
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1993

Distributed and Collaborative Volume Visualization Distributed and Collaborative Volume Visualization

Vinod Anupam

Chandrajit Bajaj

Daniel Schikore

Matthew Schikore

Report Number:
93-050

Anupam, Vinod; Bajaj, Chandrajit; Schikore, Daniel; and Schikore, Matthew, "Distributed and Collaborative
Volume Visualization" (1993). Department of Computer Science Technical Reports. Paper 1064.
https://docs.lib.purdue.edu/cstech/1064

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DISTRIBUTED AND
COLLABORATIVE VOLUME VISUALIZATION

Vinod Anupam, Chandrajlt Bajaj,
Daniel Schikore and Matthew Schikore

CSD-TR-93-050
August 1993

Distributed and Collaborative Volume Visualization *

Vinod Anupam Chandrajit Bajaj Daniel Schikore Matthew Schikoret

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907-1398

{anupam,drs,bajaj,mcs}@cs.purdue.edu

Tel: 317-494-6531, FAX: 317-494-0739

Abstract

We describe the design and implementation of a distributed volume rendering algorithm in our

distributed and collaborative software environment, called SHASTRA. The algorithm uses the compu

tational power of multiple networked workstations to speedily produce translucent shaded images of

extremely large volume data sets. The color graphics in SJTASTRA are built on top of XS, a machine

independent 3D-graphics and windows library, that runs on multiple platforms in a heterogeneous envi

ronment. We also describe a synchronously confereneed environment that we have built in SHASTRA to

support collaborative visualization, allowing multiple users to share and interact over a volume data set

while viewing multiple renderings with independent viewing directions, eutaways, shading parameters,

etc.

Keywords

Distributed Volume Rendering, Ray Casting, Collaborative Visualization, Teleoperation.

·Supported in part by NSF grants CCR 92-22467, DMS 91-01124, AFOSR grant F49620-93-10138, NASA grant NAG-l

1473 and a gift from AT&T
tW'hile at Purduc for tILC snmmcr of 1993 as an NSF-REU studcnt. Current addrcss is Departmcnt of Computer Sciencc,

Univcrsity of Iowa, Iowa City, fA 52242

1

1 Introduction

Interactive volume rendering is compute and memory intensive (5, 8, 3]. Distributed systems, riding on

current advances in computer processor and memory technology, and high speed networking, provide a

mechanism for effectively harnessing the total computational power of multiple workstations available

on a network. We have adopted a hybrid strategy to benefit [rom distributed systems. Distributing the

output of a high computal.ion task emphasizes sharing of resources among applications. In addition,

partitioning a high computation task, and distributing il., accords us the benefit of parallelism of distri

bution. The distributed system, thus, serves as a high-performance multi-user virtual machine for large

volume rendering computations and collaborative visualization.

Volume visualization is a very intuitive method for interpretation ofvolumdric data (8]. Measurement

based volumetric data sets arise from sampling e.g. medical imaging (Computed Tomography - CT,

Magnetic Resonance Imaging- MRI, Laser Surface Imaging - LSI), geological and geophysical measure

ments, 3D scanning, etc [4]. Synthetic volume data sets are generated by computer based simulation

and modelling - meteorological and thermodynamic simulations, finite element stress analyses, compu

tational fluid dynamics, molecular modclling etc. Volume visualization provides mechanisms to express

information contained in these, typically huge, data sets via images - the challengc, of course, lies in

making these images easy to understand. The volume visualization system we describe provides sev

eral ways of viewing volumetric data - cross sectional viewing, isosurface reconstruction, and direct

volume rendering using ray casting. It provides facilities for intcractive control and specification of the

visualization process.

Our goal is to depart from traditional single user systems and build computer-enhanced multi-user

collaborative scientific visualization and analysis environments. These CSCW cnvironments provide

support for collaboration in the problem-solving phase, as well as in the review phase. A synchronously

conferenced collaborative volume visualization environment lets multiple users on a network share a

volume data set, simultaneously view shaded volume renderings of the data, and interact with multiple

views, cutaways and iso-surfaces. In this paper we describe a distributed volume rendering algorithm and

the facilities for collaborative visualization, all implemented on top of the distribution and collaboration

mechanisms of SIIASTRA [1]. We also present specific implementation details together with timing

tradeoffs based on data set sizC5, number of workstations and network bandwith.

