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Abstract

For many applications, a distributed system is an attractive alternative to a single system
because it supports global applications accessing multiple systems, and thus enhances perfor­
mance. The rapid growth of advanced applications involving distributed transaction processing
has resulted in the development of various distributed systems, models and transaction lan­
guages. In this paper, we present the InterBase system, its Parallel language (IPL), and its
Interbase Logic Controller (ILC). IPL is a transaction-oriented language that allows users to
write global transactions by specifying all associated actions and their sequences, as well as
logical dependencies and data flows among subtransadions. ItC is used to control the different
tasks to be performed within the Interbase environment, all without violating the autonomies of
the local systems and respecting their heterogeneities. ILC guarantees two levels of consistency,
consistency among transaction dependencies and consistency among security policies.

Keywords. Distributed database, Knowledge Database, Multilevel Security, Interdependent data,
Flex transaction.

1 Introduction

The rapid growth of advanced applications involving distributed transaction processing has resulted

in the development of many distributed models and languages. Early distributed systems were pro­

grammed in conventional sequential languages, were centralized, and support limited transactions.

The traditional programming languages have serious limitations and constraints in the representa­

tion and the execution of distributed applications. With today's development of sophisticated and
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complex distributed applications, the extended traditional sequential languages cannot adequately

support the development of these advanced applications. Moreover, properties such as isolation

and consistency have to be relaxed in the new distributed system in order to satisfy other needs

like autonomy and heterogeneity.

One of the consequences of the information explosion taking place in society is the emerging

need to access heterogeneous and isolated repositories. Due to the isolation property, it is more

difficult for programmers to write global applications which make full use of the data and resources

at their disposal since the systems that they need to use are not integrated.

The transaction model defined within the Interbase ( a multidatabase system project at Purdue

UNiversity) environment, the Flex model, provides for additional capabilities not originally forseen

in traditional transactions. These new capabilities are required in order to describe applications in

multidatabase systems. Among these capabilities, we mention:

Functional replication. Alternative ways by which a specific task can be performed are conve­

niently stated in the in the Flex model.

Control Isolation. The Flex transaction model allows transactions to include some transactions

that are compensatable.

Dependency. The model allows for specifying functions and relations that can be used to

influence the execution of a transaction.

The Interbase Parallel Language fully supports a distributed programming environment. It

supports a high degree of parallelism and provides synchronization and high-level communication

among sub transactions within a global transaction.

Transaction management in multidatabase systems has been the subject of extensive research.

Many problems remain unresolved because of the complexity caused by data distribution, hetero·

geneity, the need to preserve the autonomy of the member database systems, and the security

policies of each local database system.

Interdependent data are data related to each other through integrity constraints. Interde­

pendency has been found to occur naturally in organizations, and 1s costly to maintain (see, for

example, [3D. Examples of interdependent data include replicated data, partially replicated data,

and summary data. Various classifications and issues related to 1nterdependent data management
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have been done, based on several criteria such as type of interdatabase dependency, degree of local

autonomy, and data consistency criteria.

A multilevel secure database system is a system that protects data classified at more than one

security class and allow sharing between users with different clearance levels. Permission to access

data is determined not only by the accessibility of the user requesting access to the data, but

also by the security level of the data. The clearance level of the user classification can be applied

at different levels of granularity in the database, for example, at the relation, tuple, attribute, or

element level [1]. The interdependence of data and potential difference between the security policies

adopted by the system members make it difficult to achieve a secure system.

In th.is paper, we describe the role oflogic to perform two tasks: controlling dependency between

subtransactions and resolving security inconsistencies within interdependent data. These two tasks

are performed through the components of the InterBase system. The InterBase Parallel Language

(IPL), supports a powerful description of advanced transactions, provides communication among

the subtransactions within a global transaction, and allows for properties such as compensatability

and function replication. The Distributed Interbase Transaction manager interprets and coordinates

the execution of global transactions. The rest of the paper is organized as follows: A description

of advanced features of the transactions and a presentation of the Interbase Parallel Language is

provided in section 2. Section 3 presents the The multilevel security of interbase and discusses the

inconsistency of security constraints. Section 4 outlines the structure of a Knowledge Database,

and describes the interbase system. The concluding remarks and an agenda for future work appear

in Section 5.

