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We have three results to report in this paper. First of all, we improve a result of
Walkup who reported in 1979 that 2-out regular bipartite digraph has almost surely a perfect
matching. We prove that a bipartite digraph (constructed in a special way) with the average
out-degree of 1+ lie ~ 1.37 has almost surely a perfect matching. This value is only a little
higher than the critical average out-degree e/2 :::::: 1.36 below which almost surely a perfect
matching does not exist. Secondly, we use our finding to establish a new constructive upper
bound for the linear assignment problem (LAP). NamelYl when the weights in the LAP are
independently and identically uniformly distributed in the interval [0,1], we prove that the
expected weight of the LAP is bounded above by 2+ lie +O(l/n) ~ 2.37+O(l/n). Finally,
we present also a simple iterative scheme that produces a sequence of lower bounds fOT the
LAP. In particulaT, the first iteration gives Lazarus' lower bound of I +lie +O(l/n), while
the third iteration returns the value of 1.43 +O(l/n). Lower and upper bounds are derived
in a unified manner by various applications of the random allocation model.
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1. INTRODUCTION

The Linear Assignment Problem (LAP) finds a minimum weight perfect matching in

a complete bipartite graph. More precisely, let W = {Wjj}f,j::O:l he n x n matrix of real

numbers that we further call weights. In LAP we seek a permutation a(.) of {I, ... , n} such

that it mlnimizes the sum ZInin = minq {2:i=l Wi,q(i)}' where the minimum is taken over all

n! possible permutations. This is a classical problem that has a variety of applications (d.

Lawler [14], Zuker [24]). It is conveniently viewed as the problem of finding a minimum

weight perfect matching in a complete bipartite graph. Then, several efficient algorithms

"e readily available (cf. [18], [14]).

In tills paper, we shall consider LAP in a probabilistic framework under the assumption

that the weights Wij are independently and identically distributed (l.i.d). randDm variables

with the distributiDn functiDn F(·). We concentrate, however, on uniformly distributed

weights on [0,1], and show hDw this easily can be extended to the general case.

The linear assignment problem was addressed in several papers. BOIovkov H] in 1962

analyzed a greedy heuristic to the LAP. For the distribution function of weights Dfthe form

F(x) = (ax)l3(l + 0(1)) for f3 > 1 (e.g., a composition of several uniform distributions)

he prDved that almost surely (a.s.) Zmin = O(nl - I/13 ). Szpankowski in [21] observed that

for weights with distribution that have exponential negative tail,the greedy algorithm is

asymptotically Dptimal (e.g., for negative exponential weights Zm..in '" nlogn (pr.); for

normally distributed weights Zmin '" v2nlogn (PT.)). Kurtzberg [13] showed that for the

unifDrm d..istribution U(O, 1) Dfweights the average value EZmin is bounded as 1+O(l/n) ~

EZm..iu ::; logn. It was not untill the Walkup paper [23] (d. [22]) that a CDnstant upper

bound for EZm..in was found. More specifically, Walkup proved the almost sure existence of

a perfect matching in a 2-out bipartite digraph (cr. [23]), and using this he showed that

EZmin < 3+0(I/n) for the uniform distribution of weights (d. [22]). This was subsequently

reduced by Karp [10] tD 2 + O(l/n). Karp's argument is based Dn some properties Df dual

pair Df linear programming problems. On the other hand, in 1979 Lazarus showed in an

unpublished B.A. thesis that EZmin > 1 + l/e + O(l/n) ~ 1.37. Finally, in 1985 Mezard

and Parisi [17] gave non-rigorous arguments (based Dn the mean field theory Df spin glasses)

to sUPPDrt a conjecture that EZmin =«(2)+O(1/n) =1r2 /6+0(1/n) ~ 1.64. This was also

cDnfirmed by simulations. A rigorous proDf of Mezard and Parisi seems to be very hard, if

possible at ail (d. [19]).

Neither Walkup's approach nor Karp's proof were algorithmic. A minimum matching

in a weighted cDmplete bipartite graph can be found in O(n3) steps ([14]) by the Hungarian
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Method. Titis is, however, quite complicated to implement, as assessed by Lawler [14J.

On the other hand, a perfect matching in an unweighted general graph can be found in

O(my'n) where m is the number of edges (d. Micali and Vaziranl [18]). In view of this,

several heuristics have been proposed to solve efficiently the linear assignment problem.