2 Distributed Volume Rendering

We present our approach to the volume rendering problem on a network of workstations and describe

an algorithm for volume rendering by distributed ray-casting on a rectilinear volume mesh, using the

distribution facilities of SHASTRA.

2

I

2.1 Ray Casting

Ray casting is a direct volume rendering algorithm in which sight rays are cast from the viewing plane

through the volume, accumulating the effects of sampled data encountered along their paths, see for e.g.

[11,9,7, la, 12]. The 'tracing' stops based on some termination criteria e.g. when opaque or visible

Yoxels are encountered, or when some accumulation threshold is crossed. The opacity accumulation is

based OIl a classification of the material which gives rise to the data values, see for e.g., [11, 12].

The basic process is as follows:

For each pixel p in the final image we compute the pixel color in the following manner. There exists a

prespecified opacity value ct with each Yoxel.

1. Compule the 3D world space line (ray) which maps to this pixel.

2. Intersect the world line with the volume to be rendered (typically a pyramid frustum, if there

are no cutaways) to compute the intersections of the line passing through the volume.

3. Perform a 3D-Bresenham (fronl (closest) point to back point) to determine the various voxel

intersections with the line. The data and opacity values of these voxels are used in the

subsequent color and opacity accumulation process.

4. Accumulation of pixel color is most natural back to front. For each voxel intersecting the linc,

accumulate newrgb = a*rgb+(l-o:)*oldl'gb giving a result of a1 *rgbl+(I-aj)*(a2*rgb2+

(l-a2) *(...)). However this leads to unnecessary work because a nearly opaque voxel near the

front cancels out all that is bchind it. Instead, accumulation is performed front to back, with

the use of a temporary variable temp to hold the current value of (1- (2) *(1-0:2) *(1-0:2)...

5. If temp reaches very close to 0.0 before casting lhe entire line, exit and store the value and

location of the last point. This is for shading calculations, because we have apparently hit a

predominant surface in the volume data (for e.g., when opacity is set high for bone densities).

6. If the surface value stored for pixel p is not zero, and the above color accumulation steps of

its adjacent pixels are done, then compute an approximate gradient at that point based on

the adjacent surface values stored, and shade the pixel based on this gradient.

2.2 Overview of the Distributed Algorithm

Rendering of volume data by ray casting is very amenable lo parallelization because different rays cast

into the volume are independent of each other. Distributed parallelism is achieved by partitioning the

final image space, and using separate processes to render different parts, by providing them wilh the

appropriate input volume data and visualization control parameters. We first divide lhe image space

into cells in order to distribute the task of rendering. We then compute the portion of the volume data

which needs to be distributed in order to render each cell in the image space. Servers are then assigned

cells of the image space to be rendered until the entire image is complete. We apply gradient shading

image cells using the z-buITer as an approximation to the gradient(6]. As adjacent cells become available,

gradient shading calculations for the common edges of cells can be completed. Since we partition based

3

I
j

i
[
I

Figure 1: Distributed Rendering of a 512 by 512 by 113 volume of a skull

Figure 2: Distributed Rendering of a 512 by 512 by 109 volume of a Human Head Cutaway

4

,
I
I,
I

!

Figure 3: Image Space Partitioning for Distributed Rendering of a 512 by 512 by 920 Human Cadaver

on the final image space, reassembly of computed information from the servers is trivial, since the pieces

of the final image returned by the servers are the needed results. Example renderings of a 512 by 512 by

113 volume of a skull and a 512 by 512 by 109 volume of a cutaway head, produced by the distributed

algorithm are shown in Figures 1,2.

The main steps of the distributed algorithm are as follows;

1. Subdivide image space into rectilinear (rectangular and orthogonal to the X and Y axes) cells to

be rendered by a server

• Divide into equal area cells.

• Adaptively divide image space based on the 'weight' of a cell.

2. Determine the portion of the volume which lies within a cell.

3. If there is an available server, send it the necessary data to render the cell.

1. When results are received from a server, store the colors in a pixmap and the depth values (to be

used for shading) in an array.