2 InterBase Parallel Language

IPL supports distributed applications. It allows the parallel execution of Flex transactions. We

present in this section transactions dependencies, the definition of Flex transaction, the structure

of IPL programs, and the notion of acceptable sets.
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2.1 Transactions Dependencies

An object in a databa.se ha.s a type, a state, and a set of operations that provide the means to create,

modify and retrieve the state of the object. The state of an object is represented by its content.

A global transaction accesses and manipulates the objects in a local databa.se by submltting a

sub transaction that invokes operations specific to the objects. The effect of an operation invoked

by a subtransaction on an object is made permanent if the subtransaction is comrnited; it is deleted

if the subtransaction is aborted.

Dependency relations provide a convenient way to describe the behavior of subtransaetions and

can be expressed in terms of subtransaction states. The state of a subtransaction is time dependent

and ha.s six values: waiting state, executing state, success state, failure state, committed state, and

aborted state. Different types of dependency can occur, among them we mention [6], [7]:

Success Dependency. Transaction t is success dependent (t <SD e) if t can be executed only

after t' is successfully executed

Failure Dependency. Transaction t is failure dependent(t <FD t ' ) if t can be executed only

after t' is executed and failed

Commit Dependency. Transaction t is commit dependent on t' (t <CD t') if t and t' commit

then the commitment of e precedes the commitment of t.

Abort Dependency. Transaction t is abort dependent on t' (t <AD e) if when t ' aborts, then

t aborts

Exclusion dependency. Transactions t and t' are exclusive dependent (t ED e) if both t and

t' cannot commlt.

The above dependencies are cla.ssified behavioral dependencies. Such dependencies describe

relationships among (sub)transactions ba.sed on their behavior (Le. the different states of the

subtransactions). Two other categories can be established, structural dependencies and external

dependencies.

A structural dependency describe the hierarchy among the subtransactions of a global transac­

tion. In general this hierarchy is a tree-like structure with the global transaction as the root. While

traditional transactions are represented by a one level tree, Flex transactions are represented by a

two level tree, and a nested transaction has no height limitation.
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An external dependency associates the different states of a (sub)transaction to external param­

eters such as time, cost values, etc.. Function passing between substransactions can be considered

a behavioral dependency.

Illustrative Example 1. Consider a travel agent (TA) information system [8]; a transaction t

in this system may consist of the following tasks:

Cl: TA negotiates with airlines for flight tickets, and get a ticket if the price. is less than $300.

C2: TA negotiates with car rental companies for car reservations, and reserve a car if Hight ticket

is purchased.

C3: TA negotiates with hotels to reserve rooms.

Let us assume that the refinment of these subtransactions leads to the following subtransactions:

tl: Order a ticket at Northwest Airlines;

t2: Order a ticket at United Airlines;

t 3 : Rent a car at Hertz

t4 : Rent a car at Avis;

t s: Reserve a room at Sheraton;

t6: Reserve a room at Ramada.

t

I, ts

Figure 1. TA Transaction

16

The different dependencies are described by:

<sn and <Fn : tj <sn tk tj <FD t1 for j=3,4 i=3,4 and k=5,6

ExtD: cost(ti) < $300, for i=l,2.
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2.2 Flex Transactions

The Flex transaction model is designed to provide more flexibility in transaction processing. It

allows the description of transaction that is composed of a set of task. Each task is achieved through

a set of functionally equivalent subtransactions. The execution of a Flex transaction succeeds if

all its tasks are accomplished. A Flex transaction is resilient to failures in the sense that it may

proceed and commit even if some of its subtransactions fail. The Flex transaction model allows

the specification of dependencies on the subtransactions. The most useful dependencies in the Flex

transaction model are failure-dependencies, success-dependencies and external dependencies.

In order to capture the notion of the compensability of subtransactiolls, we use the concept

of typej a subtransaction is said to be of type C if it is cornpensatablej it is of type NC if it is

Don-compensatable. Call T the set of sub transactions of a transaction denoted by t. and t is

called a Flex transaction if there is a 3-tuple (DEP, ExD, Acc) such that: DEP is a set of internal

dependencies defined on Tj ExD is a set of external dependencies defined on the elements of Tj and

Acc is a boolean function, called the acceptable function, which defines the different combinations

of subtransaction states that are acceptable to commit transaction t.

