
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1993

Distributed Modeling and Rendering of Splines Using Ganith and Distributed Modeling and Rendering of Splines Using Ganith and

SplineX SplineX

Chandrajit L. Bajaj

Jindon Chen

Susan B. Evans

Report Number:
93-006

Bajaj, Chandrajit L.; Chen, Jindon; and Evans, Susan B., "Distributed Modeling and Rendering of Splines
Using Ganith and SplineX" (1993). Department of Computer Science Technical Reports. Paper 1025.
https://docs.lib.purdue.edu/cstech/1025

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DISTRIBUTED MODELING AND RENDERING
OF SPLINES USING GANITH AND SPLINEX

Chandrajit L. Bajaj
Jindon Chen

Susan B. Evans

CSD-TR·93-006
January 1993

Distributed Modeling and Rendering of Splines Using Ganith
and SplineXt

Chandrajit L. Bajaj Jindon Chen Susan B. Evans

Department of Computer Sciences
Purdue University
(Tel)317-494-6531
(Fax)317-494-0739

{bajaj, jdc, evans}@cs.purdue.edu
West Lafayette, IN 47907

Abstract

There are two main contributions of this paper. One is the description of the ar­
chitecture of the SplineX Client/Server toolkit for interactive modeling and display of
algebraic curves and surface splines over a Bernstein-Bezier(BB) basis. The second is
our enhancements and experiments with the implementation of modeling and rendering
algorithm dealing with algebraic surface splines. In particular, we describe the imple­
mentation of distributing the rendering process of a. spline consisting of several Bezier
simplices over a network of workstations. Furthermore, we describe the use of SplineX
for the interactive control and surface selection of fitting surfaces.

Keywords: Distributed graphics, curve and surface modeling, graphics software ar­
chitectures, interactive techniques

1 Introduction

A conventional modeling tools is a single user/single machine environment. However, such

an environment has many disadvantages. Working in a sequential. maner, a conventional

modeling tool may take an long time to unpleasantly overcome a massive computation task,

which is common in non-trivial modeling or rendering applications. Another disadvantage

is that the size of the system may become huge and too large for the host as functionality

'Research in part sllpported by NSF grant CCR 90-02228, NSF grant DMS 91-01424 and AFOSRcontract
91-0276.

1

1s expanded. Also, it is not easy to extend the system as all the existing codes reside

in one single program. Collaboration of multiple users is out of question in a single user

environment. Recently, distributed graphics system has been more and more turning into

a trend. A distributed system consists of sibling subsystems distributed over a network of

machines. Massive computation may be decomposed and carried out on different machine so

as to speed up the processing by exploit the parallelism of the computation task. Connecting

with each other over the network, each of the sibling system is specialized on its own

functionality. Thus the size of each subsystem can be kept small. There are also high

extensibility in the sense that a subsystem can be developed independently and to the

existing system hooked up by network connection. Collaboration is also achievable in a

multiple user multiple machine environment.

Developed in the Computer Sciences Department, Purdue University, Shastra [ABR911,

of which Ganith and SplineX are components, is a higWy extensible, distributed and collab­

orative geometric software environment consisting of a growing set of individually powerful

and interoperable (client-server) which support collaborative design sessions. In the Shas­

tra environment multiple users (sa.y, a collaborative engineering design team) interactively

create, share, manipulate, simulate and visualize complex geometric designs over a hetero­

geneous network of workstations and supercomputers. Currently, Shastra consists of Ganith

[BR9!]. Shilp [ABl+9!], Vaidak (BBF9!1. Bhautik [BOS921. Gatti [BC92J and SplineX.

Algebraic curves and surfaces in implicit or parametric form are one of the common

modeling tools in modeling environments. Shastra system, as well as Ganith and SplineX,

is based on this tools. They are thus our objects to be distributed. Decomposition, one of

the most common and efficient way of computing an implicit curve or surface, has indicated

2

the feasibility of distributed computation over them. Piecewise curves and surface also

suggest their parallelism by their definition.

There are two main contributions oftrus paper. One is the description of the architecture

of the SplineX Client/Server toolkit for interactive modeling and display of algebraic curves

and surface splines over a Bernstein-Bezier(BB) basis. The second is our enhancements

and experiments with the implementation of modeling and rendering algorithm dealing

with algebraic surface splines. In particular, we describe the implementation of distributing

the rendering process of a spline consisting of several Bezier simplices over a network of

workstations. Furthermore, we describe the use of SplineX for the interactive control and

surface selection of fitting surfaces.

The rest of the paper is organized as follows. Section 2 presents an overview of the

SplineX system, the Ganith system and the connection between them. Section 3 discusses

the distributed rendering in terms of system aspects, implicit Bernstein patches and para-

metric Bernstein patches. Section 4 addresses distributed modeling. Section 5 concludes

the paper.

2 Overview of SplineX and Ganith

SplineX and Ganith are X-ll [SG86] and XS [ABB+91] based application toolkits under

the umbrella. of Shastra [ABR91].

The SplineX toolkit manipulates different geometric patches in Bernstein-Bezier basis.

One can model a geometric object by BB based patches which are continuous to each other.

