
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1993 

A Framework for Flexible Transaction Management in A Framework for Flexible Transaction Management in 

Multidatabase Systems Multidatabase Systems 

Aidong Zhang 

Omran Bukhres 

Ahmed Elmagarmid 
Purdue University, ake@cs.purdue.edu 

Report Number: 
93-038 

Zhang, Aidong; Bukhres, Omran; and Elmagarmid, Ahmed, "A Framework for Flexible Transaction 
Management in Multidatabase Systems" (1993). Department of Computer Science Technical Reports. 
Paper 1054. 
https://docs.lib.purdue.edu/cstech/1054 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


A Framework for
Flexible Transaction Management

in Multidatabase Systems

Aidong Zhang, Gmran Bukhres
and

Ahmed K. Elmagarmid

CSD-TR-93-038
July 1993



A Framework for Flexible Transaction Management

in Multidatabase Systems •

Aidong Zhang and Omran Bukhres and Ahmed K. Elmagarmid

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907 USA

Abstract

Global transaction management and the preservation of local autonomy present conflicts to

the design of multidatabase transaction management systems. A flexible transaction model for

the specification of global transactions has been proposed to enhance global transaction man­

agement while preserving local autonomy. This paper presents a theory of flexible transaction

management that is applicable in those situations where local database systems maintain only

serializability and rccovcrability. A fundamental characterization of the model and of the prop­

erties of flexible transactions is first olTered. The meaning of relaxed atomicity and isolation of

flexible transactions is precisely defined. We then investigate the principles offiexible transaction

management that are necessary for ensuring these properties. A class of flexible transactions,

which can be executed in the presence of failures, is constructed, and a new correctness criterion

is proposed. The results demonstrate that the flexible transaction model enhances substan­

tially the scope of global transaction management beyond that offered by the traditional global

transaction modeL

1 Introduction

A multldatabase system (MDBS) serves to integrate a set of local database systems (LDBSs) at

various local sites (LSs). The central concern of such an integration is the preservation of the local

autonomy of the component database systems. Such aspects of autonomy as design, execution, and

·This work was supported by a Purdue Research Foundation Fellowship and a grant from the Software Engineering

Research Center at Purdue University (a National Science Foundation Industry/University Cooperative Research

Center - NSF Grant No. ECD-8913133).

1



control have been studied in [LitS6, GMK88, BSS8, Pu88, DE89, Vei90, GRS91], and their impact

on multidatabase transaction management is discussed in [DEK90].

MDBSs process two varieties of transactions. A local transaction accesses a local database only

and is submitted directly to a local database system. A global transaction, on the other hand,

may access several local databases. Such a global transaction is submitted to a global transaction

manager (GTM), superimposed upon a set oflocal autonomous database systems, where it is parsed

into a series of global subtransactions to be submitted to the local database systems. A global

transaction management system serves to maintain the correct execution of global transactions,

while each local database system maintains the correct execution of both local transactions and

global subtransactlons at its site. The obstacles to global transaction management in MDBSs arlse

primarily from the constraints posed by the autonomy of local database systems.

A flurry of research activity has been devoted to the problems of the concurrency control and

atomic commitment of global transactions [PuS8, DE89, GRS91, MRKS92a, MRB+92]. The results

of these endeavors reveal the limitations of global transaction management when the traditional

global transaction model is employed in MDBSs. To increase the global applicability of MDBSs, an

extended transaction model, termed flexible transactions l , has been proposed [RELL90, ELLR90]

for the specification of global transactions. The fundamental characteristic of this model is its

provision of alternative choices for the execution of subtransactions of global transactions. Conse­

quently, the execution of global transactions becomes more resilient to failures, in that the aborting

of individual sub transactions may not prevent the whole global transaction from "successfully" exe­

cuting. A weaker concept of the atomicity of global transactions is thus permitted. The traditional

concept of the isolation of global transactions is also relaxed by allowing a global transaction to

reveal its partial effects of compensatable subtransactions to other global transactions prior to its

commitment. Since this model was proposed, much research has been devoted to its application

[LEB92, ARNS92, ANRS92, KPE92]. Most of this work has assumed the availability of prepare-to­

commit states [BHG87] at local sites. In such a scenario, the management of flexible transactions

is relatively straightforward.

In contrast to other well-defined extended transaction models, such as nested transactions

[MosSI], multi-level transactions [BSW88], and sagas [GMS87], the concept of relaxed atomicity

and isolation has only been vaguely defined in respect to flexible transactions. Flexible transac­

tion management in the MDBS environment thereby lacks a theoretical basis. Moreover, many

researchers have pointed out that some local database systems may not support prepare·to-commit

lOther extended transaction models, such as those appeared in [Eea92J, are also proposed. Since they axe not

approached particularly for the MDBS environment. We will noL discuss them further.

2



states. In these instances, a local database system that participates in a multidatabase environment

may unilaterally abort a global subtransaction without agreement from the global level (termed a

local unilateral abort). It may also be a violation oflocal autonomy to require such local database

systems to provide prepare-to-commit states. Thus, the demands of local autonomy considerably

increase the difficulty of ensuring that a single logical action (commit or abort) of a flexible trans·

action is consistently carried out at multiple local sites. In addition, even when the local database

systems do provide such support, the potential blocking and long delays caused by using prepare­

to-commit states would severely degrade local execution autonomy.

In this paper, we offer a precise definition of the fundamental model and of the properties of flexi­

ble transactions. We present a theory of flexible transaction management in the MOBS environment

in which the local database systems are required only to ensure serlalizability and recoverability

[BHG87]. In the proposed formulation, a flexible transaction is defined as a set of subtransactions

upon which a set of partial orders is specified. Each partial order provides one alternative to the

successful execution of the flexible transaction. This methodology differs from the previous ap­

proach in that no specific semantics of applications are involved. Thererore, a theoretical basis for

.flexible transaction management can be built. We then classify the set of flexible transactions that

can be executed in an error-prone MOBS environment. As compensation and retry approaches are

unified and employed as flexible transaction failure recovery techniques, local prepare-to-commit

states are no longer required. A new correctness criterion for the concurrent execution of flexible

transactions, termed compensating serializability, is also proposed, which prevents any inconsistent

partial effects of a flexible transaction to be seen by other flexible transactions. The results to

be presented demonstrate that the flexible transaction model enhances substantially the scope of

global transaction management beyond that offered by the traditional global transaction model.