We illustrate the definition of Flex transaction by using the example of the travel agent trans­

action introduced in Figure 1. In that case, we have T = {t,c"c2,ca,tl,t2,ta,t..t.tsltS}j DEP is

composed by the two dependencies <SD and <FD defined above; Ext is reduced to one relation

defined by Cost(td < $300, for i=1,2j and Acc is the function that gives the value "acceptable" to

the sets {tl , tal ts) and {h, ta, ts}.

In the sequel we represent an acceptability function by the enumeration of all the sets to which

it associates the value "acceptable".

2.3 Structure of IPL programs

An IPL program describes a Flex transaction. It contains four fundamental components: objects

and types, subtransactioll definitions, dependency descriptions among subtransactions, and accept­

able function.
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Objects and types. Objects in IPL serve as results of and arguments to sub transactions in the

context of a global transaction. Therefore, in IPL each sub transaction is associated with a type.

Types have unique names and are used to categorize objects into sets capable of participating in a

specific set of subtransactions.

Definition of Subtransactions. A subtransaction is a task executable by a local software system

in a distributed system. The subtransaction may require the results of other subtransactions

as its input. It may also be executed under particular time constraints or other conditions. A

subtransaction is provided with an identifying name which should be unique within the context of

a global transaction.

Dependency Description. Dependency description provides users with a mechanism for spec­

ifying the explicit dependencies among the sub transactions of a global transaction. That is, the

execution order of the sub transactions or a global transaction can be defined with the use of the IPL

dependency description. Correct parallel execution and synchronization among the subtransactions

of a global transaction can thus be specified through the dependency description. For example,

given six sub transactions t l , t2, t3, t4, ts, and t6, their execution order, and IPL dependency

description are defined by:

1. t2 will be executed only if tl succeeds.

2. t3 will be executed only if tl fails.

3. t4 and ts will be executed only if t2 or t3 succeeds.

4. t6 will be executed only if t3 and t4 succeed or ts fails.

5. the global transaction will succeed if at least two of t4, ts, and t6 succeed.

Acceptable sets. The fourth component of IPL begins with the keyword acceptable_sets and

ends with the keyword endaccs. The acceptable sets provide function replication which can tolerate

the failure of individual subtransactions by exploiting the fact that a given function can frequently

be accomplished by more than one software system. For example, the transaction programmer may

leave to the system the choice of renting a car from Hertz or Avis.

An acceptable set consists of a subtransaction list and a sufficient acceptable condition of

the global transaction. When a global transaction reaches its final status, the user is asked to
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select a preferred acceptable set from an array of alternatives. All the subtransactions in an

acceptable set in the array must be successful. Successful non-compensatable subtransactions are

maintained in an uncommitted state until the global transaction is completed. When the user

chooses an acceptable set and the global transaction commits, the uncommitted subtransactions in

the acceptable set then perform their commit operations, all other uncommitted subtransactions

perform their abort operations, and the compensatable subtransactions not in the acceptable set

perform their compensating operations. When the global transaction decides to abort, all the

successful subtransactions perform their abort or compensating operations.

Acceptable sets support function replication within global transactions, and thus enable them

to tolerate the failure of individual sub transactions by exploiting the ability of several software

systems to accomplish a given function. For the example presented in section 2.1, the acceptable

sets could be:

acceptable...sets

{tt, t2, t'll ts}, {tt, t2, t'l. ts}, {t3' t'l, ts, ts}, {t3, t4, t s}, {t3' t4, ts}

endaccs

In this example, five acceptable sets are included; they are sub transaction sets itt, t2. t.1l ts}.

{tt. t2• t4, t6}, ita, t.1l ts , t6}, ita, t4, ts}, and ita. t4• ts}.

The success of any of these five subtransaction sets will result in the success of the global

transaction, and thus provide function replication within the global transaction.

2.4 The InterBase Logic Controller

In this section we describe the ILC component for IPL. The function of this component is to insure

the consistency of transactions dependencies and to build acceptable sets for transaction.

Dependencies. The different dependencies are not disjoint and may have some overlaping seman­

tics. The Interbase approach to resolve the potential inconsistencies between these dependencies is

to establish a knowledge base that reports on the different dependencies stored. Among the rules

stored, we mention:

Transitive Rule «SD is an example of such transitive rule)
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Ii R is transitive and t R t' & t' R to!, Then t R t"

Symmetric Rule (ED is an example of such transitive rule)

liR is symmetric and t R t', Then t' R t

Overlapping Rule

If R includes R' and t R t', Then t R t'

Disjoint Rule «SD and <SD represent an example of such rule)

If R is disjoint from R' and t R t', Then not(t R' t')

These rules complete the definition of the different dependencies that a user can utilize and

check for the inconsistency between them.