Figure 1 shows a degree 4 surface(finger) displayed in 8 tetrahedral domains.

The Ganith algebraic geometry toolkit [BR91] manipulates arbitrary degree polyno-

3

'I
I

"\"--' --

j.

I

I
!
;

Figure 1: Display of a degree 4 surface (Finger) in SplineX

mials and power series. It can be used to solve a system of algebraic equations and vi-

sualize its multiple solutions. Example applications of this for geometric modeling and

computer graphics are curve and surface display, curve-curve intersections, surface-surface

intersections, global and local parameterizations, implicitizations, and inversions. It also

incorporates techniques for multivariate interpolation and least-squares approximation to

an arbitrary collection of points and curves.

2.1 Mathematical foundation of SplineX

The objects manipulated in SplineX are geometric patches, which are represented implicitly

or parametrically in Bernstein-Bezier basis. A 3implex in :nn is the convex hull of n +1

points that are not contained in any n - 1 dimensional hyperplane. Let F be a polynomial

4

of degree k in Bernstein-Bezier basis representation defined over a simplex S.

where

F(ao, ... , (1) =
iO' ... , 'n <!: 0

iO+···+in=O

b;o,...,;nBfo,...,;n (ao, ... , O'n.),

Mathematically, F(ao, .." (1) = 0, an implicit patch in Bernstein-Bezier basis is defined

by its dimension, degree, domain simplex, and the barycentric coordinates over this domain

[BBB] [FargO] [Far86] [dB87]. In particular. a 3D patches is defined by a tetrahedral domain

simplex, and barycentric coordinates of certain degree. An parametric surface is represented

as follows,

F(s, t)
x = ,

D(s, t)
G(s, t)

Y = D(s,t)'
H(s, t)

Z = -;;D"'(s"-,t:f)'

where F(s, t), 0(8, t), R(s, t) and D(s, t) are polynomials in Bernstein-Bezier basis.

Currently, SplineX handles both 2D and 3D cases.

In SplineX, a bounding box is applied for an implicit or parametric surface. In implicit

cases, the domain simplex is the bounding box, where in parametric cases, a cubical box is

given as the bounding box,

2.2 System Architecture of SplineX

The SplineX system is controlled by a multi-window graphical user interface system, which

provides convenient method to manipulate different subsystems. However, SplineX itself, as

a whole, is a subsystem in the Shastra system[ABR91], a distributed collaborative geometric

modeling environment. The network connection subsystem connects SplineX with other

Shastra subsystems.

5

Object Edit.ing

Module

Vlsualizat.ion

Module

Input.

from External

data

User Intertace

Control System

Output

to external

data

SHASTRA Network

Connection

Module

SHASTRA

Dist.ributed

Rendering

ModUle

\:::.:..:............. ".
\\\ ". ".
\ "...... '.
~ \'.'" ".\, . .

.... :'>'--~-
'. " " '.
\ " '. .
........ '.

.... '

Figure 2: Architecture of SplineX

6

As shown in Figure 2, the SplineX toolkit has several components. Object editing

module, visualization module, input module, output module, Shastra connection module,

distributed rendering module, organized by the user interface control system, form the front

end of the system. The massive computation server subsystem, or Algecon servers, forms

the back end. The front end resides in one process, while the back end is a collection

of homogeneous servers that run on various hosts. The distributed rendering module dis­

patches computation tasks to algecon servers through asynchronous remote procedure calls.

A server, in turn, can response to mOre than one SplineX front end. The system currently

runs under SunDS Release 4.1.1 on Sun workstations and IRIX Release 4.0.5 System V on

SGr workstations.

The Algecon server subsystem consists of three portions, the network interface, the

computational core and border justification module. The computational core of the Al­

gecon server is the Algecon library. Developed by Doug Moore and Joe Warren in Rice

University, the Algecon library is an adaptive contour generator for multivariate polynomi­

als in the Bernstein-Bezier basis. Algecon library takes domain simplices and polynomials

in barycentric coordinates, decompose the patches inside the simplices, returns triangular

meshes which approximates the surface patches to the desired extend. Algecon library is

able to decompose a surface patch inside a space region which consists of simplices. The

surface patch can be either defined by one single polynomial or by piecewise polynomials.

User can choose decomposition parameters such as maximum and minimum levels for adap­

tive subdivision, maximum error tolerated in less-than-completely-refined triangle, number

of extra thicknesses of tetrahedra generated, size of vertex figures in hybrid method for

surface triangulation. The network interface communicates with the front ends of SplineX,

7

converting the data from network representation to that of Algecon library. The justifica­

tion module justifies the border of the resulting patch such that it lies on the boundary of

the simplex.

The user interface control system is responsible for the interaction between the user

and different components. It could be further subdivided into a user interface and a con­

troller. Once a command is entered and edited to satisfaction, the controller sends it to

the proper component for execution. During the execution, the user interface may prompt

the user for further input upon the request from the executing component. The controUer

is also responsible for the interactions between the components which are without human

interference.