5. When results of adjacent cells are received, shade the image cell based on the depth values stored.

G. Repeat steps 2 to 5 till all image cells are processed.

2.3 Image Space Partitioning

The first step of the distributed rendering is to partition the image space into regions to be distributed

to the various servers. We consider the "weight" of a cell as the amount of volumetric data contained

5

Figure 4: Distributed Rendering of a 512 by 512 by 920 Human cadaver with Different Levels of Skin

Transparency

within the volume corresponding to the cell. Volume rendering requires evaluation at every point in the

data set, and computation time is thus proportional to this weight. The goals in dividing the image

space are to separate the image space into regions of roughly equal weight, and to balance the amount

of time needed to transmit data and render image cells such that hath the servers and the client remain

as busy as possible. Several methods, both adaptive and non-adaptive, have been explored.

In each Ca.<3e, we divide the image space into rectangles which are orthogonal to the screen coordinate

system. See Figure 3 which shows the graphical user interface. The easiest static method of defining

the cells is to divide the space into squares of equal size. This method is fast but has the disadvantage

or not being sensitive to the image size or the amount of data within the volume corresponding to the

cell. An adaptive method which takes both of these factors into consideration is the method of repeated

subdivision. In this method, we begin with a region the size of the image and subdivide in a quad tree

manner based on certain criteria. Using this method, we can guarantee a upper and lower bounds on the

amount of data to be sent to a server, and can balance the network transmission time with the server

rendering time.

G

Distributed volume rendered images of a 512 by 512 by 920 MRI data set of a human cadaver, Freddy,

are shown in Figure 4. The upper image shows a frontal view with bone viewed as opaque, and other

tissues visualized as being transparent, revealing the entire skeletal structure. The lower image shows a

dorsal view, with tissues assigned translucency values in relation to their density.

2.4 Input Volume Partitioning

To determine the portion of the data volume which is contained within an image cell, consider the world

space within a cell to be the intersection of four half spaces which are defined by four planes bounding

lhe volume from top, bottom, left, and right. We map the corners of the cell to 8 points in world space

which define these planes. Each slice in the volume is a polygon in a constant Z plane. We clip this

polygon by each of the planes bounding the cell to determine the portion of each slice contained in the

cell. Since we send only rectangular portions of slices, we take the bounding box of the clipped polygon

as lhe required data to be distributed.

2.5 The Distribution Infrastructure

All systems designed to run in the SHASTRA environment have certain features which make them

amenable to inter-operation. A typical system has an application specific core - the Application Engine

- which implements all the functionality offered by the system as a tool or service. On top of the Engine

is an Interface Mapper which actually calls upon functionality embedded in the engine in responsc to

requests from the interfaces - ASCII, GUI and Network Interfaces. Inter-system communication occurs

via their Network Interfaces. See Figure 5 which shows this architecture in a block diagram. The

SHASTRA layer, comprised of the network session and data communication substrates is the ether

that joins the network interfaces of various toolkits. This layer provides connection setup and multiple

connection management facilities in the distributed environment. It also implements the SHASTRA

data communication protocol for peer to peer communication. The set of connected application-object

interfaces of SIIASTRA toolkits comprise a distributed virtual machine over which distributed parallel

algorithms can be implemented, and synchronous conferences can be conducted,

2.6 Data Communication Optimizations

The data which is sent from client to server consists of rectangular portions of input data slices which

contain the region of the slice needed to render one of the partitions of the image space. We take

advantage of the fact that the data being transmitted between workstations contains large rcgions of

zero value by run-length encoding only the zeroes in the stream of input data values sent to the server

processes. In the worst casc, there may be numerous isolated zeroes which would be doubled by the

RLE encoding, but in practice with this method we have realized compression ratios of 4:1 to 10:1.

An important factor to take into consideration is the classic compute-communicate tradeoIT. Since

a large amount of data needs to be moved from the client to multiple servers, the local area network

7

Application
"' .

Interfaces

1'- G-;-u_I__-----'1 1'-_N_etw_o_'k..I_"t_e_rt_ac_e_---'1 ',-_A_S_C_IIrl"_te_rt_a_c_e_-,I

Functional Interface Mapper

Application Engine

..