For a survey see Avis [IJ. Recently, Avis and Lai [2] proposed an O(n2) heuristic for LAP

which returns a matching of the expected weight smaller than 6+O(l/n). Tills was further

improved by Karp, Rinnooy Kan and Vohra [11J whose O(n2) heuristic generates a matching

with the expected weight less than 3 + O(n-~).

Our contribution is twofold. First of all, we deal with a perfect matching in a sparse

bipartite digraph. For such a digraph we improve the Walkup result by showing that average

1+lie;::::: 1.37 degree special bipartite digraphs have almost surely a perfect matclting. These

bipartite digraphs are constructed in such a way that zero in-degree vertices are eliminated.

In other words, a our bipartite digraph with 2n(1 + lie) ~ 2.74n arcs on the average has a

perfect matching with high probability. Such a matching, if exists, can be found in O(n1.S)

(a.s.) steps (d. [18]). Our second result concerns the linear assignment problem. We

propose an O(n2) heuristic that returns a minimum perfect matching with the expected

weight EZmin < 2+ lie +O(log nln) ;::::: 2.37. Tltis improves the Walkup best estimate. We

also elaborate on the lower bound for LAP. We present an iterative scheme that provides a

sequence of lower bounds. For example, the first iteration returns Lazarus' bound EZmiu >

1+ l/e+O(l/e) ~ 1.37, while the third iteration gives EZmin > 1.43+0(l/n). Our method

is extremely simple. Finally, we extend oUI results to general distribution of weights.

It should be stressed that our method of constructing the upper bound for LAP could

lead to several new algorithms and estimates for various combinatorial problems; e.g., the

traveling salesman problem, and so forth.

2. MAIN RESULTS

In this section, we present our main results. As indicated before, we have two kinds of

results. The first deals with the existence of a perfect matching in a sparse bipartite graph.

This finding is further used to construct a solution for the linear assignment problem (LAP).

We start with some notation. Let B = (Vo, Vi, E) be a bipartite graph with vertex sets

Vo and VI each of cardinality n, and edge set E of cardinality m. A matching M in the

graph B is a set of edge such that no two edge in M are incident to the same vertex of B.

A matching M is perfect if every vertex of B is adjacent to some edge in M. In the rest

of the paper, we consider only perfect matchings, and we denote them by M. Finally, we

associate with every edge {i, j} of B a weight W;j. A minimum weight perfect matching
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for the graph is a perfect matching for which the sum of weights is minimum. The linear

assignment problem (LAP) can be alternatively posed as finding a minimum weight perfect

matching.

Walkup [23] investigated a random out-regular directed bipartite graph Bd(n) with

lVol = IVII = n in which every vertex has d neighbors selected independently and equally

likely among n possible candidates (Le., every vertex has out-degree d). He proved that the

probability of a perfect matching P(M) = Pr{there exlsts a perfect matching in Bd(n)}

tends to 1 as n _ 00 provided d ~ 2. Furthermore, Walkup also noticed that P(M) S

3yn(2d/e)n, that is, almost surely the graph Bd(n) does not have a perfect matching if

d = 1.

We extend Walkup's idea by allowing some vertices to have degree one and others to

have degree two. So, we are in position to talk about the average degree of a vertex, which

we also denote as d. We consider only 1 < d S 2 since by the Walkup upper bound

we know that there is no perfect matching for the average degree d < e/2 ~ 1.36. Our

work is motivated by tills fact, and OUI aim is to uncover the behaviour of the digraph for

e/2 < d < 2. In short, we wonder whether a digraph with the average degree d < 2 has a

perfect matcillng or not.

We need, however, a special construction of a random digraph to assure (a.s.) existence

of a perfect matching. We start with a generation of a random I-OUI regular bipartite

dlgraph BI(n). More precisely, for every vertex from Vo we draw an arc to a vertex selected

at random from Vb and vice versa, for every vertex from Vi we select an arc connecting

a random vertex in Vo. Next, we color red all unselected vertices both in Vo and V" that

is, vertices with in-degree zero. Suppose that V~ c Vo and V{ C Vi are sets of red vertices

in Vo and Vi, respectively. Now, for every vertex in V~ (Vn we choose its second neighbor

ar random in VI (Vo). In the resulting digraph, some vertices have out-degree one and

others out-degree two, but all vertices with in-degree zero are eliminated. We denote such

a digrapll as B(n, M), where M is a random variable representing the total numbers of

extra arcs added in the second phase of our construction. An example of B(3,2) is shown

in Figure I.