The object editing module provides the functionality of creating, merging, moving, ro­

tating, scaling, duplicating and destroying an object, moving, inserting, deleting a vertex of

the objects, or updating the coordinates of an object. The visualization module is responsi­

ble of the display of the object on the screen. Utilizing the XS[ABB+911 routines, it draws

the objects in various projections and shading models. It displays also the cross sections

in certain directions of an object for better human-machine interaction. As part of Shastra

[ABR91], SplineX js connected to other parts of Shastra via the Shastra network connec­

tion module, which will be discussed later. The distributed rendering module subdivides

and renders the decomposition the surface patches among the Algecon servers and sews the

resulting patches together to form a whole piece of surface. It also calls Algecon servers to

convert Bernstein representation of a surface between different domains. The distributed

rendering system will be described at length in Section 3.

8

2.3 Client-Server

In the Shastra environment, every components run as independent processes on separate

workstations having separate user interfaces (using X-ll and Motif). The application toolk­

its make use of a designed network library to communicate data structures conveniently be­

tween each other and manage multiple connections across a network. The network library is

designed around the highly extensible client-server paradigm and utilizes TCP lIP. Each

application runs as a server for the functionality it offers. and as a client capable ofrequest­

ing functionality from other sibling systems. Applications maintain multiple concurrent

connections to other applications on multiple hosts. this is effected using the multiplexing

facility accorded by the "select" system call. The application dynamically opens connec­

tions to different systems and registers handlers with the multiplexing layer or closes such

connections. In server mode, the application sets up shop at a well known port, and awaits

requests for connections from other systems. In client mode, the application attempts to

connect to a well known port for a specific service. Both of these actions can be performed

identically in all systems.

The upper part of data communication between SplineX and Ganith is based on XnR

protocols. The intedormation of a Ganith graphic object is packed into a well designed

XnR data structure and sent over to SplineX, while the later unpacks it and transform it

to its own data format, and vice versa. For example, in Figure 3, a degree 4 surface patch

joins 3 cylinders smoothly. The picture on the right is displayed by Ganith while the one

on the left is by SplineX after the data is sent from Ganith to SplineX.

In Section 4, we use this connection to do distributed design.

9

" " "---------------

Figure 3: Connection between SplineX and Ganith

3 Distributed Rendering

The distributed rendering module serves as subdividing and rendering the decomposition of

surface patches among the Algecon servers and sewing up the resulting patches by removing

the numerical inaccuracy along the borders between the patches.

3.1 Distributed rendering of implicit patches

One of design issues in interative modeling system is quick response for user commands.

However, a call to Algecon library is rather time consuming, especially when a collection of

patches over different domains are computed in it serial manner.

Therefore we design the distributed rendering module and Algecon server in an effort

to speed up the decomposition of the surface patches. The distributed rendering module

subdivides the objects and dispatch them to Algecon servers on different machines while

the latters carry out the computation in a parallel fashion. Each of the server computes a

10

part of the whole surface patch.

However. there is an issue about how fine the subdivision should be. Here we discuss

two fashions of doing the subdivision. The first one is that a unit of the subdivision is a

single simplex. Hence one server may serves more than one decomposition service request.

Another way is that a unit consists more than one simplex and the number of the units is

decided by the number of Algecon servers available and hence one server serves one unit.

The first fashion is simple and it can also utilize the concurrency inside one host. However

its disadvantages are the overhead of networking communication and the extra effort to

sew up the small pieces of patches. The second one, however, requires a more complicated

scheme to divide a region. We choose the first one for the sake of simplicity.

After patches are sent back from Algecon servers, they need to put together to form a

whole piece. If two patches are joined to each other, they share a common boundary, which

is approximated by a polyline. However, numerical inaccuracy and the fact that polyline

boundary is generated independently to other simplices may bring a gap between the two

patches. The picture on the left of Figure 4 shows us a gaps between the pieces of a degree 4

surface. Therefore, the task of putting the pieces together is mainly to bring the boundaries

of two neighboring pieces together.

In 3D case, a piece of boundary of a surface patch is actually a 2 dimensional curve

defined over a triangular face, along with the weights on this face, of the domain tetrahedron.

Similarly, the end points of a boundary curve is a 1 dimensional point defined over an edge,

along with the weights on this edge, of the domain tetrahedron. Based on this observation,

our scheme works as follows, Within one server call, extra call to the Algecon library is

made with the same decomposition parameters to compute the points on each edge and

11

"It

Figure 4: before and after merging several pieces of a degree 4 surface

curves on each face of the domain tetrahedron. Then we adjust the curves to its endpoints

and adjust the boundary of the patch to these curves. Please notice that as there maybe

more than one piece of patch inside the domain, there maybe more than one piece of curve

on the boundary.

When the server calls return, neighboring patches are merged by pairing their boundary

polyline by their end points and merging them. If there are more than a pair of curves with

the same pair of endpoints, choose extra points on the curves untill they are distinguished.

When merging two pieces of boundaries, the sparser one is mapped to the other.

H two neighboring domain tetrahedra have the same weights on the triangular face they

merge each other, their boundaries on this face are exactly the same. Therefore, boundaries

of both patches are adjusted to the common polyline curve. Replace each vertex on the

sparser polyline by the closest point on the denser polyline and replace each edge of the

sparser polyline by the vertex sequence of the denser polyline that is between the vertices

12

Figure 5: Merging of patch boundaries

which replace the end point of this edge. The triangular facets besides the boundary of the

spacer side are subdivided to accommodate the change. See Figure 5.

