A THEORY OF TRAFFIC FLOW FOR EVALUATION OF THE GEOMETRIC ASPECTS OF HIGHWAYS

APRIL 1961
NO. 8

by
M.E. HARR
G.A. LEONARDS

Joint Highway Research Project
PURDUE UNIVERSITY
LAFAYETTE INDIANA
Technical Paper

A THEORY OF TRAFFIC FLOW FOR EVALUATION OF THE GEOMETRIC ASPECTS OF HIGHWAYS

TO: K. B. Woods, Director
 Joint Highway Research Project
 April 6, 1961
FROM: H. L. Michael, Assistant Director
 Joint Highway Research Project
 File: 8-1

Attached is a technical paper titled, "A Theory of Traffic Flow for Evaluation of the Geometric Aspects of Highways". The paper has been authored by H. E. Harr and G. A. Leonards, Associate Professor and Professor, respectively, on the staff of the School of Civil Engineering.

The paper was presented at the recent annual meeting of the Highway Research Board and is presented to the Board as information. Interest in the subject of the paper is very high at the present time and the paper was well received.

Respectfully submitted,

H. L. Michael
Secretary

cc: F. L. Ashbaucher
 J. R. Cooper
 L. L. Dolch
 H. H. Goetz
 F. F. Havey
 F. S. Hill
 G. A. Leonards

 G. A. Hawkins (M. B. Scott)
 J. F. McLaughlin
 R. D. Miles
 R. E. Mills
 C. E. Vogelgesang
 J. L. Waling
 E. J. Yoder
A THEORY OF TRAFFIC FLOW FOR EVALUATION OF THE GEOMETRIC ASPECTS OF HIGHWAYS

by

Milton E. Harr
Gerald A. Leonards

PRESENTED AT 40th ANNUAL MEETING
HIGHWAY RESEARCH BOARD, WASHINGTON D.C.
JANUARY, 1961

PREPARED FOR PUBLICATION BY THE HIGHWAY RESEARCH BOARD
MARCH, 1961

1Associate Professor of Soil Mechanics, Purdue University
2Professor of Soil Mechanics, Purdue University
INTRODUCTION

In recent years several theories have been proposed \([1,2,3]\) wherein the car-following characteristics of a traffic stream have been developed from considerations of continuous fluid flow. The purpose of these analyses was to obtain a mathematical description of highway capacity as reflected by flow-density relationships. Of interest in this paper is the development of an analytical approach whereby the effects of various aspects of a highway (such as curves, grades, lane width, traffic control devices, type and condition of surfacing, etc.) can be evaluated quantitatively under varying traffic density and weather conditions and hence provide rational basis for geometric design procedures.

Unlike previous work, where the movement of the traffic stream is assumed a priori, in the present analysis it is postulated that traffic reacts to a motivating "pressure potential"; that is, the vehicle operator reacts to the prevailing road, traffic, and weather conditions - characterized herein by the pressure potential - in a pattern that determines the behavior of any particular vehicle traversing a given section of roadway. This concept can be expressed quantitatively in a manner analogous to that used in describing one-dimensional viscous flow of a compressible fluid. Solution of the resulting differential equation yields a parameter which is a numerical measure of the salient characteristics of a road. Procedures are then proposed to determine this parameter, using measurable vehicular velocities, which eliminate the need for evaluating the motivating pressure potential.

Application of the new theory in the development of rational
procedures for the geometric design of highways is illustrated by suitable examples.