Acceptable Sets. With IPL programmmg the user is allowed to express the acceptable sets.

However these acceptable sets should he consistent with the success dependency and failure depen­

dency relations. Theoretically the acceptability function is deduced from these relations using a

set of rules among whlch we mention the following:

TerminaLAcc rule

liS acceptable set and {t It <SD x} =0 and {t It <FD x} =0, Then xES

Success_depend rule

If S acceptable set and xE Sand y<SD x , Then yE S

Failure_depend rule

If S acceptable set and xE Sand X<SD y, Then yE S

The list of rules in that paper is not exhaustive. Other dependencies may have effect on the

determination of the acceptable sets. Applying these rules to the TA transaction example, we can

see that, for the TA transaction, only 8 acceptable sets can be defined:

it;, tj, td, for i=1,2, j=3,4, k=5,6
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3 On the Security of InterBase

A multilevel database system is a database system that protects data classified at more than one

security class and allow sharing between users with different clearance levels of the user. Permission

to access a data is determined by not only the accessibility of the user requesting access to the data,

but also the security level of the data. The clearance level of the user classification can be applied

at different levels of granularity in the database, for example, at the relation, tuple, attribute, or

element level [1]. Security level of each data may be assigned explicitly, by attaching a label of

security to the data, or implicitly, by defining a set of security constraints. An effective security

policies for a multilevel distributed database system should ensure that users only acquire the

information to which they are authorized. The Bell-LaPadula security model [2] is used as such a

security policy.

Security Constraints are the rules which assign classification levels to data. They consist of

data specification and a classification. The data specification defines any subset of the database;

the classification defines the secUIity level of each element of this subset. We address two types of

classifications:

1. Simple classifications: They assign security levels by tuple and by element as they are

stored in the database.

2. Context classifications: They assign security levels to the result of applying functions on

an attribute or subset of attributes, or change the security levels of the data upon changing

factors such as time.

We consider the set SEC of all security constraints. An element of SEC is a pair (spec, class),

composed of data specification "spec" and the classification "class" of this data. Since a set of

global security constraints must be based on consistent local security constraints, OUI system must

detect and resolve all inconsistent security constraints. Among the specifications inconsistencies

specifications, we find:

1. Conflicting Security Constraints. Conflicting security constraints aTe those constraints

that classify the same fact into different classifications.

2. Included Security Constraints. Included security constraints are those constraints that

are enforced to the relations or attributes that are the same or structurally equivalent.
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3. Disjointed Security Constraints. Disjointed security constraints are those constraints

that are enforced to some related but not the same relations or attributes.

4. Dominated authority levels. A classification C of data specification A dominates C' if C

is higher than C'.

A longer list of inconsistencies can be established. Based on this list, we define a rule base that

describes how to correct the incriminated inconsistencies. We discuss in the following the rules that

solve the four inconsistencies mentioned above.

Illustrative Example 2. Consider an HDDBS consisting of two LDBSs, D1 and D2 • Let R1

and R2 be two relations at D1 and D2, respectively:

R1(ProjNo, ProjName, Budget) and R2 (P-No, P-Name, P-Researchers)

We consider the followjng security cons taints enforced on R1 and R2, respectively:

C1: The project name is confidential (at D1)i

C2: The project name is secret (at D2);

C3 : The project name is top-secret (at D j ) if its budget is greater than 1 million dollar;

C4: The project name is top-secret (at D2 ) if it involves more than ten researchers;

Cs: The project name is top-secret (at D2 ) if its bndget is greater than 2 million dollar;

Then C1 and C2 conflict, C3 and C4 are disjointed, and C3 includes Cs.

The ILC component for Security Inconsistency. The function of this component is to locate

and resolve inconsistencies between security constraints. The approach is based on the use of a

database rule. In the following, we present some of these rules. Let S be the set of ssurne security

constraints, and assume that (A,C) and (A',C') are in S.

Conflicting_Security Rule

If A and A' are interdependent and C:pC' , Then

Included_Security Rule
If A and A' are included (or overlapped), Then change (A"C') to (A,C')

Dominated_authority Rule
Ifjf A=A' and C~C', Then remove (A',C') and change C to include C'
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4 The InterBase System

In this section, we present the ILC, and briefly describe the InterBase System, and then discuss the

key components of the Distributed InterBase Transaction Manager. The correct interaction among

concurrent global transaction and recovery issues are also discussed.