Figure 4 shows the cases before and after of merging six pieces of a degree 4 surface.

Please notice that as the matching polylines are similar to each other, linear time is

enough to merge them. Therefore, it is easy to show this algorithm runs in time of D(n),

where n is the number of vertices on the boundary.

3.2 Distributed rendering of parametric patches

Algecon, although originally designed for computation of implicit patches, can also be used

to generate parametric surface patches. Distributed rendering makes it even more feasible

and attractive.

For the reason of simplicity, we only consider a special form of rational parametric

13

surface equation as follows.

x=
F(s, t)
D(s, t)'

G(s, t)
Y = D(s,t)' z=

H(3, t)
D(s, t)'

(1)

where s E [0,1], t E [0,1] and D(s, t) f °over the domain, And we assume that what of

interests is only the surface patch within the unit bounding cubic where x E {O, 1], y E [0,1],

z E [0,1]. Obviously, an arbitrary rational surface equation with an arbitrary bounding box

can be mapped into this form easily.

Consider equations (1), they are implicit surface patches, denoted as P"t~, P"ty and P"t:

respectively, over S - T - X, S - T - Y and S - T - Z spaces. We can view them as

projections of an object P in a 5 dimensional space S - T - X - y - Z to 3 dimensional

spaces. So if we can construct P in 5 dimensional space S - T - X - Y - Z, its projection

to X - Y - Z space, denoted as P:z;yz. is the desired patch.

Since the surface is a parametric surface, so, defined by equations (1), there is a one to

one correspondence between P:z;yz. and F"t, where P"t is the projection of P to S - T space.

This also means that the projection mappings from P to P:z;yz., from P"t:z; to P"t, from P"ty

to P"t. from P"t;:. to P"t are one to one correspondent.

We present the following scheme to generate the parametric patches inside the cubical

bounding box.

(1) (i)Consider surface F(s, t) - xD(s, t) = 0, where x, s,t E [0,1] as its bounding cubic.

Break the bounding cubic into 6 tetrahedra as shown in Figure 6. Make 6 remote calls

to algecon server to convert the equation into 6 harycentrically represented equations over

the 6 tetrahedra. Make 6 remote calls to algecon server, each for one of the 6 tetrahedra,

to compute the surface patches inside them. Then, like we have discussed in the previous

14

·..:~
: ~.., ,

.••..... i \
"'. : .to-

":''':'':.+ •••
..........•.\

" ,
"

Figure 6: Tetrahedral subdivision of a cubical bounding box

section, the patches are sewn together to form a whole patch Pz (actually it could be several

pieces) represented by triangular mesh inside the bounding cubic of x, 5, t E (0,1].

(ti) Do the same as (1) to surface G(s, t) - yD(s, t) = 0, where y, s, t E [0,1] and, as the

result, we get patch Py •

(ill) Do the same as (1) to surface RCs, t) - zD(s, t) = 0, where z, S, t E (0,1] and, as the

result, we get patch Pz .

(2) Build patch Pzyz in X - Y - Z space out of patches P;r, Py and Pz •

We first project triangular meshes P~, Py and Pz; onto S - T plane, denoted respectively

as p;, p~ and P;. Now P;, P; and P; are overlapping each other on S - T plane. as the

projection mappings aTe one to one correspondent, for any vertex (s, t) on P~, there exists

one and only one vertex (S, t,x) on P:;. Same to vertices on P; and P:.

Please notice that as we only compute the portion inside the bounding box. The pro-

jections of P~, P; and P~ may not coincide with each other. However only the common

portion of P~, P; and P~ represents the patch Pzyz inside the bounding box. Thus, before

going any further, we need to compute the intersection of P~, P; and P~ and cut off the

differences which are irrelevant to P:;yz. Tills can be done as follows.

(a) Computing the borders of P~, P; and P;, respectively, Bd(P~), Bd(P;) and Bd(P;),

15

each of which is a simple polygon.

(b) Perform a polygon intersection operation on the border polygons.

(c) Cut p~ according to the intersection R, Denote the remain region as P::. As we will see,

in P::, it is sufficient to store only the vertices that are inside R. Compute P;' and P~' out

of P; and p~ in the same way.

(a) and (c) take O(n) time while (b) takes O«n +k)logn) time, where k is the number

of intersections between the edges of the polygons. As real original curves other than

approximating polylines are considered, Bd(P~), Bd(P;) and Bd(Pi) consist of segments

of F(s,t) - D(s,t) ~ 0, G(s,t) - D(s,t) = 0, H(s,t) - D(s,t) ~ 0 inside bounding box

{x = 0, Ii Y = 0, I} and the edge of the bounding box. Hence the number oftheir intersection

points is O(d1d2), where db d2 are the two largest degree of those of F(s, t) - D(s, t) = 0,

G(s, t) - D(s, t) = 0 and H(s, t) - D(s, t) = O. We assume that polylines Bd(P~), Bd(P;)

and Bd(P~) are good approximation to the curves such that they intersect with each other

and the bounding box in the same number. Hence the number of vertices on P::, P;: and

P~f is now O(n+ d1d2). Assuming that a good approximation goes with that n > d1d2 , the

number of vertices remains O(n). Similar to implicit surface, there may be more than one

separated pieces of parametric surface P inside the bounding box, depending on how the

bounding box is chosen.