NOTATION

The following notation is used throughout the paper:

- \(p \), motivating pressure potential
- \(N \), number of vehicles
- \(v \), velocity of vehicle
- \(w \), effective width of roadway
- \(x, L \), respectively, a position along and a particular length of roadway
- \(\rho \), vehicular density, number of vehicles per unit of effective area
- \(t \), time
- \(C_1, C_2, k \), coefficients of proportionality
- \(a^2 = (C_1 + C_2)/k = \text{constant} \)

FORMULATION OF PROBLEM

The theoretical development is based on the following assumptions:

(a) the vehicular velocity is proportional to the gradient of the pressure potential,

\[
 v = -k \frac{\partial p}{\partial x}
\]

(b) the change in vehicular density with respect to the pressure potential is proportional to the density,

\[
 \frac{\partial \rho}{\partial \rho} = C_1 \rho
\]

from Eq. 2,

\[
 \frac{1}{\rho} \frac{\partial \rho}{\partial t} = C_1 \frac{\partial p}{\partial t}
\]
and
\[\frac{1}{\rho} \frac{\partial \rho}{\partial x} = C_1 \frac{\partial \rho}{\partial x} \] \hspace{1cm} \ldots \ldots (2b)

(c) the change in effective width of the roadway with respect to the pressure potential is proportional to the effective width,
\[\frac{\partial w}{\partial t} = C_2 w \] \hspace{1cm} \ldots \ldots (3)

From Eq. (3)
\[\frac{1}{w} \frac{\partial w}{\partial t} = C_2 \frac{\partial \rho}{\partial t} \] \hspace{1cm} \ldots \ldots (3a)

and
\[\frac{1}{w} \frac{\partial w}{\partial x} = C_2 \frac{\partial \rho}{\partial x} \] \hspace{1cm} \ldots \ldots (3b)

In the ensuing theoretical development it will be assumed that neither access nor egress is available to the section of highway under study. Thus the traffic flow can be considered as a conserved system. It should be noted, however, that the theory can be extended to account for the effects of access and (or) egress provided the number of vehicles entering and (or) leaving the section of roadway is determined.

THEORY

Considering the traffic flow as a conserved system, the change in the number of vehicles on a length of road \(dx\), in an interval of time \(dt\), must equal the difference between the number of vehicles entering the section at position \(x\) and the number of vehicles leaving the section at position \(x + dx\) (in time \(dt\)). If \(N\) is the number of vehicles initially on the length of roadway \(dx\) \((N = \rho_0 dx)\), and \(N_x\) is
the number of vehicles entering in time \(dt\) at position \(x\) \((N_x = \rho dw dt)\),

the preceding statement can be expressed symbolically by

\[
\frac{\partial (\rho w)}{\partial t} \, dt \, dx = \rho w v dt - \left[\rho w v dt + \frac{\partial (\rho w v)}{\partial x} dx \, dt \right]
\]

or

\[
\frac{\partial (\rho w)}{\partial t} + \frac{\partial (\rho w v)}{\partial x} = 0
\]

\[\ldots\ldots\ldots(4)\]

Expanding Eq. (4) and dividing by \(\rho w\)

\[
\frac{\partial w}{\partial x} + \frac{v}{\rho} \frac{\partial p}{\partial x} + \frac{v}{w} \frac{\partial u r}{\partial x} + \frac{L}{w} \frac{\partial u r}{\partial t} + \frac{\partial \rho}{\partial t} = 0
\]

\[\ldots\ldots\ldots(5)\]

which, upon introduction of Eqs. (2a), (2b), (3a) and (3b), reduces to

\[
\frac{\partial u r}{\partial x} + (C_1 + C_2) v \frac{\partial p}{\partial x} + (C_1 + C_2) \frac{\partial p}{\partial t} = 0
\]

\[\ldots\ldots\ldots(6)\]

Making use of Eq. (1), and noting that the quantity \(\left[\frac{\partial p}{\partial x}\right]^2\) is of higher order,

\[
\frac{\partial^2 p}{\partial x^2} = a^2 \frac{\partial p}{\partial t}
\]

\[\ldots\ldots\ldots(7)\]

where, \(a^2 = (C_1 + C_2)/k = \text{constant}\). Equation (7) is the governing differential equation of the traffic flow process and provides the basis for a quantitative evaluation of salient features of a highway.