This paper is organized as follows. Section 2 introduces the fundamental model and properties

of flexible transactions. In Section 3, we construct those flexible transactions that can he executed

in the error-prone MOBS environment without requiring local prepare-to-commit states. In Section

4, we discuss the effect of compensation on concurrency control of flexible transactions and propose

a new correctness criterion. Concluding remarks are offered in Section 5.

2 The System of Flexible Transactions

In this section, we precisely define the fundamental flexible transaction model that specifies global

transactions. This model is based upon the initial work proposed in [RELL90]. We then discuss

the properties of such flexible transactions.

3



2.1 Definitions

Following [BHG87, HadSS], a transaction is a partial order of read, write, commit, and abort

operations which must specify the order of conflicting operations and which contains exactly one

termination operation that is the maximum (last) element in the partial order. For the elements

of a transaction, we denote the four basic operations as follows: r(x),w(x),c, and a (possibly

subscripted), where r(x) and w(x) are read and write operations, and c and a are commit and

abort termination operations. We alternatively use r(x, v) (or w(x, v)) to denote an operation which

reads (or writes) a value v from (or to) data item x. Two operations conflict with each other if

they access the same data Hem and at least one of them is a write operation. A local transaction is

a transaction that is submitted directly to an LDBS. A global transaction, that is submitted to the

GTM, is defined as a set of subtransactions where each subtransaction is a transaction accessing

the data items at a single local site.

The concept of flexible transactions offers a more flexible extension of the above traditional

global transaction model. Each global application may be accomplished by a repertoire of alterna­

tive sub transactions, only a subset of which must be successful. The definition of flexible transac­

tions takes the form of a high-level applications description. Various applications semantics, such

as commit dependencies, abort dependencies, and the acceptable set of successful subtransactions,

are captured in the flexible transaction definition. Such a semantic-oriented formulation of flexible

transactions may not prevent redundancy in the dependency specification, and the structure of flex­

ible transactions cannot generally be depicted. Drawing a generic structure of flexible transactions

is thus necessary for the discussion of flexible transaction management.

In this section, we formalize the fundamental flexible transaction model. The strategy to be

used is similar to that of other extended transaction models, such as nested transactions [MosSI),

multi-level transactions [BSW8S], and sagas [GMS87J. We basically define each flexible transaction

as a set of subtransactions upon which a set of partial orders is specified. Each partial order of

subtransactions defines a possible execution of the flexible transaction.

Let T = {tll t2, ... , in} be a set of subtransactioDs. An ordering relation -<p on a subset TP of T

defines an irreflexive transitive relation on TP, with at most one subtransaction at each local site in

TP2. The pair (TP, -<p) is a partial order of subtransactions. The ordering relation -'<P specifies the

precedence and simultaneity of the execution of the subtransactions in TP. If tj -<p tj, then t; must

succeed before tj is executed; otherwise, tj and tj can execute simultaneously. A subtransaction

may involve more than one ordering relation. The chosen priority of these ordering relations must

2This is necessary since serializabiliLy will be used for the concurrency control of fiexible transactions [GPZ86].

4



be specified. For instance, if tj -<PI tj and tj -<1'2 tk and -<PI has higher priority than -<1'2' then tk

will be executed only when tj fails. Given a set P of ordering relations defined on the subsets of T,

we rank the chosen priority of these ordering relations by giving subscripts to the elements of P.

That is, if P = {-<Pl"'" -<Ph}' then, for 1 < i < j < h, the subtransactions that are specified by Pi

have higher priorHy to be chosen for execution than the subtransactions that are specified by Pj.

We call such ordering relations ranked ordering relations.

We now formally define flexible transactions as follows.

Definition 1 (Flexible transaction) A flexible transaction G = (T, P) consists of a set T of

subtransactions and a set P of ranked ordering relations, where each ordering relation in P is

defined on a subset ofT (forming a partial order). The successful execution of G is indicated by

the commitment of all and only the subtransactions in one partial order of G.

Semantically, an ordering relation specifies the execution dependencies (or control flow) among

the sub transactions of a flexible transaction. Correct parallel (simultaneity) and sequential (prece­

dence) execution among the subtransactions in each partial order of a flexible transaction are

therefore specified. In addition, multiple ordering relations to be defined on a flexible transaction

provide alternative control flows for the execution of the flexible transaction. To make the struc­

ture of a flexible transaction more visible, we also describe such execution dependencies of a flexible

transaction by a graph as follows:

Definition 2 (Execution dependency graph) An execution dependency gmph offlexible trans­

action G = (T,P), denoted EDG(G), is a directed gmph whose nodes are all subtransactions ofG

and whose edges are all t; ~ tj (ti, tj E T), where p ~ P is a set of ordering relatiorW such that

t; precedes tj in an ordering relation -<pE p and there £s no other subtransaction tk such that it

follows t; and precedes tj in -<po

We now consider an example which is given in [ELLR90].

Example 1 Consider a travel agent information system. A global transaction G1 in this system

may consist of the following subtasks:

• Customer calls the agent to schedule a trip.

• Agent negotiates with airlines for flight tickets.

• Agent negotiates with car rental companies for car reservations.

3For simplicity, we use p to refer to -<p in the execution dependency graph.

5



• Agent negotiates with hotels to reserve rooms.

• Agent receives tickets and reservations and then gives them to the customer.

Let us assume that) for the purpose of this trip, the only applicable airlines are Northwest and

United, the only car rental company is Hertz, and three hotels in the destination city are Hilton,

Sheraton and Ramada. The travel agent can then order a ticket from either Northwest or United

airlines. Similarly, the agent can reserve a room for a customer at any of the three hotels. Bcu;ed

on these observations, the travel agent may choose from the following subtransactions:

t1 : Order a ticket from Northwest Airlines;

t2: Order a ticket from United Airlines, iftl fails;

t3: Rent a car from Hertz;

t4: Reserve a room from Hilton;

ts: Reserve a room from Sheraton, ift4 fails;

t6: Reserve a room from Ramada, ift4 and ts fail.

In this example, t l and t2 are two alternative subtransactions for ordering a ticket. In this case,

t2 will be executed if subtransaction t1 fails to acMeve its objective. Similarly, t4, ts and t6 are

alternative subtransactions for reserving a room.