Now we do a union of the vertex sets of P::, P~', P:' and R.

v = p"U plIUp/I• Y •

Then for each connected component of R, we perform a triangulation such that the vertices

16

of the subdivision are elements of V. The triangulation takes O(nlogn) time, where n is

the cardinal number of V. Let's denote the resulting triangulation as T..t •

Then for each vertex (s, t) E V, we compute the corresponding (x, y, z) value as follows.

We locate the triangular facets, denoted as b:.", on P"" whose projection on P~ contains

(s, t). As each vertex of the patches has a norm vector associated with it, we do a conic

interpolation on !::"", with respect to (s, t), whose result is the x value. Similarly, we get y

and z. Actually, if (s, t) E P::, then (s, t) is the projection of a vertex (s, t, x) on px• the x

value is just taken without interpolation. There are known planar point location algorithms

which run in O(n) or O(nlogn) time and space for preprocessing and O(logn) time for a

query. [CoI86] [EGS86] [ST86] Thus O(nlog n) time is sufficient for locating all the vertices.

Augmenting each vertex (s,t) E V to be (s,t,x,y,z) by the x,y,z value we get above,

we construct the vertex set in 5 dimensional space. Therefore, subdivision T..t is augmented

to be T, a subdivision of P on 5 dimensional space. Projecting T to 3 3 dimensional space

X - Y - Z, we get Pxyz '

So after all, part (2) of our algorithm runs in O(nlogn) time, where n is the number of

vertices of on Px , Py and Pz •

Please notice that in step (1) of the algorithm, for a piece of parametric patch inside

a bounding box, we call Algecon server 18 times for converting the Bernstein-Bezier basis

between different domains, and 18 times for computing the triangular facet representation

of the surface patches in different domains. The computation is massive and would take a

long time. Fortunately, with the distributed rendering subsystem, all this Algecon calls are

dispatched to different machines across the network. Therefore, for a piecewise parametric

surface, there are two levels of distributed rendering. The first level is, as what we have

17

discussed in the previous section, the distribution of different pieces of an implicit surface

or an equation. The second level distributes the decomposition of different equations of the

the parametric surface to different machines.

3.3 System aspects of the distributed rendering module

The distribution of computation over a network environment also brings up some issues of

system aspects.

Sun remote procedure call mechanism is utilized for the connection between a SplineX

front end and an Algecon server. One can start or delete an Algecon server on a specified

host through a user interaction in a SplineX front end. An entry in the server map of the

distributed rendering module indicates the connection with the server. When a decomposi­

tion task is requested, the distributed rendering module dispatches the data. of each object

to different machines in a round robin fashion. The Algecon server sends back the resulting

patch to the front end. The client-server interaction is in an asynchronous way such that

the front end does not wait for the result from the server before going further. When the

resulting data. is sent back to the client, a registered callback function is invoked to process

the data. On the other side, the server performs the computation task of different objects

concurrently. Receiving a service request from a front end, the server forks a. child process

to carry out the computation and communicate with the front end while the parent process

continue to wait for other request from front ends.

Storing the objects in an array of structure, SplineX provides a nice architecture for

asynchronous call. Each object has a unique identification number, which is associated to

asynchronous call so that the callback function is able to figure out whose data it is when

18

the call is returned.

The resulting data from the server may not be consistent with other data in the client

as some changes may have happened between an asynchronous call is made and the result

js back. Therefore, before an asynchronous call is returned, all operatjons on the object

that may cause inconsistency are recorded and combined. Upon the return of the call, the

callback function applies the changes to the resulting data to maintain the consistency.

Each object has a version number, or a time stamp. Each time an asynchronous call js

made, the version number is increased by one and associated wHh the call. Upon return,

the result is discarded if the version numbers are inconsistent. Therefore, a call to the same

object always overwrites prevjous ones. We further more keep in the record of an object

that the host, and the process number of the serving child process, so that we are able to

terminate an asynchronous call once it is found obsolete. However, authentication check

should be made in the server side, or one can terminate someone else's service.

The distributed rendering module periodically sends echo request to all the servers on

its server map. If it has not received from a server for a certain times, it assumes that

the server is gone and remove the entry from the server map. On the other side, H an

Algecon server has not received echo requests from anyone for a certain a mount of time, it

terminates itself.

The Algecon servers are invoked by rsh system call, with the help of set uid mecha­

rusm. The distributed rendering module locally invokes a C program, .startserv, which has

its uid set. Startserv, which now acts like the owner of the program, in turn execute a rsh

command to invoke an Algecon server on the specified host. This scheme is convenient. It

does not even require the user to have access right to the machine on which the Algecon

19

servers are to be run. In a local network that has a global network file system, startserv

updates the .rhosts file of the owner of the program so that the front end can be run on

any host.