As the variation in pressure potential with distance and time cannot be measured directly, it is necessary to obviate this requirement if

*Note: If \(N_E\) equals the net number of vehicles entering and leaving per unit length of roadway \(dx\) per unit time \(dt\), Eq. 4 becomes

\[
\frac{\partial (\rho w)}{\partial t} + \frac{\partial (\rho w v)}{\partial x} = N_E
\]
the theory is to be of practical utility. The method adopted to accomplish this end depends on the particular features selected for study, which can best be illustrated by examples.

APPLICATIONS

Consider a section of highway of length L containing some geometrical aspect to be evaluated quantitatively. This may be a grade or a curve (bridge, traffic control device, etc.) to be studied over a range of traffic volumes. To solve Eq. (7) a suitable set of boundary and initial conditions must be selected. For example,

\[
p(x,0) = p_0
\]
\[
p(L,t) = p_1
\]
\[
p(0,t) = p_0
\]

For the conditions given by Eqs. (8), the complete solution of Eq. (7) is

\[
p(x,t) = p_0 + \frac{\Delta p}{L} x - 2 \Delta p \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} e^{-\frac{n^2F_c}{L}} \sin \frac{n\pi x}{L} \quad \cdots(9)
\]

where \(\Delta p = p_1 - p_0\) and \(F_c = \frac{2}{\pi^2} \frac{t}{a^2L^2}\).

Recalling that \(v = -k \frac{\partial p}{\partial x}\), Eq. (9) becomes

\[
\frac{-v(x,t)}{v_{avg}} = 1 - 2 \sum_{n=1}^{\infty} (-1)^{n-1} e^{-\frac{n^2F_c}{L}} \cos \frac{n\pi x}{L} \quad \cdots(10)
\]

which, noting that \(v_{avg} = -k \frac{\Delta p}{L}\), can be expressed as

\[
\frac{v(x,t)}{v_{avg}} = 1 - 2 \sum_{n=1}^{\infty} (-1)^{n-1} e^{-\frac{n^2F_c}{L}} \cos \frac{n\pi x}{L} \quad \cdots(11)
\]
If the instantaneous velocity is measured at some point on the roadway, say at $x = L/2$, Eq. (11) gives the relation

$$\frac{v(\frac{L}{2}, t)}{v_{\text{avg}}} = 1 - 2 \sum_{m=1}^{\infty} (-1)^m e^{-4m^2F_0} \quad \ldots \ldots \ldots \ldots (12)$$

which is seen to be a function of F_0 only. Eqs. (11) and (12) can be evaluated once and for all and either tabulated or represented graphically. For example, a plot of Eq. (12) is given in Fig. 1 with the parameter $F = [F_0]^{-1}$. The ratio of the instantaneous velocity at a particular point on a section of roadway to the average of the velocity over the entire section defines a unique F-value that is a numerical rating of the particular geometric aspect being studied. Both of these velocities can be measured directly with present-day devices [4].

By repeating the velocity measurements on the same section of roadway under different ambient conditions (such as minimum and peak traffic densities during the day or night, or different climatic conditions), the resulting changes in the F-value will provide a numerical rating of the particular geometric feature being studied as influenced by the changes in ambient conditions.

By making simultaneous measurements on two sections of the same road, each having a different geometrical feature (such as a grade vs. a curve), comparisons of the effects of these two (or any other) features on the resistance to traffic flow can be made on a quantitative basis. A rational answer can then be given to the time-honored question: is a G per cent grade more (or less) objectionable than a D degree curve? Repeating the simultaneous measurements at various times will permit
making such comparisons under different ambient conditions.

Similarly, velocity measurements before and after traffic control devices are installed, or the road is widened, or an overpass, interchange, acceleration and/or deceleration lane is constructed will permit evaluation of the effectiveness of these devices on a numerical basis. Indeed, the number of potential applications of the new theory appears to be unlimited.

In time, a catalog of F-values can be developed for all types of geometrical and psychological highway appurtenances which will permit future highways to be designed on a more rational basis.
REFERENCES

Fig. 1. Solution of Eq. 12