There are six ordering relations -<PI' -<P2,-<p3,-<p{'-<P5' and -<PlI that are defined on the subsets

of {t l , t2, t3, t.", ts, t6 }:

In EDG(G l ), we have:

, ,

-P'~
~

t,

o

Each sub transaction of a flexible transaction is either compensatable or non-compensatable. A

sub transaction is compensatable jf the effects of its execution at a local site can be semantically

6



undone, after it commits, by executing a compensating transaction. Cornpensatable sub transactions

play an important role in the flexible transaction management. A partial execution of a partial

order of sub transactions can be discarded only when the effect of its committed subtransactions

can be undone.

In each partial order of subtransactions, the data dependencies among operations in different

subtransactions define data flow among the subtransactions. Let flexible transaction G have sub­

transactions tl,t2,···,tn. We say that til is data-dependent on til'···,tj'_1 (1 .s il •...• it.s n),

denoted til -Ii tip ti2 -Ii til' '.', ti'_l -Ii tjn if the execution of one or more operations in tit is

semantically determined by the values read by til' ... , tit_I.

We have formulated two types of dependencies among the subtransactions of a flexible trans­

action: execution and data dependencies. In the remainder of this paper, we assume that these

dependencies are the only relationships in effect among the subtransactions of each flexible trans­

action.

2.2 Properties

In a manner simllar to traditional transactions, a flexible transaction must be a unit of consis·

tent and reliable computation. Thus, we must provide the means to justHy the consistency and

reliability of the execution of a flexible transaction. Traditionally, the ACID properties (atomicity,

consistency, isolation, and durability) [GraSl, HR83, OV91] have been advanced as the justification

of the consistency and reliability of transactions. While some of these properties are applicable to

flexible transactions, others are not. Clearly, the concept of atomicity must be relaxed for flexi­

ble transactions, since some subtransactions in one partial order of a flexible transaction may be

aborted while the flexible transaction as a whole succeeds. We formulate below the fundamen­

tal properties of flexible transactions that are necessary and sufficient for the justification of the

consistency and reliability of flexible transactions.

We first discuss the weaker concept of atomicity for flexible transactions. Although the tra­

ditional understanding of atomicity may no longer be required for flexible transactions, a certain

degree of atomicity must still be ensured to produce correct executions. That is, either all and

only the sub transactions in one partial order of a flexible transaction commit or none of the sub­

transactions of this flexible transaction does. Using a compensation approach, the compensatable

subtransactions in multiple partial orders of a flexible transaction can be executed and committed

simultaneously, as long as any partial effects of the flexible transaction will eventually be compen­

sated. Combining the semantics of compensation with the above weaker concept of atomicity of

7



flexible transactions, we define the semi-atomicity of flexible transactions as follows:

Property 1 (Semi-atomicity) A flexible transaction is semi-atomic if either all and only the

effects of its subtrnnsactions in one partial order or no partial effects of its subtransactions are

made permanent in local databases.

The traditional consistency property is inhedted by flexible transactions. Following the tra­

ditional approach, a database state is defined as a mapping of every data item to a value of its

domain, and the integrity constraints on these data items are used to define database consistency.

A database state is considered to be consistent if it preserves these database integrity constraints.

In a multidatabase system, there are two types of integrity constraints: local integrity constraints

are dermed on data items in a single local site, while global integrity constraints are defined on data

items in multiple local sites. A local transaction or a subtransaction of a flexible transaction is

locally consistent if it preserves local integrity constraints. As defined for traditional global trans­

actions, the execution of a flexible transaction as a single unit should map one consistent global

database state to another. Thus, a .flexible transaction must preserve both local and global integrity

constraints. However, to be different from the traditional global transactions, this consistency of

flexible transactions actually has to require that the execution of each partial order of subtransac­

tions must map one consistent global database state to another. We give the consistency property

of flexible transactions as follows:

Property 2 (Global consistency) A flexible transaction is globally consistent if the execution

of every partial order of subtransadions tmnsfers the global database from one consistent state to

another.

To this point, the concept of relaxed isolation has only been vaguely defined in respect to

flexible transactions. To achieve high concurrency on the execution of flexible transactions, it was

proposed in [ELLR90, Leu91, LEB92] to release the results of compensatable subtransactions of

a flexible transaction prior to the commitment of the flexible transaction. The issue is whether

a flexible transaction can see the intermediate results of another flexible transaction while both

are executing. In contrast to sagas [GMS87], a flexible transaction does not require that any of

its subtransactions alone preserve global consistency. Thus, any intermediate results of a flexible

transaction may be globally inconsistent. However, the results of compensatable sub transactions of

a flexible transaction which do preserve global consistency may be seen by other flexible transactions

before the flexible transaction commits. Such revealed partial results may eventually have to be

compensated. Section 4 contains more detailed discussion on this issue.

8



Property 3 (Flex-isolation) A flexible transaction is flex.isolated if it can reveal only its globally

consistent partial results to other flexible transactions_

The durability of flexible transactions may be defined as similar to the traditional concept. For

completeness, we provide it as follows:

Property 4 (Durability) A flexible transaction is durable it despite failures, the results of all

its committed subtransactions are made permanent in the database.

We say that a flexible transaction management scheme is correct if it guarantees the execution

of flexible transactions satisfying Properties 1-4.

As usual, the global consistency of flexible transactions is ensured by the writers of those

transactions, while the durability of subtransactions is ensured by LDBSs. The durability of flexible

transactions is therefore ensured. It is the responsibility of the GTM to ensure the semi-atomicity

and flex-isolation of flexible transactions. Since any intermecl.iate results of a flexible transaction are

generally not guaranteed to be globally consistent, we use serializability4 as the basic concurrency

control correctness criterion for the execution of flexible and local transactions. In the following

two sections, we shall investigate additional conditions that are enforced on flexible transactions

and their execution to preserve the semi-atomicity and flex-isolation.

3 Constructing Flexible Transactions for Ensuring Semi-atomicity

In this section, we focus on the preservation of the semi-atomicity of flexible transactions. We

will formulate those conditions on flexible transactions that are sufficient for them to be correctly

executed in an error-prone MDBS environment without requiring local prepare-to-commit states.