Note that a similar idea to force the minimum degree of a vertex (in an undirected

bipartite graph) to exceed a given value was also discussed in Bollobas [3]. On the oUler

hand, Jaworski and Luczak in their recent paper [9] studied some properties of random

uniform digraph processes with unrestricted second phase of arcs additions.

It is clear that the digraph BI(n) resulting from the first phase of our construction

IS really a representation of a random mapping T = TI U T2 such that To: VI --+ Vo
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Figure 1: Example of the restricted random digraph B(3,2)

and TI : Vo --+ VI. Furthermore, the random mappings To and T I can be viewed as a

representation of a random allocation of n balls into n urns. Partitioning the number of

additional arcs M as M = Mo +M I , where Mo (Md corresponds to the number of in

degree zero vertices in Vo (VI), we note that Mo and MI coincide with the number of empty

urns in the random allocation model (called also further urns model). note that the urns

model is another representation for the random mapping. A standard analysis of M o and

M 1 through the urns model reveals that both random variables satisfy M o ...., MI ...., nle

(PI.) (cf. Kolchin et ai. [12]). Hence, the total number of arcs in B(n,M) becomes

m = 2n(1 + lIe) ::::: 2.74n (a.s.), and the average degree of a vetex IS d = 1 + lie ~ 1.36.

Our first main result concerns the existence of a perfect matching M in B(n, M). The

proof is provided in the next section.

Theorem 1. PERFECT MATCIIING.

Let P(M) be the p"obabiiity of a matching in the restricted random digraph B(n, M). Then,

1- P(M) = D(n- I
) ,

that is, the graph B(n, M) almost surely has a perfect matching. •

(1)

Theorem I can be used to design an O(n2 ) (a.s.) algorithm that solves the linear

assignment problem (LAP). To recall, for a given matrix of weights W = {wii}f,i=l we

search for a permutation 0'(.) such that the sum 2:1=1 wi,<1(i) is minimized. By Zmin we
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denote the minimum value of the sum returned by the LAP. Clearly, a solution to the LAP

can be alternatively found as a perfect matching in a complete bipartite graph. Such a

SOlution, however, can be found in O(n3
) steps, and the algorithm is rather complicated (cf.

[14]).

We solve the linear assignment problem in a probabilistic framework. That is, we adopt

the following assumption:

(A) The weights Wij are independently and identically distributed according to the dlstri

bution function F(x) = Pr{Wij < x}. To avoid confusions, we denote mndom weights

as Wij.

It turns out that a solution to our problem critically depends on a solution to the LAP

with uniformly distributed weights. Therefore, we shall first investigate the LAP under the

following assumption, which is a modification of (A):

(A') The weights Wij are independently and uniformly distributed on the interval [0,1],

that is, Wij ....., U(O, 1) where U(a,l) represents a generic random variable that is

uniformly distributed on [0,1].

Hereafter, we analyze LAP under the assumption (N) unless otherwise explicitly stated.

Now, we are ready to present our algorithm to solve the LAP. We first dlscuss it infor

mally in a sequence of steps that are refinments of Walkup ideas:

Step 1. Generate two matrices X = {Xii}f,j=l and Y = {}!ij}i,j=l such that for every

t and j the random variables Xij and Yij are independently and identically dlstributed

according to F(Wij) = 1 - JI Wij. The new weights Xij and 1';j are either generated

according to the inverse transform method or as in Karp et at. [11].

Step 2. Select the smallest elements in every row of X and every column of Y. This

corresponds to assigning weights to the random mappings in our bipartite digraph B(n, M)

(e.g., the smallest row elements of X represent weights of arcs from Vo = {I, ... ,n} to

Vl = {I, ... , n}, while smallest column elements of Yare weights of arcs from Vi to Yo).
Step 3. Let V~ and V{ denote subsets of rows of Y and columns of X respectively that

do not contain even one smallest element selected in Step 2. Then, for every VL E V~ select

the second smallest weight in the row VL of the matrix X; and for every VR E V{ select the

second smallest weight in the column of Y. This step corresponds to generating M arcs in

the restricted bipartite digraph B(n, M).

