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INDUCTION MOTQR MODELING USING 
COUPLED MAGNETIC FIELD AND 
ELECTRIC CIRCUIT EQUATIONS 

Lee W. Marriott Glenn C. Griner 

Tecumseh Products Research Laboratory 
3869 Research Park Drive 

Ann Arbor, Michigan 48108 
(313) 665·9182 

ABSTRACT 

Traditional design/prototype/test cycles have improved the efficiencies of small induction motors to high levels. To achieve still higher efficiencies, motor performance must be studied in a more detailed and integrated manner. The authors present a nonlinear, time-dependent computer simulaton modeling the performance of a permanent-splitcapacitor induction motor. The effects of nonlinear permeability and time varying terminal voltages are included in the model. Two-dimensional finite element magnetic field equations are coupled with the electri~: circuit equations and solved using the Newton-Raphson and Crank-Nicholson methods. The simulation predicts main and aWJ;iliary winding cur· rents, induced rotor currents, hysteresis losses and motor torque as functions of time. Due to the detailed nature of the results a deeper understanding of motor perfonnance factors, normally difficult to determine, can be obtained. 

INTRODUCTION 

Induction motor design involves the prediction and evaluation of performance parameters such as torque, line current and losses at any given slip and tenninal conditions. These parameters can be accurately determined only with knowledge of the magnetic field distribution within the machine. Approximate analytical methods [I] have been used in the past with some success. Continued pressure to conserve energy dictates improved motor performance. This requires an even more detailed knowledge of the magnetic fields occurring within motors. Two-dimensional statioruu:y magnetic field problems have been investigated by many authors [2,3]. The nonlinear penneability or saturation characteristics of steel require iterative methods for the solution of these problems. Tandon, Armor and Chari [4] were first to combine the Newton· Rapbson technique with the CrankNicholson central difference scheme to solve transient field problems in electrical machines. The disadvantage of these methods is that they rely on apriori knowledge of the c~ts or current densities in the device. 

The problem is much more complicated when current densities are unknown and terminal conditions must be considered. Potter and Cambrell [S] combined a twe>
dimensional finite element field solution and circuit equations to simulate an indu~:tion motor. In their work the stator field was rq>laced with a current sbeet at slip ftequency. Strangas and Theis [6] also combined the finite element field solution with circuit equations to model a shaded-pole motor. Their approach used a time-dependent grid for rotor movement. This paper expands the above techniques to model a pennanent-splitA capacitor induction motor. The two-dimensional magnetic field equations are combined with electric circuit equations describing end and elCtemal effects. The partial derivatives 
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of the combined system of equations fonn a Jacobian matrix which is solved by the 

Newton.Raphson method for each time step. Equilibrium at each time step is obtained 

when the derivatives of the tirne.dependent nonlinear magnetic field equations are satis

fied. The electric circuit equations are lincaroniinary differential equations appearing as 

constants in the Jacobian matrix. The solution advances through time by updating the 

time dependent terms of the Jacobian matrix and corresponding right hand side. The 

Crank-Nicholson finite difference method, being an implicit method, R:quircs an inversion 

to solve for the unknowns in the next time step. This inversion is carried out by a com

plex math "sky-line" linear equation solver. 

MAGNETIC FIELD EQUATIONS 

The solution of the magnetic field problem is based on three of Maxwell's equations 

and the magnetic and electric field constitutive laws. Neglecting displacement current 

these equations are: 

VxH=I (I) 

VxE =- iJB 
dl 

(2) 

V•B =0 (3) 

H=vB (4) 

J =aE (5) 

Where H is magnetic field intensity, B is magnetic flux density, E is electric field inten

sity, 1 is current density, v is reluctivity and a is an effective conductivity. 

A vector potential function A is chosen such that the following relationship is satis

fied: 
(6) 

Combining equations (I ) through ( 6) and introducing the gradient of the scalar volt

age as shown in (12], yields the time-dependent magnetic field equation: 

· ilA 
Vx(vVxA)=-crar -crVV (7) 

FINITE ELEMENT APPROXIMATION OF THE MAGNETIC FIELD 

The finite element method was employed to approximate ~he magnetic field equa

tions. Many authors have contributed to this methodology. Some of the earliest magnetics 

work is attributed to Silvester and Chari l2]. The basic assumption of the method is that 

the vector potential within a finite element can be approximated by a linear combination 

of shape functions: 
(8) 

Where N; are shape functions and n is the number of nodes in the element. Examples of 

shape functions may be found in the text books of Zienkiewicz [7) or Bathe [8]. Using 

this approximation and the minimization of the energy functional, the assembled finite 

element magnetic field equations become: 
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When: 1 T 1 is the global conductivity matrix, A is the global vector of vector potentials, dA is a vector of time derivatives of A, s (A ) is a nonlinear global coefficient matrix, dt 
INw J is a matrix of weighting factors which distribute and convert coil voltages into ele-ment nodal CUil'Cnt densities, v w is the applied voltage across a length of coil lying within the lamination stack, [ N b] is a matrix of weighting factors which distribute and convert rotor bar voltages into element nodal cunent densities and V b is the applied voltage across a rotor bar length. The matrices and vectors given above are comprised of an assembly of element matrices, the details of which can be found in reference [ 12]. 