The results to be presented show that the flexible transaction model allows the GTM to run more

applications than does the traditional global transaction model.

3.1 Well-structured Flexible Transactions

We first introduce related concepts and then discuss the requirements on the execution dependencies

of a flexible transaction that are necessary to preserve its semi-atomicity.

The semi-atomicity of a flexible transaction requires that all and only those subtransactions

in one of its partial orders commit. As local prepare-to-commit states are not pre-assumed in

4In this paper, seria.lizability refers to conflict serializability [PapS6].

9



our scenario, a local database system may unilaterally abort a subtransaction without agreement

from the global level. As a result, it becomes difficult to ensure that a single logical commit

action of the subtransactions in one partial order of a flexible transaction is consistently carried

out at multiple local sites. To handle local unilateral aborts while ensuring the semi-atomicity of a

flexible transaction, the GTM may either re-execute its aborted subtransactions until they commit

(forward approach) [BST90, WV90, MRKS92a] or undo the effects of its committed subtransactions

(backward approach) [GM83, GMS87, LKS91a]. Approaches using forward recovery (redo and

retry) and backward recovery (compensation) have been proposed in the literature to address the

issue of preserving the semantic atomicity [GM83] of global transactions in MDBSs. In our scenario,

we focus our investigations upon a unification of the retry and compensation approaches for the

commitment of flexible transactions.

We further classify the non-compensatable sub transactions into two categories: retriable and

pivot subtransactions. A sub transaction is retriable if it can commit after a finite number of

resubmissions. A subtransaction is pivot if it is neither retriable nor compensatable.

In [MRKS92al, a basic multidatabase transaction model is proposed for the scenario in which

local database systems do not support prepare-to-commit states. This model formulates each

global transaction as the combination of a set of compensatable subtransactions, a set of retriable

subtransactions, and a single pivot subtransaction. Any of these three parts of a global transaction

is optional. Also, the subtransactions must not have any dependencies among them. Following

this global transaction model, the compensatable sub transactions must be committed before the

commitment of the pivot subtransaction, which in turn must commit before the commitment of

the retriable sub transactions. When the pivot subtransaction commits, the global transaction will

commit; otherwise, the global transaction aborts and all committed compensatable subtransactions

are compensated.

We now explore the extension of the above model to flexible transactions. Let flexible trans­

action G = (T, P) have subtransactions it, t2, ... , tn. Clearly, if t; -<p tj in --<p of P, then the

commitment of t; must precede that of tj. We say that a partial order (TP I -<p) of G is primi­

tive if TP includes at most one pivot subtransaction; for any subtransaction tj preceding the pivot

subtransaction in -<p, tj is a compensatable subtransaction; and for any subtransaction tj follow­

ing the pivot subtransaction in -<p, tj is a retriable subtransaction. Using compensation and retry

approaches similarly to [MRKS92a], the semantic atomicity of a primitive partial order of subtrans­

actions can be preserved. However, to preserve the semi-atomicity of a flexible transaction, it is

not necessary to require that all partial orders of a flexible transaction be primitive. The following

example is illustrative:

10

f
1



Example 2 Assume that a flexible transaction Gt = (Tt , Pt) is defined by the following execution

dependency graph:

Suppose that tt and t2 are compensatable and i3 is pivot. If t4. is either compensatable or pivot,

then (T{1, -'<Pl) and (Tj3, -'<P3) are not primitive. If tt and t3 have already committed, and then

t4. aborts, the partial effects of (Tr ,-'<Pl) cannot be undone. However, the execution of t4 can be

replaced by the execution o/ts. As long as ts is retriable, Gl can be committed. 0

We now formulate those conditions on the execution dependencies of a flexible transaction which

are necessary for preserving its semi-atomici ty.

Let G = (T, P) be a flexible transaction and (TP, -'<p) be a partial order of G. We select a pivot

subtransaction in TP as the principal pivot subtransaction of TP if it is a pivot subtransaction in

TP such that no other pivot or retriable sub transaction precedes it in -'<P' A subtransaetion t; in

TP is abnormal if one of the following conditions is satisfied:

• tj is a compensatable subtransaction and there is a pivot or retriable sub transaction tj in TP

such that tj -'<P tji or

• tj is a pivot subtransaction, but not a principal one.

Otherwise, tj is a normal subtransaction. Obviously, all subtransactions in a primitive partial order

are normal. A principal pivot sub transaction is also normal. Following the above definition, we

see that only a compensatable or pivot subtransaction may be an abnormal subtransaction. Let

(TP, -.<p) be a partial order of subtransactions that is not primitive. When a pivot or retriable

sub transaction commits, the effect of (TP, -.<p) in the database can no longer be undone. Thus, in

case any abnormal subtransaction ti E TP aborts, appropriate actions must be sought to continue

the execution of G. By utilizing the flexibility of flexible transactions, if there is an alternative

subtransaction whose execution can semantically replace the execution oft;, then the semi-atomicity

of G may still be preservable. To formalize such flexible transactions, we define well-structured

flexible transactions as follows:

Definition 3 (Well-structured flexible transaction) A flexible transaction G = (T, P) is well·

structured if, for each abnormal subtransaction tj participating in (TPm, -'<Pm) (-'<Pm E P), there is

11



an alternative subtmnsaction tj participating in (TPn, -<Pn) (-<Pn E P) such that the aborting of t;

will lead the execution of G to tj without resulting in any database inconsistency.

Following Definition 3, for any abnormal subtransaction in a. partial order (TPm, -<Pm) of a well­

structured flexible transaction, there is one or more alternative subtransactions in another partial

order (TPn, -<Pn) that perform the equivalent function. This also implies that, in a flexible transac­

tion, any partial order such that there is no alternative subtransaction for its subtransactions must

be primitive. Hence, there must be at least one primltive partial order in a well-structured flexible

transaction. For instance, in Example 2, to ensure G1 is well-structured, t<j can be compensatable,

pivot, or retriable. However, ts must be retriable. Hence, (T[I'-<Pl)' (Tf,-<P:I)' and (Tr,-<p3)

may not be primitive, but (Tr, -<p~) must be primitive.

Because a partial order of subtransactions that is not primitive is permitted, a well· structured

flexible transaction extends the scope of global transactions that can be specified in the MDBS

environment in contrast to the basic multidatabase transaction model proposed in [MRKS92a].