Step 4. Find in the restricted bipartite dlgraph without weights B(n, M) constructed

above a perfect matching in O(nyln) (a.s.) steps by Micali and Vazirani algorithm [18].

6



(2)

Step 5. If the graph B(n,M) does not have a perfect matching (which happens with

the probability O(l/n)), then use an O(n2 ) greedy algorithm applied to the original weight

matrix W to find a perfect matching that approximates the minimum perfect matching.

Our second main result, which improves the Walkup upper bound for the LAP problem,

is presented in the theorem below.

Theorem 2. UPPER BOUND.

Consider the linear assignment problem under assumption (A') . Then, the above algorithm

solves the LAP problem in O(n2 ) (a.s.) steps, and it returns the minimum value Zmin such

that

EZ 2 I 0 (IOgn), m.in~ +-+ --.
e n

Furthermore, consider now the LAP problem under the general assumption (AJ. Let

Ernax{WI , ... , Wn}::; o:(n) where the mndom variables Wi are distributed according to the

geneml distribution Junction F(·) as specified in (A). Then, our algorithm returns Zmin that

satisfies
n 0«n/4) - 0«n/2)

EZmin'; na(n/2) + ~. 2 +o(no«n)) .

The above estimate becomes (2) when F(x) = x, hence a:(n) = l/n.

(3)

Proof. This proof is a repetition of the Walkup ideas and a simple-minded analysis of the

greedy heuristic. Indeed, we first split the matrix W into two independent matrices Y and

X, as discussed above. Walkup [22] suggested to define these matrices such that for every

pair (i, j)

Wij = min{Yij,Xij} . (4)

In fact, many other relationships between these two matrices do the job equally well. The

main point is to observe that the k-th order statistics Wi,(1.:) and Yi,(1.:) of Wij and Y;j for

fixed i are related as follows (cf. [22])

EYi,(1.:) ~ 2EWi,(1.:) , (5)

and for unlformly distributed weights on [0, I] the above becomes EYi,{1.:) ::; 2k/(n + 1).

The next step is to construct the restricted random graph B(n, M) such that the arcs

from Va to VI represent the smallest and/or the second smallest weight of the matrix Y,

while the weights for arcs from VI to Va represent the smallest and/or the second smallest

elements in the matrix X. Then by Theorem 1, with probability 1 - O(l/n) the graph

B(n, M) has a perfect matching, and by (5)

EZmin :s (n - n/e) . 2/n +n/e· 3/n +O{I/n) = 2 + I/e +O(I/n) .
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If, however, the graph B(n, M) does not possess a perfect matching, then we apply a greedy

algorithm. Such an algorithm works as follows: we select the smallest element in the first

column, and delete all elements from the first column and the row into which the smallest

element has fallen. We repeat the procedure for the second, third, .... , last column. It is

easy to observe that such a greedy procedure costs EZyr = log n + 0(1). Since B(n, M)

fails to have a perfect matching with probability O(l/n), we flllally obtain the estimate

from our Theorem 2.•

We now present the main idea of the lower bound. We consider a sequence of the urns

(i.e., random allocation) schemes. Think of balls and HIns as rows and columns of the

matrix W, respectively. Selecting the smallest element (or the k-th smallest element) in a

row corresponds to throwing a ball randomly and equally likely to the urn that coincides

with the column selected by this smallest element. More precisely, in the first iteration, we

select only the smallest values in every row of the matrix W. It is very likely that several

smallest elements fall into the same column, and some columns will be empty. But in terms

of the urns model, this corresponds to to the number of urns with at least two balls. To

express our ideas more precisely, we introduce some new notation. Consider N = n urns

which receive in the k-th iteration nk balls, where nt = nand nk is defined in sequel. Let

al,o

No(nk), N j (nd - be the number of HIns with exactly zero and one ball respectively in the

k-th iteration,

N2(nk) - be the number of urns with more than one ball in the k-th iteration.