4 Distributed Surface Modeling

4.1 Distributed Design

Distributed surface modeling using Ganith and SplineX provides interactive control and

surface selection of fitting surfaces. Ganith is used to create families of Ck fitting surfaces,

and SplineX is used to control the shape of the surface and interactively select a suitable

fit from a C k family in an intuitive way.

A family of Ck fitting surfaces may be created in Ganith using Hermite interpolation

(BI92]. Hermite interpolation characterizes, in terms of the nullspace of a matrix, the

structure of a family of all algebraic surfaces that contain, with C k continuity, a given

collection of data points and space curves (defined implicitly as the common intersection

of algebraic surfaces or in rational parametric form) possibly having associated normal

directions. The result of Hermite interpolation is a q parameter family of algebraic surfaces

f(x, y, z) = 0 of a given degree that satisfy given geometric properties. The equation of the

family has the generic form

n n-i n-i-i

""" ;"'f(x,y,z)=L..JL..J L..J Cijk'Xy'Z =0,
i=O i=O k=O

where each ciik is a homogeneous linear combination of q-parameters Ti, T2,· .. , Tq'

(2)

Remote procedure calls are used to transfer the families of fitting surfaces from Ganith to

SplineX. Figure 7 shows an instance of a quartic family of surfaces for blending 3 cylinders in

Ganith and the same surface after the family has been transfered to SplineX for interactive

20

-..:~- .--

\
"

-.... "'--.'

Figure 7: Distributed modeling

shape control. Distributed design is also used for converting polynomials from the standard

power basis to Bernstein form over an arbitrary tetrahedron. To take advantage of the

symbolic manipulations provided by the Lisp process of Ganith, we let Ganith function as a

server for converting from power basis to Bernstein form. SplineX then acts as a client and

makes remote procedure calls to Ganith to convert families of surfaces to Bernstein form.

Transferring a family of surfaces to the Bernstein-Bezier (BB) basis and changing Bern-

stein weights in SplineX provides an easy way to manipulate a family. The weights for a

family of surfaces will be a linear combination of the free parameters of the surface. By

changing the weights in SplineX we can interactively control the shape of the surface, and by

keeping a system of linear equations derived from the weights consistent we can ensure that

the selected surface is an instance of the family. The next section describes the algorithm

in more detail.

4.2 Interactive Shape Control of Interpolating Surfaces

Bajaj et al.[BI\iV91] proposed least squares approximation to select an initial instance Sill-

face from the family obtained from Hermite interpolation. Alternately, initial default values

21

for the free parameters may be chosen using least squares approximation to some natural

surface, such as a sphere or ellipsoid. Even though we can get some geometric intuition from

least squares approximation, we may want to change the shape of the computed surface in­

teractively by modifying the values of the free parameters. However, since the computed

surface /(x, y, z) = 0 is a polynomial in the standard power basis, its coefficients are al­

gebraic, not geometric. That is, they contain little intuitive geometric information, hence

they do not provide a convenient tool with which the shape of an algebraic surface can be

controlled intuitively.

Sederberg [Sed85] presented an idea in which free form piecewise algebraic surface

patches defined in trivariate barycentric coordinates using a reference tetrahedron and a

regular lattice of control points imposed on the tetrahedron. The coefficients of a surface

defined in this way are assigned to the control points, and there is a meaningful relationship

between the coefficients and the shape of the surface.

The essence of ills idea is to consider an algebraic surface l(x, y, z) = 0 as the zero

contour of the trivariate function w = l(x, y, z). Note that the surface equation of the family

of Hermite interpolating algebraic surfaces contains q free variables Ti in its coefficients. A

specific portion of a surface can be selected for shape control by defining a tetrahedron willch

encloses that portion. Given a tetrahedron, the polynomial lex, y, z) in power basis can be

symbolically converted into a polynomial F(s, t, u) in barycentric coordinates, defined with

respect to the tetrahedron.

Let a tetrahedron be specified by the four noncoplanar vertices PnOO, POnO, Poon, and

POGo. Then, the coordinates P = (x, y, z) of a point inside the tetrahedron are related to

the barycentric coordinates (s, t, u) by P = .9Pnoo + tPonO + uPoon + (1- s - t - u)Pooo ,

22

s, u, t, (1- s - t - u) > 0. Control points on the tetrahedron are defined by Pijk = *PnOO +

*POnD + ~POon + n inj I: Pooo for nonnegative integers i, j, k such that i + j +k ~ n. Each

control point is associated with a weight wiib which is a linear combination of Til i =

1,2, .. " q. All these together define the q-parameter algebraic surface family in barycentric

coordinates,

n n-in-;-j ()
F(s, t, u) = 2::L: 2: Wijk' . ~ k . iti uk(l - s - t - u)"'-i-j-I: = 0.

i=O i=O 1:=0 t,],

Example 4.1 Conversion from Power to Bemstein

(3)

Consider, as a simple example, a quadric surface which Hermite interpolates aline LN : (1-

t, t, 0) with a normal (0,0,1). The Hermite interpolation algorithm returns a 5 parameter

family f(x, Y I z) =°of algebraic surfaces, as in (2) with n = 2, where C200 = rl, Cno = 2TI,