3.2 Recoverable Flexible Transactions

We now discuss the additional conditions on data dependencies of well-structured flexible transac­

tions which are necessary for preserving their semi-atomicity.

Following [BHG87, Had88l, we define a schedule over a set of transactions as a partial order of

the operations of those transactions which orders all conflicting operations and which respects the

order of operations specified by the transactions. A local schedule Sk is a schedule over both local

transactions and global subtransactions which are executed at local site LSk. A global schedule S

is a schedule over both local and global transactions which are executed in an MDBS. We denote

01 <8 02 if operation 01 is executed before operation 02 in schedule S. In the following discussion,

we assume that all global transactions in 9 are well-structured flexible transactions.

We have shown that, when subtransactions in a partial order of a flexible transaction can be

executed in parallel, the types of subtransactions are used to determine their commitment order for

preserving the semi-atomicity. For those subtransactions which are retriable, we also observe here

that data dependencies must be considered in determining their commitment order. By definition,

the retriability of a subtransaction is purely determined by its semantics. In [MRKS92a], because

there are no dependencies between subtransactions, the retrial of a subtransaction has no effect on

the execution of other sub transactions. However, in our context, the retrial of a subtransaetion may

also have effect on the commitment order of other subtransactions because of data. dependencies

among the subtransactions. For instance, let us assume that t1 -+d t2 and t 1 is retriable. Suppose

12



that t2 commits, and tl aborts and then it is retried. A local transaction may be executed after

t1 is aborted but before it is retried at its local site, which may result in inconsistencies between

the data read from the original execution of tl and from its retrial. As a result, an inconsistent

database state may occur.

Let G = (T, P) be a well-structured flexible transaction and ti in T be a retriable subtransaction.

To ensure that the retrial of ti does not result in any database inconsistency, when a subtransaction

tj is data-dependent on ti, the commitment of tj must precede that of tj. Thus, if the retrial of

tj leads to a result which is different from that of its original execution, then tj that has read the

data from the original execution of tj may be aborted and re-executed. Consequently, each retri­

able sub transaction remains retriable without resulting in any database inconsistency as long as all

other subtransactions that are data-dependent upon it have not committed. We formulate below

the concept of commit dependency that is defined on two subtransactions in a partial order, jncor­

porating all effects of data dependencies, execution dependencies, and the types of subtransactions

on the commitment ordering of the subtransactions.

Let t; and tj be two subtransactions in a partial order (TP,-<l'). We say that tj is commit·

dependent on ti, denoted tj -e tj, if one of the following conditions is satisfied:

• tj.-<p tji

• t; -rl tj and t; is retriable;

• ti is normal and compensatable, and tj is either pivot or retriable; or

• t; is normal and pivot, and tj js either pivot or retriable.

Clearly, to preserve the semi-atomicity of a flexible transaction by using compensation and retry

approaches, the commitment order of the sub transactions in a partial order of a flexible transaction

should follow their commit dependencies. We formulate tills property in global schedules as follows:

Definition 4 (Intra-recoverability) Let g be a set of well-structured flexible transactions. A

global schedule S is intra-recoverable if, for each flexible transaction G in g, and any two subtrans­

actions t; and tj oj G in S such that tj ---+e tj, Ctj E S implies Cti <5 CIF

Following Definition 4, if a global schedule S js intra-recoverable, then each subtransaction in

S can only commit after all subtransactions upon which it is commit-dependent have committed.

Thus, if a normal and non-retriable subtransaction aborts, then only compensatable subtransac­

tions may have been committed. These partial effects are therefore compensatable. IT a retriable

or abnormal subtransaction aborts, then the execution of the flexible transaction can either pro­

ceed by retrying the aborted subtransaction or by switching to the execution of an alternative

13



subtransaction. Hence, the semi-atomicity of flexible transactions in g is always preservable.

The maintenance of the intra-recoverability of global schedules at the global level is determined

by the characteristics of commit dependencies defined on the sub transactions in each partial order.

Such dependencies can be described by a graph as follows:

Definition 5 (Commit dependency graph) A commit dependency graph of a partial order (TP, -<p

) of a flexible transaction G = (T, P), denoted CDG(Tp, -<1'), is a directed graph whose nodes are

all subtransactions of TP and whose edges are all ti --+ tj (ti, tj E TP) such that tj -+e tj.

The acyclicity of commit dependency graphs of partial orders provides a sufficient condition for

maintaining global schedules as intra-recoverable. More precisely, we have the following theorem:

Theorem 1 Let g be a set of well~structured flexible transactions. If, for each G = (T, P) in

g, CDG(TP,-<.p) is acyclic for all-<p in P, then the intra-recoverability of global schedules can be

ensured.

Proof: Assume that, for each G = (T,P) in g, CDG(TP,-<p) is acyclic for alI-<p in P. Then,

[or any Gj = (Ti,Pd in g and -<pE Pi, CDG(Tf,-<p) may be topologically sorted. Without

loss of generality, let tl , , tm be the nodes of CDG(Tf, -<p) and il, ... ,im be a permutation of

1,2,... ,m such that tjIlth, ,tim is a topological sort of CDG(Tf,-<p). This order ensures that

the commitment orders of these sub transactions in a global schedule conform to the definition of

intra-recoverability. To illustrate this, let tl and tk be subtransactions in Tf such that tk --+e t/. By

the definition of CDG(Tf, -<p), tk --+ tl is an edge in CDG(Tf, -.<p). Thus, tk must appear before tl

in the topological sort tj] ,ti'l' '.', tim' If the commitment order of all subtransactions in Tf follows

the order Oftil ,ti2' ... , tjm in global schedule S, then the commitment of tk precedes that ort, in S.

Hence, S is intra-recoverable. 0

We define recoverable flexible transactions as follows:

Definition 6 (Recoverable flexible transaction) A well-structured flexible transaction G

(T,P) is recoverable if, for all-<p in P, CDG(IP,-<.p) is acyclic.

Thus, if all flexible transactions are recoverable, then the intra-recoverability of global schedules

can be ensured. Consequently, the semi-atomicity of the flexible transactions is preservable.

Clearly, all global transactions that follow the basic multidatabase model IMRKS92a] are also

recoverable flexible transactions. In addition, the recoverable flexible transactions permit alterna­

tive execution dependencies and data dependencies to be defined in flexible transactions. The scope

of global transactions that can be specified in the MDBS environment is therefore extended.