Figure 5: Architecture of SHASTRA Applications

can easily geL congested. However, if we do noL send a large enough amoun~ of data, communicaLion

overhead dominates the to~al cost of distribution. A balance, therefore, needs to be struck bdween Lhe

two. In practice we have observed the balance to be sensitive to ambient network traffic. Our current

system runs on an ethernet (lOMbps), and would benefit greatly from deploymenL and use of very high

bandwidth network technologies like ATM.

2.7 Heterogeneity Issues

Tn a heterogeneous computing environment, SHASTRA applications achieve hardware independence

by building on top of high level abstractions, above the greatcs~ common denominator. We assume

the availabiliLy of the X Window System (XllR5) for user interfaces. Multi platform development is

cumbersome because high performance graphics plaLforms have different graphics models and APTs.

As a solution in SHASTRA, platform independence is achieved by building applications atop abstract

libraries which hide hardware specifics. These abstract libraries can be easily extended to standardized

interfaces as they evolve.

The XS graphics and windows library was developed to provide a machine independent interface

to routines for 3D graphics. The use of this abstraction provides us with source code level portability

across multiple platforms, without compromising on speed or quality of graphics [2J. The curren~ suite

of libraries supports graphics using XlI, SGIjGL, HPjSTARBASE and Windows 3.1.

Platform heterogeneity woes in the realm of data representation are obviated by using the SHASTRA

protocol for data transport, which uses XDR to encode data in a device independent manner.

8

,
,

I,
I

I

3 Shared Work Spaces

SHASTRA is a collaborative multimedia scientific manipulation environment in which experts in a co

operating group communicate and interact to solve problems. The SIIASTRA environment consists

of a group of interacting applications. Some applications are responsible for managing the distributed

environment (the Kernel applications), others are responsible for maintaining collaborative sessions (the

Session Managers), yet others provide specific communication services (the Service Applications), while

yet others provide scientific design and manipulation functionality (the SHASTRA Toolkits). Service

applications are special purpose lools for multimedia support - providing mecltanisms of textual, graph

ical, audiD and videD renditiDn and cDmmunicatiDn. Different tODls register with the environment at

startup providing infDrmatiDn about what kind of services they Dffer (Directory), and hDw and where

they can be cDntactcd for those services (LDcatiDn). The envirDnment provides mechanisms tD create

remDte instances Df applications and CDnnect to them in client-server mode (DistributiDn). In additiDn,

the envirDnment prDvides support fDr a variety of multi-user interactions (CDllabDratiDn). It prDvides

mechanisms fDr starting and terminating collabDrative sessions, and jDining or leaving them. The in

frastructure is described in detail in [1].

3.1 A Collaborative Visualization Tool

POLY is a 3-D rcndering and visualization tDDI in the SHASTRA environment. New SHASTRA toolkits

use POLY as their 3D graphics interface, since it iSDlates 3D graphics object manipulation, rendering and

visualizatiDn functionality. POLY provides a variety of mechanisms fDr visualizatiDn Dfmulti-dimensional

data. It understands a numbcr of graphical Dbject formats, which it CDnverts to an internal form for

efficient display and transport. It has a user interface that suppDrts manipulation of graphical objccts.

At its network interfaccs, POLY interoperates with Dther SHASTRA tDDlkits, and provides a very high

level abstractiDn fDr manipulation Df such data. The Motif based GUI is used to manipulate visualized

objects in multiple XS graphics windows.

The user interface of the visualizatiDn system is shown in Figure 6. The top image is a rendering of

the upper torsD Df Freddy. The skeletal structures are opaque and shaded, while the rest of the structures

have been assigned different levels of transparency. The bDttom image shows a surface rendering of a

human head with a cutaway Df the skull to shDw part of the brain surface.

The SHASTRA environment for collaborative visualization consists of a collectiDn of instances of

POLY. A cDllaborative session is initiated by Dne Df the POLY users in the environment. This user

becomes the group leader and specifies to the local Kernel the list of POLY users that will be invited tD

participate in the session, and becomes the grDup leader. The Kernel instantiates a Session Manager,

which starts a session with the group leader as its sale participant, and then invites the specified users

Df cDncurrently executing remDte POLY sessiDns tD participate. Users that accept arc incDrporated into

the session. Any POLY instance not in the conference can request admittance, and join. A participant

can leave an ongoing session at any time. Users can be dynamically invited tD join or removed from

9

I

Figure 6: Using the SHASTRA Application called POLY for Collaborative Visualization

conferences by the group leader or his designees.