For a given tetrahedron with vertices Pnoo = (2,0,0), Pono = (0,2,0), Poon = (0,0,2),

and Pooo = (0,0,0), the surface f(x,y,z) =°is transformed to F(s,t,u) = 0, as in (3)

with n = 2, where Wooo = Tl, WOOl = TI + T2, w002 = TI + 2T2 + 4T3. WOIO = -TI,

W200 = TI' 0

Since the weights wiik of F(s, t,u) = °for a q-parameter family of algebraic surfaces

have only q degrees of freedom, they can't be selected or modified independently. For

example, suppose WI = Ti + T2 + T3 +2T4 - 1, W2 = TI + T2 + T4 +5, a.nd W3 = r3 + r4.

From these, we can derive the linear relation Wi - W2 - W3 - 6 = 0 between the weights,

and then an invariant 6.WI - tl.W2 - 6.W3 = 0 which must be satisfied each time some of

the weights are modified. (For notational simplicity, we assume the weights are indexed by

23

a single number instead of a triple.)

In general, using Gaussian elimination, we can derive a system of invariant equations

I l (.6.wl,.6.w2'· .. ,.6.we) = °
12(6.wl' .6.w2,···, .6.we) 0

from the linear expressions of the weights

Changing the weights can now be considered as moving from a weight vector W =

(Wl,W2,·· ·,we) to another W' ;;;; (w~,w~,···, w~), with the constraint that 6.W ;;;; W' - W

is a solution of the system of invariant equations.

Example 4.2 Shape Control of a Family of Quadric Surfaces

The invariant system for the family of algebraic surfaces in Example 4.1 is 6.WOlO+ .6.wooo ;;;;

0, 6.w020-.6.wooo ;;;; 0, 6.WlOO+.6.wooo;;;; 0, Llwno-6.wooo;;;; 0, 6.w200-.6.wooo;;;; 0. Figure 8

(left) shows an instance from the family where WOOO ;;;; -4, wOOl;;;; 4, WOO2 ;;;; 8, WOlo ;;;; 4,

24

Figure 8: Shape control of a family of quadric surfaces

Won = 14, W020 = -4, WIOO = 4, WIDI = 12, Wno = -4, and W200 = -4. Other !:i.wi;k can

be arbitrarily chosen as long as they satisfy the equations in the invariant system. 0

Example 4.3 Shape Control of a Family of Quartic Surfaces

Figure 9 illustrates three different instances of a quartic family that smoothly joins three

truncated orthogonal circular cylinders CYLI : x 2 + y2 - 1 = 0 for z >= 2, CYL2 ;

y2 +z2 -1 = 0 for x >= 2, CYL3 : z2 + x 2 -1 = 0 for y >= 2, corresponding to the three

different values of wooo = 0.35, 0.6, and 0 for Pooo = (0,0,0). Figure 9 (left) shows the

initial surface with weights determined by least squares approximation with a unit sphere

centered at (1,1,1). Figure 9 (middle) shows the surface after increasing WOOO to 0.6. As a

weight Wooo increases from a negative value, the surface approaches to Pooo. The surface

passes through Pooo when WOOD = 0 and gets separated into three irreducible components

as WOOD becomes positive, Figure 9 (right). 0

Sometimes, we may want to see how the shape of a surface changes as a specific weight

is modified. However, if a weight, sa.y, WI is modified, then this modification affects other

25

F--
11~------------,-TJl

Figure 9: Shape control a family of quartic surfaces

weights as related in the invariant system. Usually, the linear system of invariant equations

is underdetermined, yielding an infinite number of choices of .6.Wj (i = 2,3,' . " c). Then,

how can we select the other weights such that their effects to WI are minimized?

One possible heuristic is to minimize the 2-norm of (.6.wz.·· ",6.wc), and hence the 2-

norm lI.6.Wlh = (.6.w~ + .6.wi +...+6.w;)t of .6.W. For .6.Wl = d, we know that the linear

system

has a solution .6.Wo = (d,.6.wg,. ··,.6.w~) where 6.w?'s are expressed linearly through

another set of free pa.rameters PbPZ,'" ,p,_ Hence, lI.6.WolI~ is a quadratic function

Q(PI. Pz, ... I p,) of the new parameters.

26

Since Q is quadratic, Q(PI,P2,···,p!) is mlnimlzed at the solution of the linear sys­

tem \lQ(PI,PZ.··· ,p!) ;;; o. If the minimum of Q occurs at a point (p~,pg, ... ,p~), then

I:!J.Wo ;;; (d, (j"wg,···, I:!J.w~) corresponding to the point defines the desired change of weights

Wz, ...• We having the minimum effect, in the least squares sense, on the shape of the sur­

face. The instance surface corresponding to the new weights W' ;;; W + I:!J.WO will then

reflect predominantly the effect of the change of WI by I:!J.W]. ;;; d.