14



The retrial of the retriable subtransactions may also render unavoidable the non-serializable

execution of flexible transactions, an unacceptable situation when serializability is required for the

execution of flexible transactions. For instance, let flexible transaction Gt have retriable subtrans­

actions tt : w(a) and t2 : w(c) at LSt and LS2 respectively, and :flexible transaction G2 have retriable

subtransactions t3 : wen) and t4 : w(c) at LS t and LS2 respectively. The following global schedule

is then serializable:

Suppose that tt and t4 successfully commit, but t2 and t3 are aborted before C!2 and Ct3 are executed

due to failures at local sites LSt and £S2. At this point, the global schedule becomes:

81 : Wtl (a)wt t (C)Ctl Cit'

The subtransactions t2 and t3 cannot be Ie-executed without causing the execution of flexible

transactions G t and G2 to be non-serializable. This difficulty may be solved by maintaining the

commitment order of subtransactions at each local site as identical to their serialization order. We

formulate this property in the global schedule as follows:

Definition 7 (Inter-recoverability) A global schedule S is inter-recoverable if, for any two sub­

transactions tj and tj of different flexible transactions of g at local site LSk, tj i.s serialized before

tj and Ctj E S implies Cti <s Cti'

Based upon the above discussion, a commltment protocol that maintains the intra-recoverability

and inter·recoverability of global schedules can be designed at the global level. Such a protocol

would control the submission of commit operations of sub transactions consistent with their commlt

dependencies and serialization orders. Such control of the commitment order of global subtrans­

actions will not conflict with local recoverability, which is pre·assumed in our scenario. Consider

tt and t2 be two subtransactions at local site LSk, with tt reading data item a from t2 (BHG87].

There then exist wt(a) E tt and T2(a) E t2 such that wt(a) <s T2(a). tt must then be serialized

before t 2 • The GTM must therefore control Ctl <s Cb to maintain the inter-recoverability of S.

At local site L8k , following local recoverability, tt reading from t2 [BHG87] implies Ctl <Sk Ct2. A

detailed discussion of such a protocol is beyond this paper and is not presented here.

4 Correctness of Global Schedules

In this section, we illustrate the necessity of preventing other flexible transactions from seeing the

partial effects of a flexible transaction that is not guaranteed to be globally consistent. We also

15

i

I
i

I

I



formulate a new correctness criterion for the concurrency control of flexible transactions. The

effect of compensation on serializability is carefully analyzed. We assume here that all flexible

transactions are recoverable.

We say that a subtransaction in global schedule S is compensated-for if it has committed in S

and its effects need to be compensated. A flexible or global transaction Gj in global schedule S is

compensated-for if it has compensated-for subtransactions in S. Thus, a compensated-for flexible

transaction has some partial effects in local databases. However, it may already have committed

all of the subtransaetions in one of the partial orders of Gj.

Similarly to IMRKS92a], we consider a compensating transaction CGi for flexible transaction Gj

as a separate global transaction from Gi. CG j consists of compensating subtransactions that com­

pensate the compensated-for sub transactions of Gj to restore the database consistency. Moreover,

CCi should always be serialized after Gi in global schedules. Each compensating subtransaction

must be retriable, since it does not make any sense to abort it [KLS90]. Each compensating sub­

transaction Cti for a compensatable subtransaction ti must also be independent of the transactions

that execute between ti and etj [MRKS92aj. Such independence is not required in the traditional

concept of compensating transactions, as no uncontrolled interleaving of local transactions in the

execution of global transactions occurs in that context. Local autonomy here requires that arbi­

trary local transactions must be executable while the compensating actions fOT a compensated-for

flexible transaction are processed.

Following from Section 3, when a pivot or retriable subtransaction of a flexible transaction com­

mits, all sub transactions in the partial order of the flexible transaction that include this committed

subtransaction will commit. Consequently, the effect of this committed subtransaction must be part

of the globally consistent state, and the effect can be seen immediately by other local or flexible

transactions. However, when a compensatable subtransaction commits, it is not certain whether

it will need to be compensated. If it does, then the results of this sub transaction are part of the

partial effects that may not be globally consistent. Clearly, local transactions can see such partial

effects of a compensated-for flexible transaction because the execution of a sub transaction always

preserves local database consistency. The question now is whether other flexible transactions can

see such partial effects of a compensated-for flexible transaction.

In [KLS90j, a formal discussion is provided to analyze the situations in which a transaction may

see the partial effect of another transaction before these partial effects are compensated. It is then

generally elaborated in [LKS91a, LKS91 bJ that a global transaction should not be affected by both

aborted and successful subtransactions of another global transaction. Otherwise, an inconsistent

database state may be seen. A concurrency control correctness criterion, termed serializability with

16



respect to compensation (SRC), is further proposed in [MRKS92a] to preserve database consistency

with the execution of global transa.ctions which have no any type of dependencies among subtrans­

actions in the MDBS environment. This criterion prohibits any global transaction that is serialized

between a compensated-for global transaction Gi and its compensating global transaction CGi to

read from the local sites at which Gj aborts. However, this criterion is not applicable to a situation

in which there are data-dependencies defined on global transactions [MRKS92b]. The following

example is illustrative:

Example 3 Consider an MDBS consisting of three LDBSs on Dl , DZI and D31 where data item

a is in Dl , data item b is in DZ1 and data item c is in Da. Let the integrity constraints be a < c,

b < c, and a = b. Let a global transaction Gl con.sist of two subtransactions:

", T(a)w(a,a-1),

" 'T(b)w(b,b - 1).

Let another global transaction Gz be:

'3'T(a),

t4: w(c,a+ 1).

Consider an execution of GI that results from database state a = 3, b~ 3, c = 5, where tl commits

and t2 aborts and G2 executes after GI . A compensatable transaction CGI : r(a)w(a,a+ 1), which

is independent ofGzl then undoes the effect oftl . GI , G2, and CGI are serializable in the order

GI -+ Gz -+ CGI. G2 does not see any effect from the local site where Gl aborts. However, the

resulting database state l which is a = 3, b = 3, c = 31 is obviously inconsistent. Note that t.1 is

data-dependent on ta. 0

Because a traditional global transaction is a special case of a flexible transaction, following Ex·

ample 3, we see that even though flexible, compensated·for flexible, and compensating transactions

are serializable and only the commltted portion of a compensated-for flexible transaction is seen

by other flexible transactions, global database consistency might not be retained. Thus, the partial

effects of a compensated-for flexible transaction which is not guaranteed to be globally consistent

should not be seen by other flexible transactions before its compensating transaction is executed.