ELECTRIC CIRCUIT EQUATIONS 

The electric circuit is characterized by two linear differential equations. The first equation sums the voltages along a rotor bar or coil and can be written as: 

(10) 

Where I is the current, V is voltage and R is a bar or effective coil resistance. The in· duced voltage along a length of a coil or rotor bar is: 

{II) 

Substitution ofthe induced voltage (II) into equation (10), dividing through by the resistance and introducing t~ as a vector of nodal vector potential time derivatives yields a first order differential equation which is coupled to the magnetic field equation (9). 

- IN I a A + GA., v - n I 'ii = 0 at L (12) 

Where IN I is a matrix of Newton-Cotes integration factors, Ac is the area ofa conductor, L is the length of the conductors, n is the number of conductors and ii is a current direction vector for the winding. 

It should be noted that this equation is dependent on the solution of the magnetic field equations for the values of t~ and assumes that the applied voltage V is uniform across a coil or a rotor bar. The second equation is based on Kirchhotfs law as applied to a winding: 

l:nv ii+IRe +Le ~~ + ~""' J ldt = Vr (t) (13) 

Where n is the number of conductors, V is the individual coil voltage, Re is the end resistance, Le is the end inductance, C~ is the external capacitance, ii is a direction vector, v rU) is the time-dependent tenninal voltage and r is a summation over the number of coils contributing to a winding. Notice that this equation is coupled to the first circuit equation (12) but does not directly influence the magnetic field equations. Note also that any other extemal impedances in series with the winding could be add~ to equation ( 13 ). Equations similiarto equations (12 and 13) can also be written for the rotor. Using the 
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method of rotor representation used by Strangas and Theis [ 6), rotor end ring currents and 

voltages are solved for rather than rotor bar voltages and cwrents. Rotor bar currents are 

then computed by summation of the appropriate end ring currents. 

CRANK-NICHOLSON METHOD 

The Crank-Nicholson method [9] is a numerically stable implicit central-difference 

scheme in which the basic asswnption is: 

(14) 

Combining equations (9), (12), (13) and (14) for the present (n) and future (n + I) 

time steps as shown in (12) yields the coupled finite difference magnetic field and electric 

circuit system of equations: 

[-[ S (Al+ ~~ ITl]A n] -INw I v,t' -[Nb]vbn 

itaf:NJ]TA n- "':: V n +nl n n 

-nvnn-(Re+.1..Le+-AL)tn+vn+l+Vn+.l!ll £I· 
6t 2Ca~ T T C., i=l 1 

NEWTON- RAPHSON METHOD 

(IS) 

Due to the nonlinearity of the v[S I matrix., the finite difference system of equations 

must be solved using a nonlinear equation solution technique such as the Newton

Raphson method. The Newton-Raphson method is used to find equilibrium at each time 

step. The method is shown in the following equations: 

L~a~r J {AVar)., {-'1') 

{Var};+l :{Vad;+{AVar} 

(16a) 

(l6b) 

Where I 'I' J is the nonlinear homogeneous equation to be solved , [ a a:ar J is the assembled 

Jacob•an matrix rendered symmetric by algebraic manipulation of equation ( 15), I Var); 

is a vector of solution variables from the previous iteration, { V,u} i+ 1 is a vector of solu

tion variables at the new iteration and {A v ;~r) is a vector of conections. 

The Newton-Raphson method requires repeated inversion of the nonlinear Jacobian 

matrix. Since the Jacobian is not positive definite, a complex math "skyline" solver was 

used for inversion. During each iteration the A v .11r is solved for and used to update the 

prediction for the unknown variables. 
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TORQUE 

Motor torque computation using finite element methods commonly relies either on the use of the Maxwell stress tensor or the virtual work principle. The stress tensor method requires several layers of air gap elements in order to obtain accurate values of the tangential flux density. The virtual work implementation normally requires two finite element solutions whose meshes are displaced a small rotation from each other. A more elegant virtual work method was developed by Coulomb and Meiner [10]. Their method requires only a single layer of elements in the air gap and one finite element solution at each time step. The magnetic energy expression is differentiated mathematically with respect to rotation before integration over the solution space and results in the following equation for the torque contribution per unit depth of each virtually distorted element in the air gap: 

Te:-va[B-t /e[~, ~Ai]+By /aL~, :]]Ae-(~·)[f,~ dj~ 1 ]Ae (17) 

Where Va is the reluctivity of air, Bx. By are the X andy flux densities, a is angular . 2 · fl d . d, . hI dN; dN; d .. f 
rotatiOn, B ts ux enstty square A e ts t e e ement area, dY , dX are envattves o the shape functions Ni , A; are nodal vector potentials and n is the number of nodes in the element. Additional details of the method can be found in [10) and [12). 