Returning to our lower bound, we note that No(nd is the number of empty columns

and N 2(nt} represents the number of columns with at least two smallest values, where

nt = n. Note also that N2(nt} = n - No(nl) - Nt(nt}. If N2(nl) > 0, then the entries

chosen in the first iteration do not constitute a permutation. Nevertheless, we can obtain

a lower bound for the objective function Zmin of LAP. Indeed, let U(k) be the k-th order

statistic of n uniformly distributed random variables U(a,l), where U(1) = m1nj:5i:5n{Ui}

and U{n) = maxl:5i:5n{Ui}. Define

It should be clear that Zl ::;st Zmin, where ::;st means stochastically smaller [20], that is,

X ::;st Y if and only if Pr{X > x}::; Pr{Y > x}. In particular, EZ1 ::; EZmin, and EZt is

easy to estimate.

In the second iteration, we consider only those positions (balls) that fall into columns

already occupied by others. The number of those elements (balls) is equal to n2 = nl -
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N1(nl) - N2(nl). We throw again these balls into n urns which corresponds to selecting

second smallest element (and those who again fall into the same column will select the third

smallest element). Define

Z, = (N,(n,) + N,(n'))U(l) + (N,(n,) +N,(n,))U(,) + (n, - N,(n,) - N,(n,))U(3) (6)

It is easy to see that Zl ~st Z2 ~st Zmin, hence we shall obtain a better lower bound.

In general, in the k-th iteration we throw nk balls into n urns where

We also define Zk as

k

Zk = 2)N,(n;) +N,(n,))UUJ +nk+lU(k+l) .
i=1

OUf third main result can be summarized as follows.

(7)

(8)

Theorem 3. LOWER BOUND.

Under the assumption (AI) , we have the following sequence of lower bounds on EZmin for

any integer k

(9)

where the quantities N/( ni) for l = 0,1,2 appearing in (8) can be estimated from the urns

model as follows

(a.s.) (10)

and N2(ni) = n - No(n,) - N 1(ndJ with Qi = ndn where ni is defined in (7). In particula1',

k

EZk = 2::i(l- e-·') + (k + l)("k +e-·' - 1) + O(lln) .
;=1

(11)

For example,

EZmin >

EZIIlin >

EZmin >

1
EZ, = I +- +O{1ln) '" 1.368 (12)

e
2 I

EZ, = - +-,/O(lln) '" 1.428 (13)
e e'

EZ3 = ~ + 1
2
/ +exp(-Ile - 1Ie'/' - I) - 2 +O(lln) '" 1.430. (14)

e e'

The first lowe1· bound coincides with the Laza1'1}.S bound.
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Proof. We prove first that the sequence of estimates Zk deftned in (8) is a nondecreasing

sequence. Indeed, by (8) and (7) we have

Zk Zk_' - nkU(k) + (B,(nk) + B 2(nk))U(k) + nk+1 U(k+l)

= Zk_l +nk+l(U(1.:+l) - U(k)):?: Zk_l , (15)

where the last inequality is a a simple consequence of U(k+l) :?: U(k).

To prove that EZk ~sl EZmin we use the sample path theorem [20]. For this we note

that starting from the iteration k = 0, in which we take all the smallest elements in every

column, we add in the next iteration the smallest increment that does not yet produce a

permutation, that is, a feasible solution to the LAP. Note that Zk-l = Zk when nk+l = 0,

that is, when there is no urn with two or more balls. This observation completes the proof

of Theorem 3.•

It should be noted that the above sequence onower bounds works also under the general

assumption (A) provided one replaces the i-th order statistic U(1) in (8) by the i-th order

statistic of n random variables distributed according to general distribution function F(·).

3. ANALYSIS OF THE PERFECT MATCHING RESULT

This section provides a proof of Theorem 1. It turns out that it can be establislled

along the lines of the Walkup proof (23]. In the proof we often use the random allocation

paradigm. The reader is referred to the book of Kolchin et at. [12J for a detailed account

of the theory of random allocations.

In order to prove the existence with high probability of a perfect matching in a random

digraph B(n, M), we need to introduce a probabilistic framework for our digra])hs. Let if
be a family of all bipartite directed graphs G= (Vo, Vi, E) with !Vol = Vi I = n such that

each vertex has out-degree equal to either one or two but no vertex of in-degree greater

than zero has out-degree zero. Then, our graph B(n, M) introduced above can be viewed

as an element of 9 selected randomly from this family.