The results of such a subtransaction should be held from being seen by other flexible transactions

untll its effect is compensated.

Thus, we have clarified that releasing arbitrarily the effects of compensatable subtransactions

prior to the commitment ofthe flexible transaction may not be appropriate. To permlt as much con­

currency as possible on the execution of flexible transactions and their compensating transactions,

17



the flex-isolation of flexible transactions permits the effects of those compensatable subtransactions

which are globally consistent to be seen by other fiexible transactions before they are compensated.

Let RC(G) denote the set of data items that G reads and commits, and let WC(G) denote the

set of data items that G writes and commits. Let G~ denote G j restricted to the compensated­

for sub transactions which do not guarantee global consistency. A concurrency control correctness

criterion, termed compensating serializability, is defined as follows:

Definition 8 (Compensating serializability) A global schedule S is compensating serializable

if 5 is serializable and, for any flexible transaction Gj which is serialized between a compensated-for

flexible transaction Gj and its compensating transaction CGj in 5, WC(G~) n RC(Gj) = 0.

Thus, in a compensating serializable global schedule, any partial effects of a compensated-for

flexible transaction that are not globally consistent will not be seen by other flexible transactions.

As a result, each flexible transaction always sees a consistent global database state. We have the

following straightforward lemma:

Lemma 1 Every flexible transaction in a compensating serializable global schedule sees a consistent

global database state.

Since a subtransaction of a flexible transaction is also treated as a local transaction at a local

site, its execution always results in a consistent local database state. Therefore, a local transaction

always sees a consistent database state. Thus, all transactions in 5 see consistent database states.

We claim that a compensating seriaUzable global schedule S always results in a consistent global

database state. This is stated and proved succinctly in the following theorem:

Theorem 2 A global schedule S that is compensating serializable preserves global database consis­

tency.

Proof: Since S is serializable, we assume that S is conflict equivalent to a serial schedule S'

[BHG87J. By the semantics of compensation, the partial effects of compensated-for subtransactions

in S' are semantically compensated by their compensating subtransactions and any inconsistency

caused by these compensated-for subtransactions are restored. Let 5" be S' restricted to the trans­

actions that are neither compensated-for sub transactions nor their compensating subtransactions.

Thus, 8" consjsts of only traditional atomic local transactions [BHG87] and semi~ato.mic flexible

transactions, if each transaction in S" sees a consistent database state, then Sf! preserves the global

database consistency. Since all local transactions or global subtransactions at each local site in

18



81/ either commit or abort, every local transaction sees a consistent local database state. Follow­

ing Lemma 1, every flexible transaction also sees a consistent global database state. Hence, 8"

preserves the global database consistency. 0

Note that, in practice, many compensatable subtransactions do preserve global consistency

individually. For instance, in Example 1, both tt and t2 are compensatable. Moreover, they are

globally consistent subtransactions.

Several issues relate to enforcing compensating serializability. Similarly to sagas [GMS87],

from the point of an application programmer, a mechanism is required for informing the system

of the beginning and end of a compensatable subtransaction of a flexible transaction that can

independently reveal its results to other flexible transactions. As compensating serializability im­

plies global serializability, at least the global serializability must be ensured. Much research of

both a theoretical and a practical nature has been directed to maintaining global serializability

[GRS91, BGMS92, MRB+92, ZE93]' Many of the proposed approaches are applicable to oUI sce­

nario. Moreover, a variation of the strict two· phase locking protocol can be designed at the global

level to enforce the condition WC(G~) n RC(Gj) = 0 proposed in Definition 8. The main idea is to

associate each data item with a global read lock and a global write lock at the global level. When a

subtransaction of a flexible transaction wishes to access a data item at a local site, it must obtain a

global lock on the data item from the GTM before this operation is submitted to the local site for

execution. For the execution of those compensatable subtransactions which do not guarantee global

consistency, their global write locks either must be held until all related subtransactions in the same

partial order are committed, or they must be transferred to their compensating sub transactions.

The discussion of the implementation details lies beyond this paper and is not presented here.

5 Conclusions

Global transaction management in an error-prone MDBS environment has been recognized as a

substantial and as yet unresolved issue if the component local database systems do not support

prepare-to-commit states. We have advanced a framework for flexible transaction management in

the MDBS environment in which local database systems are required to maintain only serializability

and recoverability. This framework includes the definition of the fundamental model and of the

properties of flexible transactions, the classification of the flexible transactions that can be executed

in the presence of failures, and the proposal of a new correctness criterion.

The most important properties of flexible transactions, namely, semi·atomicity and flex-isolation,

have been precisely defined. By ensuring these properties, flexible transactions become more reo

19



silient to failures than the traditional global transactions. Also, more concurrency on the execution

of flexible transactions can be achieved by releasing the partial effects of compensatable subtrans­

actions prior to the commitment of the flexible transaction. Flexible transaction management is

achieved by using compensation and retry approaches to ensure semi-atomicity and by maintaining

compensating serializability on the concurrent execution of flexible transactions to ensure fiex­

isolation. Local prepare-to-commit states are thus not required. The construction of recoverable

flexible transactions that are executable in the error-prone MDBS environment demonstrates that

the flexible transaction model indeed enhances the scope of global transaction management beyond

that offered by the traditional global transaction model.

References

[ANRS92] M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth. Using Flexible Transactions to

Support Multi-System Telecommunication Applications. In Proceedings of the 18th

VLDB conference, Vancouver, Canada, August 1992.

[ARNS92J M. Ansari, M. Rusinkiewicz, L. Ness, and A. Sheth. Executing Multidatabase Transac­

tions. In Proceedings of the 25th Hawaii International conference on System Sciences,

Hawaii, January 1992.

[BGMS92] Y. Breltbart, H. Garcia-Molina, and A. Silberschatz. Overview of multidatabase trans­

action management. The VLDB Journal, 1(2):181-239, October 1992.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Databases Systems. Addison-Wesley Publishing Co" 1987.