The hybrid computation model for conferences in SHASTRA consists of a centralized Session Man

ager for each session, which regulates the activity of multiple instances of POLY. Though this model

suffers from problems of scale due to the centralized Session Manager, it performs well for typical group

si~es. An important benefH derived from the replication is in the realm of platform heterogeneity - the

application instances are responsible for dealing with particular platform idiosyncracies. In addition,

since the conference consists of cooperating applications, the notion of private and shared workspace

and private and shared interaction is easily supported. The centralization of the Session Manager for a

collaborative session accords us the benefit of centralized state. The Session Manager serves as a repos

itory of shared objects. This makes it easy to accommodate late joiners of sessions to come up to date

quickly. It also eases the task of serialization of input actions for multi-point synchronous interaction,

and constraint management for mutual consistency.

A permissions based, regulatory subsystem permits control of data flow at runtime, providing a

variety of interaction modes. Collaboration in SRASTRA can occur in the REGULATED (Thrn-taking

or Master-Slave) mode or in the UNREGULATED (Free Interaction) mode. In the REGULATED mode,

users take turns by passing a baton. The collaboration infrastructure of SHASTRA has a two tiered

permissions based regulatory subsystem used to control interaction primarily in the UNREGULATED

mode. SHASTRA permissions control 'Access' to a view of the conference, local viewing controls to

'Browse' a view, rights to 'Modify' conference state, and rights to 'Copy' shared objects.

10

Figure 7: One SHe in a Collaborative Visualization

The session manager allows only one user to manipulate "hot spots" in the shared space - where

there is a possibility of contention - at any particular instant. It uses the first-come-first-scrved paradigm

to decide which user gets temporary exclusive control. The baton passing facility of the system can be

used to take turns to adjust visualization parameters. Alternately, designers can use the auxiliary

communication channels - like audio, video, and text by initiating PHONE, VIDEO or TALK sessions

- to regulate access, and for arbitration. All operations are performed via the (central) session manager

which is responsible for keeping all sites up-ta-date, so that the users have a dynamically changing and

continuously updated view of the action in the shared windows.

3.2 Collaborative Volume Visualization

Every participating POLY instance creates a shared window in which all the cooperative interaction

occurs. Users introduce graphics objects into the session by selecting them into the Collaboration

Window. The Session Manager is responsible for providing access to the objects at all participating

sites which have the Access permission, and for permitting interaction relevant to the operation at

sites which have Modify permission for the collaboration. Collaborating users can twiddle visualization

modes and parameters, and adjust viewing modes and direction. The system provides telepointers in

the shared windows. It also provides indications of remote presence which describe the viewing location

of remote users in the collaborative session. Figure 7 and 8 depict two sites in a three way collaborative

11

Figure 8: Another Site in a Collaborative Visualization

visuali'lation. The entire rendering of Freddy is shared by all collaborating sites - they share the data

set, the viewing location, as well as visualization control parameters. The collaborators share data sets

and viewing location in the other two renderings of MRI data sets of the human head. However, they

use different cutaways to examine different parts of the data.

At one extreme, the SHASTRA implementation for Collaborative Visualization can be used by a

single user to perform scientific visualizations, just like in a non-collaborative setting. Allowing other

users to join the session with only Access and Browse permissions sets up the environment like an elec

tronic blackboard to teach novice users the basics of the process. An appropriate setting of collaboration

permissions and turn-taking can be used to allow hands on experience with the task. In conjunction

with the audio and video communication services of SHASTRA, this becomes a powerful instructional

environment. Collaborative sessions using POLY are a valuable tool for review and analysis of prob

lem solutions. Multimedia communication facilities permit a rapid exchange of rationales for choices,

interpretations of analyses and iterative improvement.

