estimate the
minimal degrec of polynomial pieces necessary for building free-form surfaces
that follow the outline of an irregular mesh. A mesh is irregular if neither the
degree of its vertices nor the number of vertices to a mesh cell is restricted.
To improve our chances of fitting a low degree surface we may decrcase the
combinatorial complexity of the input mesh by inserting a midpoint on every
edge and connecting the midpoints of a ccll to its centroid (see [3]). After this
refinement every original vertex is surrounded by vertices of degree four and
all cells are quadrilateral. To mimic the quartic C? hox spline with directions
e1, €1, €2, €2, €1 + ¢z, ¢; — e2 and keep the fotal degree of the surface pieces
low, we split each quadrilateral into four triangles and connect the patches
with the identity across the splitting edges.

Since we are interested in a worst case analysis, we can cook up the data.
In particular, let P be one of the mid points generated above surrounded
by 8 patches and with original mesh point neighbors P, i = 1..4. We may
assume that P; and P3 have different degree, but that the data at hoth points
are locally symumetric. That is, the data relevant to the determination of
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each connecting map are indistinguishable nunder rotation. Thus any rotation
mvariant construction must use uniform roots of the identity at P; and Ps.
At P, the data are not locally syminetric, but the degrees of freedom at P are
maximal when the hinear part of the connecting map is uniform. We therefore
proceed under the assumption of first order uniformity of the connecting maps
at P.

Let ¢; be the connecting map associated with the edge PP; and A;(v) :=
(D> QS?])(O,U). Then by Corollary 5.2 either A1 or Ay has to be at least
quadratic if (2.0-2.2) are to hold. For if both A; were linear, then their
derivative at P is determined differently depending on the number of patches
meeting at P; and thus a; # aj.

Now consider the two patches p(u, v) and ¢{u, v) with a common bound-
ary curve y(u) such that v(0) = P, and v(1) = P. Let 4 := ¢, be the
connecting map hetween p and g, A := A} be quadratic and choose the data
such that symmetry implies Do qu] = 1. If d 1s the degree of 4 then the left
hand side of the G' constraints (cf. [1]) is of degree d —1 32

ADyy = Dap+ Dag (G1)

and hence Dop and Dyg are formally of degree d + 1. We say formally, since
Dop and Dag could be degree-raised polynomials. The terms AD| Dgp and
AD:Dsp in the 2 constrats

DIp—Diq—AD\Dep+ AD1Dap = DaADap + DodlDyy  (Gy)

are therefore of degree d+1—142. Unless we have cancellation D2p and D3¢
must therefore be of degree d4 2 and , if none of the intermediate polynomials
are degree-raised, p and g must be of degree d + 4.

Based on Theorem 4 and Corollary 5.2, a curvature continuous surface
spline that matches the degree bound by generalizing the C? hox spline with
directions €1, ey, e2,e2,¢1 + ez, ¢, — ez and boundary curves of degree d = 4
has recently heen developed and implemented by the author.
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