Denote by G the underlying simple (undirected) graph of GE 9. Furthermore, let f(A)

and r(A) denote the set of neighbours of A c Vi (i = 0,1) in G and G respectively. Note

that if G has no perfect matching, then by Hall's theorem (cf. [15]) there exists a set A C Vi
such that W(A)1 < IAI. This implies that in (; we also have f(A) c r(A). Moreover, all

arcs emanating from B = V1_i - r(A) point out to the vertices in the set AI = Vi - A, Le.,

f(B) C A'.

Definition 1. A pair (A, B) is called a blocking pair if A C Vi and B C V1-; for i = 0,1 such

10



•

that f(A) c B' and I'(B) c A' where AI = Vi - A and 8/ = V1_i - B with [B'l = IAI- 1.

A blocking pair (A, B) with [AI = a is called a blocking a-pair. 0

It should be clear from the above definition that we can restrict our analysis to 2 :::;

a ~ len + 1}j2J. Then, Hall's criterion says that a dlrected bipartite graph hM a perfect

matching if there exists no blocking pair [15]. For our purpose, however, we need a refinment

of Hall's theorem, as already discussed in Walkup [23J. We define a critical blocking pair

as follows.

Definition 2. A blocking a-pair (A, B) is critical ifthere is no (a- 1)-pair (A - {s}, BU {t})

which is blocking for any sEA and t E B' . 0

We now can estimate the probability 1 - P(M) that the restricted random graph

B(n, M) does not possess a perfect matching. Let c > 0 be an arbitrary small positive

number. Then,

1- P(M)
2.

I:P,{11(n,M) has noM I M=k}P,{M=kj
k=O

< I: P,{M = k} (16)
(1-~)2n/e$k$(l+,o;)2n/e

+ I: P'{B(n,M) has no M 1M = k}Pr{M = k}
(1-,o;)2n/e<k«1 +,o;)2n/e

$ 0 +Pr{B(n,M) has no M and 2n(l- o)/e < M < (1 +oj2n/e)

where 6 = O(l/n) (d. Kolchin et at. [12]) can be made arbitrary small as n --+ 00. Certainly,

the existence of a block1ng pair implies the existance of at least one critical blocking a-pair

for some a. Tills, together with the above, lead to our next estimate

l(n+l)/2j

1 - P(M) ~ 6 + 2 L Pr{B(n, M) has a critical blocking a-pair,
a=2

provided 2n(1- o)/e < M < (1 +o)2n/eJ
[(.+I)/2J

0; 0+2 I: fl.(ah.(a,J(o) ,
a=2

(17)

where ,Bn(a) represents the expected number of blocking a-pairs, and /n(a, ](0) denotes the

conditional probability that a blocking a-pair is critical blocking pair provided M E J(0 =

(2n(1- o)/e , 2n(1+ oj/e).

In sequel we estimate ,Bn(a) and /n(a,J(o). We start with ,Bn(a). The following lemma

is crucial.
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Figure 2: illustration for the calculation of f3(2)

Lemma 4. Suppose that G E g and (A, B) is a blocking a-pair in G. Then, the subgmph

induced by (A,b') and (A', B) have at least 2a and 2(n - a + 1) arcs, respectively. Clearly,

this is purticularly true for the random digraph B(n, M).

Proof. For the reader convenience, we first discuss the case a = 2 (sec Figtrre 1). Then

IB'I = 1 and rCA) = HI = v. Since CA, B) is blocking, there is no arc emanating from Band

pointing out to a vertex in A. By definition of Geither both vertices from A have out-degree

two (when the vertex v has a neighbor in A') or one of the vertices of A have out-degree two

while the second one is a neighbor of v, and therefore has in-degree and out-degree equal

to one. In both cases, (A, B I
) induces a subgraph with fOUf arcs. Similarly, in a subgraph

induced by (AI,B) there are at least n - I arcs from B to A'. In the worst case, when

f( B) = AI each vertex has out-degree one, which in turn can prevent at most n - 2 vertices

of B to have out-degree two (since (A, B) is blocking there is no arc leading from A to B).

Therefore, the subgraph induced by AI,B) has at least (n-l) +(n-2) +1 = 2(n-l) arcs.