[ES88] Y. Breitbart and A. Silberschatz. Multidatabase update issues. In Proceedings of the

ACM SIGMOD Conference on Management of Data, pages 135-142, June 1988.

[BST90] Y. Breitbart, A. Silberschatz, and G. Thompson. Reliable transaction management in

a multidatabase system. In Proceedings of the ACM SIGMOD Conference on Man­

agement of Data, pages 215-224, May 1990.

[BSW88] C. Beeri, H. Schek, and G. Weikum. Multi-level transaction management, theoretical

art or practical need? In Proceedings of the International Conference on Extending

Database Technology, pages 134-154, March 1988.

20



[DE89] W. Du and A. Elmagarmid. Quasi Serializability: a Correctness Criterion for Global

Concurrency Control in InterBase. In Proceedings of the 15th International Conference

on Very Large Data Bases, pages 347-355, Amsterdam, The Netherlands, August 1989.

[DEK90] W. Du, A. Elmagarmld, and W. Kim. Effects of Local Autonomy on Heteroge­

neous Distributed Database Systems. Technical Report ACT·OODS-EI-059-90, MeC,

February 1990.

[Eea92] Ahmed K. Elmagarmid and et. aI. Database Transaction Models for Advanced Appli­

cations. Morgan Kaufmann Publishers, 1992.

[ELLR90] A. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz. A Multidatahase Transac­

tion Model for InterBase. Tn Proceedings of the 16th International Conference on Very

Large Data Bases, pages 507-581, Brisbane, Australia, August 1990.

[GM83] H. Garcia·Molina. Using Semantic Knowledge for Transaction Processing in a Dis­

tributed Database. ACM Transactions on Database Systems, 8(2):186-213, June 1983.

[GMK88] H. Garcia-Molina and B. Kogan. Node Autonomy in Distributed Systems. In Proceed­

ings of the First International Symposium on Databases for Parallel and Distributed

Systems, pages 158-166, 1988.

[GMS87]

[GPZ86]

[Grail!]

[GRS9!]

[Rad88]

[RR83]

H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the ACM Conference on

Management of Data, pages 249-259, May 1987.

V. Gligor and R. Popescu-Zeletin. Transaction management in distributed heteroge­

neous database management systems. Information Systems, 11(4):287-297,1986.

J. Gray. The transaction concept: Virtues and limitations. In Proceedings of the

International Conference on Very Large Data Bases, pages 144-154, Cannes, France,

September 1981.

D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. On serializability of multidatabase

transactions through forced local confiicts. In Proceedings of the 7th Inti. Conf. on

Data Engineering, pages 314-323, Kobe, Japan, April 1991.

V. Hadzilacos. A theory of reliability in database systems. Journal of the Association

for Computing Machinery, 35(1):121-145, January 1988.

T. Haerder and A. Reuter. Principles oftransaction-orlented database recovery. ACM

Computing Surveys, 15(4), July 1983.

2!



[KLS90]

[KPE92)

[LEB92]

H. Korth, E. Levy, and A. Silberschatz. A Formal Approach to Recovery by Com­

pensating Transactions. In Proceedings of the 16th International Conference on Very

Large Data Bases, Brisbane, Australia, August 1990.

Eva Kuhn, Franz Puntigam, and Ahmed Elmagarmid. An execution model for dis­

tributed database transactions and its implementation in VPL. In A. Pirotte, C. Dela­

bel, and G. Gottlob, editors, Lecture Notes in Computer Science, Advances in Database

Technology - EDBT '92, pages 483-498. Springer-Verlag, 1992. Proceedings of the

3rd International Conference on Extending Database Technology, Vienna, Austria,

March, 1992.

Y. Leu, A. EImagarmid, and N. Boudriga. Specification and execution of transactions

for advanced database applications. Information Systems, 17(2), 1992.

r,

(Leu91] Y. Leu. Flexible Transaction Management in the InterBase Project. PhD thesis,

Department of Computer Science, Purdue University, May 1991.

[Lit86J W. Litwin. A multidatabase interoperability. IEEE Computer, 19(12):10-18, Decem­

ber 1986.

[LKS91a] E. Levy, H. Korth, and A. Silberschatz. An optimistic commit protocol for distributed

transaction management. In Proceedings of the ACM SIGMOn International Confer­

ence on Management of Data, Denver, Colorado, May 1991.

[LKS91b] E. Levy, H. Korth, and A. Silberschatz. A theory ofrelaxed atomicity. In Proceedings

of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,

August 1991.

[Mos81] J. E. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.

PhD thesis, Department of Electrical Engineering and Computer Science, MIT, 1981.

[MRB+92] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. The concur­

rency control problem in multidatabases: Characteristics and solutions. In Proceedings

of the ACM SIGMOn Conference on Management of Data, pages 288-297, 1992.

[MRKS92a] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. A transaction model

for multidatabase systems. In Proceedings of International Conference on Distributed

Computing Systems, June 1992.

22



[MRKS92b] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. A transaction model for

mnltidatabase systems. Technical Report TR-92-14, University of Texas at Austin

Department of Computer Science, 1992.

[OV91] M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems.

Prentice Hall, Inc., 1991.

[Pap86] C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science

Press, 1986.

[Pu88] C. Pu. Superdatabases for composition of heterogeneous databases. In Proceedings of

the International Conference on Data Engineering, pages 548-555, February 1988.

{RELL90] M. Rusinkiewicz, A. Elmagarmid, Y. Leu, and W. Litwin. Extending the Transaction

Model to Capture more Meaning. ACM SIGMOD Record, 19(1):3-7, March 1990.

[Vei90J

[WV90]

[ZE93]

J. Veijalainen. Transaction Concepts in Autonomous Database Environments. R.

Oldenbourg Verlag, Germany, 1990.

A. Wolski and J. Veijalainen. 2PC Agent method: Achieving serializability in presence

of failures in a heterogeneous multidatabase. In Proceedings of PARBASE-90, Miami

Beach, Florida, 1990.

Aidong Zhang and Ahmed K. Elmagarmid. A theory of global concurrency control in

multidatabase systems. The VLDB Journal, July 1993.

23


	A Framework for Flexible Transaction Management in Multidatabase Systems
	Report Number:
	

	tmp.1307986960.pdf.kIeO6