Example 4.4 Heuristic Approach to Shape Control Using 2-Norm

Consider the surface in Example 4.2 again. This time we wish to pull the patch more

toward P002 (the topmost vertex in the figure), and hence set {j"WOO2 ;;; -15. From the

invariant system in which I:!J.W002 is replaced by -15, {j"weoo = I:!J.we20 = ~WllO = I:!J.Wzoo ;;;

Pit {j"WOlO ;;; I:!J.WlOO ;;; -PI. .6.WOOl ;;; P2, (j"WlOl ;;; P3, .6.WOll ;;; P4, and we obtain the

quadratic function Q(PI,P2,P3,P4) ;;; 225 + 6p~ +p~ +p~ +p~. Q has the global minimum

at PI ;;; pz ;;; P3 ;;; P4 ;;; O. Hence, the influence of the change of all the weights other than

W002, is minimized by setting to zero their .6.w, that is, not changing them at all. This new

instance is shown in Figure 8 (right). 0

5 Conclusion and Future Works

SplineX is a distributed application system that manipulates different geometric patches in

Bernstein-Bezier basis. It can be used to manipulate not only implicit but also parametric

surface patches. As a component of Shastra, it communicates with other parts of Shastra,

as a server Or a client. We have exhibited this with Ganlth and SplineX inter-operations.

Now SplineX provides the manipulation of 2D and 3D objects. One of our future

developments is to extend it to 4D objects or higher. The extension will be applicable

27

to scientific visualization. And it is also challenging to extend the distributed rendering

scheme of both implicit and parametric surface to 4D.

Also of theoretical interest, an open problem is the following. Given two planar sub.

divisions (or, specially, triangulations), is there an algorithm which merges them in linear

time or a time bound less than O(nlogn), such that the vertex set of the new subdivision

(or triangulation) is the union of those of the two old subvisions (or triangulations)?

References

[ABB+91] V. Anupam, C. Bajaj, A. Burnett, M. Fileds, A. Royappa, and D. Schikore.
XS: A Hareware Independent Graphics and Windows Library. Technical Report
CSD-TR-91-062, Computer Sciences Department, Purdue University, August
1991.

(ABI+91] V. Anupam, C. Bajaj, 1. Thm, T. Dey, and I. Ihm. The SHILP Solid Mod­
eling and Display Toolkit. Technical Report CAPO-91-29, Computer Sciences
Department, Purdue University, 1991.

[ABR91] V. Anupam, C. Bajaj, and A. Royappa. The SHASTRA Distributed and Col­
laborative Geometric Design Environment. Technical Report CSD-TR-91-075,
Computer Sciences Department, Purdue University, October 1991.

[BBB] R. Bartels, R. Beatty, and B. Barsky. An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling. Morgan Kaufmann Publisher,
Inc.

[BBF91] B. Bailey, C. Bajaj, and M. Fields. The VAIDAK Medical Imaging and Model
Reconstuction Toolkit. Technical Report CAPO-91-31, Computer Sciences De­
partment, Purdue University, 1991.

[BC92] C. Bajaj and S. Cutchin. The GAT! Client/Server Animation Toolkit. Technical
Report CSD-TR-92-096, Computer Sciences Department, Purdue University,
December 1992.

[BI92) C. Bajaj and 1. Thm. Algebraic surface design with Hermite interpolation. ACM
Tra1l8actio1l8 on Graphics, 11(1):61-91, January 1992.

[BIW91] C. Bajaj, 1. Thm, and J. Wanen. Higher order interpolation and least squares
approximation using implicit algebraic surfaces. Technical Report CSD-TR·91­
035, Computer Sciences Department, Purdue University, April 1991.

28

[BOS92] C. Bajaj, K. Okamura, and D. Schlkore. The BHAUTIK Physical Analysis
Toolkit. Technical report, Computer Sciences Department, Purdue University,
1992.

[BR91] C. Bajaj and A. Royappa. The ganith algebraic geometry toolkit. Technical
Report CSD-TR·91·065, Computer Sciences Department, Purdue University,
Augu,t 1991.

[Co186] Richard Cole. Searching and Storing Similar Lists. Journal of Algorithms, 7:202­
220,1986.

[dB87] C. de Boor. B-Form Basics. In G. Farin, editor, Geometric Modeling. SIAM,
1987.

[EGS86] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a mono­
tone subdivision. SIAM Journal of Computing, 15:317-340, 1986.

[Far86] Gerald E. Farin. Triangular Bernstein-Bezier Patches. Computer Aided Geomet­
ric Design, 3(2), 1986.

[Far90] Gerald E. Farin. CUnJes and Surfaces for Computer Aided Geometric Design.
Academic Press, 1990.

[Sed85] T. W. Sederberg. Piecewise algebraic surface patches. Computer Aided Geomet­
ric Design, 2(1-3):53-59, 1985.

[SG86] Robert W. Scheifler and Jim Gettys. The X Window System. ACM 1h:msadions
on Graphics, 5(2):79-109, April 1986.

[ST86] Neil Sarnak and Robert E. Tarjan. Planar Point Location Using Persistent
Search Trees. Communication of the ACM, 29(7):669-679, July 1986.

29

	Distributed Modeling and Rendering of Splines Using Ganith and SplineX
	Report Number:
	

	tmp.1307986960.pdf.FWPrH