4.1 The Interbase Knowledge Base

The Interbase Knowledge has three components: 1) A rule base that describes the relationship

between the dependencies available for the user. 2) A rule base that contains rules to check the

reachability of acceptable sets and the automated generation of all acceptable sets. 3) A rule base

that controls the consistency of security constraints. AU the rules represented in the Interbase

Knowledge base are production rule-like, and the system works in forward reasoning.

While the rule base for acceptable sets is limited in size, the rule base for security has no

limitation, because of the interdependence between data. Nevertheless, The complexity of the rules

represented in ILC dependes on the nature of interdependency of the data.

4.2 Architecture of InterBase System

We will describe the various components and modules of the system and briefly explain their mutual

interactions. The InterBase System is designed to allow users to write global applications over a

distributed, autonomous, and heterogeneous computing environment (in particular, a multidatabase

environment), while retaining the autonomy of Local Software Systems (LS8s).

The major components and modules of the InterBase System and the relationships among them

are presented in Figure 2. At present, the InterBase System runs on an interconnected network

with a variety of hosts that include Sun, HP and NeXT workstations, Sequent machines, IBM

mainframes, and IBM/PCs.

The Distributed InterBase Transaction Manager (DITM) is at the center of the InterBase Sys­

tem. DITM interprets and coordinates the execution of global transactions, which are in IPL

format, over the entire system.

RSls ensure a uniform interface to DITM and deal with the heterogeneity of the LSSs, thus

relieving DITM from dealing with each LSS directly.

12



An IPL text from either source is executed by DITM as a global transaction over the InterBase

System. Assisting in this process is the Decentralized Concurrency Controller (DCC), consisting

of a Group Manager (GrMn) and Subtransa.ction Schedulers, each of which is a portion of an RS!.

DCC is so named because it is based on decentralized algorithms discussed in [4]. DCC is used to

manage the parallel access of global transactions over the InterBase System.

G'I't GT,
ILC

RSldict RSldicl ~

D ITM ---l GrMn

Computer Network

Subt ansaction Schedulers

RSI, RSr,

I
LSS, LSS,

Figure 2. The Interbase System

The major advantage oftrus architecture is its decentralization feature. The DITM is distributed

on all the machines from which IPL programs are executed; that is, each global transaction is

associated with an image of DITM. Only the Group Manager of DCC must be run on specific

machines. To increase system reliability. the Group Manager consists of a primary and a backup

group manager. Upon receiving a starting request from a global transaction, the Primary Group

Manager decides the transaction group for the transaction, according to a graph algorithm described

in [5]; The Subtransaction Schedulers of the DCC in the individual RSIs guarantee that transactions

are executed in quasi serialization order on each L8S. The RSI executes the subtransactions sent

to it, in the order specified by the group manager.

The information exchanged within the Interbase System is performed via computer network,

and therefore each component of the InterBase System has location transparency.
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Each component of InterBase maintains a write-ahead log to keep track of its execution; thus

whenever a component of InterBase fails, InterBase can always recover the component to its state

right before failure. The Primary Group Manager also monitors the execution of each component

of InterBase, such as RSIs and the Backup Group Manager, and recovers the failed ones. The

Backup Group Manager monitors the execution of the Primary Group Manager. If the Primary

Group Manager fails, the Backup Group Manager sends broadcast messages to all images of DITM

and takes over the control of the Primary Group Manager. At the same time, a new Backup Group

Manager starts. This feature increases the reliability of InterBase, and also maintains minimum

communication costs.

5 Conclusion

This paper has addressed the problems inherent in an environment consisting of distributed, het­

erogeneous and autonamous software systems. This environment typically arises in the process of

fulfilling diverse computational and information processingrequirements.

We presented in this paper the components of Interbase (a project implement at Purdue Uni­

versity), and described how a rule-based approach can be used to organize and resolve inconsistency

between different objects in the interbase system. The Interbase Knowledge Base provides for the

correctness of IPL programs and security policies, and may address different concepts of interde­

pendent data.

We have also presented the Interbase Logic Controller (ILC). The ILC is used to control the

different tasks to be pedormed within the Interbase environment. The lnterBase Parrallel Lan-

guage supports a powerful description of advanced transactions and provides communication among

subtransactions with global transactions.
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