The case a > 2 can be argued in a similar manner. Indeed, if IAI = a and there are k

arcs (0 ~ k ~ a-I) from B I to A, then at least 2a - k arcs must go from A to B'. Hence,

(A, B I
) induces at least 2a arcs, and as in the case of a = 2 we can easily see that (A', B)

induces at least 2(n - a + 1) arcs.•

Using Lemma 4, we immediately obtain the following estimate on f3n(a)

(n) ( n) (a)'" ( a),(n-"+,)f3,,(a)~ - I--
a a-I n n (18)

Applying Stirling's inequality in the form (cr. [23])

12



we finally arrive at
c

f3n(a) ~ + 1 ' (19)n-a
where the constant c S; 144/(242·11") ~ 0.19.

To estimate the probability In( a, /(0) we need the following observation already sug

gested by Walkup [23J.

Lemma 5. (Walkup [23]). If a blocking pair is criticall then B' = BOO I where B' = VI_i - B

and BOO = rCA) U B" and E" consists of all ve1'tices of B' that have exactly two neighbours

in A.•

From the above lemma, we can bound

,n(u, K o) ~ Pr{E' = E") ~ (Pr{VEE"»" ~ (1 - Pfp,)"-l ,

where

a-2( 1+')P, = Pr{v¢r(A)}= a-I 1- e(a_l) ,

and

Putting everything together, we finally obtain

7n(a,1(0) ~ 2l(n~/2J(I_ ((a-2) (1- !+, ))"(I_I+'a'))"-1
L.J a-I e(a-l) e n'
a=3

[(n+11/2J
< 2 L (1 - 125/1728)" +O(1/n) < 28 +O(1/n) . (20)

a=3

Finally, the above estimates (19) and (20) lead to

C
1- P(M) ~ -,

n

where the constant C S; 5.4. This completes the proof of Theorem 1.

4. CONCLUSIONS AND FURTHER RESEARCH

(2!) r

In this paper we constructed a new random bipartite graph called restricted random out

regular bipartite graph that assures the existence of a perfect matching. One interesting

feature of tills graph is its fractional degree of a vertex. This simple trick allow us to

improve several existing estimates for the linear assignment problem. In particular, we

propose an heuristic for the LAP that in O(n2 ) (a.s.) steps returns the value Zm.Lu such

that 1.43 ~ EZmill ~ 2 + l/e + O(I/n) '" 2.368.

13



The idea of our construction is not restricted to bipartite graphs and to the linear

assignment problem. In particular, we believe we can provide the best up-to-date estimate

for the existence of a hamiltonian cycle and the traveling salesman problem. In recent paper

Frieze and Luczak [8] proved that 4 +c-degree digraph contains a hamiltonian cycle. This

result was established by the authors of [8] by constructing two perfect matchings each

using 2-out-regular random graph, and then by using additional log n edges to patch these

two matchings to create a hamiltonian cycle. This result easily implies an upper bound for

the traveling salesman problem with uniform weights, namely, EZmill $; 5, where Zmin is

the objective function for the traveling salesman problem. Our approach, if proved correct,

would lead to the upper bound 3 +2/e :::::: 3.72 for the traveling salesman problem. This

problem will be attacked in a forthcoming paper.

Finally, there are interesting generalization of the linear assignment problem. Consider

an i-dimensional assignment problem in which an i dimensional matrix n x ... X n of weights

W is given and one is asked to select n elments ofW such that any two do not lie on the same

coordinate, and the sum of them is minimal. It is plausible that for uniformly distributed

weights the optimal value Zmill satisfies EZmill = O(ljnl - 2 ). This is also true for the one

dlmensional case. In fact, this is the only case for which we know the exact constant hidden

in the O(·)-notation. The general i-dimensional assignment problem can be attacked in it

similar manner as we did with the linear (two-dimensional) assignment problem. However,

for such a general problem one needs a condition that assures the existence of a perfect

matching in an i-partite graph. Even the three-dimensional case is not easy. In particular,

in this case one needs a generalization of the Hall's criterion to construct a perfect matching

in a tripartite hypergraph. The problem seems not to be a trivial one, and our solution

proposed for the two-dimensional assignment problem can possible lead to some results. It

can be easily checked, however, that the lower bound technique based on the urn-and-ball

model does1 not work particularly well in this case. This makes the problem even more

interesting.
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