4 Implementation Details, Conclusions and Future Work

We have used the distributed and collaborative environment to render large data sets efficiently. Our

computing environment for the distributed rendering tasks consisted of an IRIS Indigo R4000 and Sun

12

4/50 (Spare IPX) workstations with 32Mb RAM, linked by a lOMbps ethernet. The data sets used

are stored on remote file systems, and are accessed through NFS. Preliminary measurements of total

time taken to render different volumetric data sets (made during conditions of normal network traffic)

arc very encouraging, and indicate that there is close to a linear speedup achieved by using multiple

workstations to render large volume data sets. (All numbers are whole seconds of real time the user has

to wait before the final image is available. Note that this includes network latencey, process swapping,

and NFS access time.) The skull data set (512 x 512 x 113 short integers, 56.5 Mb) was rendered on an

Tndigo in 255 seconds. Using only two remote servers, the rendering took HI5 seconds, and using only

four remote TPX servers it took 165 seconds. Corresponding times for the head data sets (512 x 512

x 109 short integers, 54.5 Mb) are 330 seconds, 300 seconds and 260 seconds respectively. Freddy, the

cadaver data set (512 x 512 x 920 short integers, 460 Mb), took 2340 seconds on an Indigo, 1640 seconds

using only two IPX servers, and 1390 seconds using four IPX servers.

We are currently fine tuning the distributed algorithm from the point of view of memory access

patterns to minimize swapping, and distributed data size to reduce network traffic and congestion and

load balancing to get better performance. Also, currently, multiple distinct views of the same volume

data set are rendered separately. We are adding an optimization that can be made when two views

differ only in the cutaways. We can identify the parts of the final image that are common to both views,

and render them only once. We are exploring other partitioning and distribution strategies in order to

further improve the speed of rendering. Specifically, we are in the process of integrating the distributed

rendering algorithm with the brokering and load balancing facilities of SJTASTRA, to make optimal use

of network computational power.

Acknowledgements We are grateful to the oFrcsearch centers of Johns Hopkins University (E. Fishman

and D. Ney) for the human cadaver data set Freddy, SUNY Stony Brook (A. Kaufman) for aile of the

human head sets, and the University of North Carolina for anonymous ftp aCCess to the skull and the

other human head data set.

References

[1] V. Anupam and C. Bajaj. Collaborative Multimedia Scientific Design in SHASTRA. In Proc. of

the ACM Mu/iimedia'99 Conference, pages 447-456. ACM Press, 1993.

[2] V. Anupam, C.Bajaj, A. Burnett, M. Fields, A. Royappa, and D. Schikore. XS: A Hardware

Independent Graphics and Windows Library. Computer Science Technical Report, CAPO·91-28,

Purdue University, 1991.

[3] B. McCormick, 1. DeFanti and M. Brown. Visualization in Scientific Computing. Computer Graph.

ics, 21:complete issue, 1987.

[4] B. Collins. Data Visualization. In R. Martin, editor, Directions in Geometric Computing, pages 31

80. Information Geometers Press, 1993.

13

[5] E. Farrel and R. Zappulla. Three dimensional data visualization and biomedical applications. eRC

Critical Reviews in Biome.dical Enginee.ring, 16(4):323-363,1989.

[6] D. Gordon and R. Reynolds. Image Space Shading of 3-Dimensional Objects. Computer Vision,

Graphics, and Image Processing, 29:361-376, 1985.

[7] J. Kajiya and B. Vol IIerzen. Ray Tracing Volume Densities. Computer Graphics, 18:165-174, 1984.

[8] A. Kaufman. Volume Visualization. IEEE Computer Society Press, New York, 1990.

[9] L. Harris, R. Robb, T. Yuen and E. Ritman. Non-invasive Numerical Dissection and Display of

Anatomic Features. In Recent and Future Developments in Medical Imaging. SPIE, 1987.

[10] M. Levay. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245-261,

HmO.

[11] R. Drebin, L. Carpenter and P. IIanrahan. Volume Rendering. Computer Graphics, 22:65-71\, 1988.

[12] P. Sabella. A Rendering Algorithm fro Visualizing 3D Scalar Fields. Computer Graphics, 22:51-58,

1988.

14

	Distributed and Collaborative Volume Visualization
	Report Number:
	

	tmp.1307986960.pdf.RWevv