RESULTS 

Transfonner 

For three reasons a transfonner was selected as a model to test the computer simulation. First, a transfonner is simi liar to an induction motor at standstill. Therefore the generated code would be directly applicable to a motor. Second, an isolation transformer of known contruction details was available for experimental verification. Third, the transformer lends itself to a simple mesh which can be easily modified or refined as required. The transtbrrner was a 1.2 KVA, 120 Vac, 60 hertz model with a turns ratio of 1.1 (secondary to primary) and constructed of Arnold Technologies, Inc. M-22 steel. B-H points for the steel were selected from a published curve and a v-versus-B 2 curve was fit using cubic splines [II]. The finite element grid for one-quarter of the transfonner consisted of216 triangles and 125 nodes and the time step used was one-sixtieth of a second. Approximations for the end leakage reactances were obtained from no-load and shortedsecondary tests. The transformer model was tested under three conditions: at no-load (i.e., with secondary winding open-circuited) for computation of the magnetizing current; with 
shorted-secondary to predict induced voltages and currents; and with a purely capacitive secondary load. A ramped sinusoidal voltage was applied to the model to minimize the startup transient ofthe solution, pennitting steady state to be achieved in about 2-112 electrical cycles. Figure I shows steady-state computed and experimental results for the magnetizing current of the transformer. Differences in the current waveforms are due to hysteresis effects which are not modeled. The experimental and calculated RMS values of 

magnetizmg current are 0.84 and 0.73 amps, respectively. In the shorted-secondary test, a voltage of3.87 volts RMS was applied. The experimental primary and secondary currents are 11.5 and I 0.6 amps; calculated values are 11.5 and l 0.4 amps. These results demonstrate that the method of calculating induced voltages and currents is valid. 
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The most interesting results on the transfonner were obtained using a capacitive sec

ondary load of25 microfarads. Figures 2 and 3 show the primary and secondary currents 

for the transfonner. A pronounced second hannonic caused by resonance occurs in the 

primary current and is properly modeled. Surprisingly, secondary current remains essen

tially sinusoidal and is also modeled well. A summary of the experimental and modeled 

results for the transfonner for the three load cases is given in Table 1. 

Table 1. Transformer- Three Load Cases 

Load Input RMS Current (Amps) RMS Output Voltage (Volts) 

Condition Voltage 
(Volts) Predicted Mcasi,II"ed 

Prim Se~;. Prim. Sec. 
Predicted Measured 

No Load 120 0.84 . 0.73 . 131.9 132 

Shorted Sec. 3.87 11.5 10.6 11.5 10.4 - . 

25 MfdCap. 120 0.83 1.24 0.83 1.25 130 132 

AC Induction Motor- Locked Rotor 

A two-pole pennanent-split-capacitor motor was also modeled. The stator has 24 

slots and the rotor 34 bars. A finite element grid composed of3464 triangles and 1761 

nodes was used for the model. The input for the model was again a ramped sine wave 

voltage with time steps of one-sixtieth of a second. An outline of the motor lamination 

and resulting vector potential contours (flux lines) is shown in Figure 4. For reference, the 

main winding axis is located along the horizontal and the auxiliary winding axis along the 

vertical. The vector potential contours are shown at one instant in time for the locked ro

tor condition. A series of figures over one electrical cycle would show the contours rotat

ing and changing in magnitude as the magnetic field revolves within the motor. The· 

plotted vector potential is the resultant of both winding currents and currents induced in 

the rotor. 

AC Induction Motor- Movjn~ Rotor 

The final step·in code development was the creation of a time-dependent mesh to 

permit the rotor to rotate and to be automatically reconnected to the stator through the air

gap mesh. Because the rotor nodes are moving in their own coordinate system, it is un

necessary to add the speed voltage tenn to Equation (8) with this technique. The solution 

procedure is conceptually simple but involves much bookkeeping. At each time step the 

nodes in the rotor are incremented through a small angle, the airgap elements between the 

stator and rotor reconnected, the model bandwidth minimized, electric circuit equations . 

added to the matrices and a Newton-Raphson iteration perfonned. Much smaller time 

steps were required than for the transfonner or motor at locked rotor conditions. Steps 

corresponding to one or two mechanical degrees were required both for computational sta

bility and for sufficient definition in plotted results. The mesh, nodal results (i.e., vector 

potential and vector potential derivatives), voltages across windings and winding and ro

torbar currents at each time step after steady state is reached are saved for post-processing. 
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It is again noted that the solution of equation (15) is time-dependent in nature and several electrical cycles must be solved to allow any startup trans-ients to die out. Our procedure was to set rotor rotation at the desired speed and then apply a ramped sinusoidal · voltage to the motor windings for the first two or three electrical line cycles. Seven to ten . additional line cycles were then required to reach a quasi-steady state solution; that is, where each succeeding cycle was approximately the same as the previous cycle. Cycles will not repeat exactly due to motor slip when running at other than synchronous speed. 
Post-processing for each time step consists of calculation of the magnetic field intensity, eddy currents in rotor bars, motor torque and an instantaneous power balance for the motor. The power balance includes the rate of change of magnetic energy in the finite elements, the rates of change of energy in circuit inductances and capacitor, winding 1-squared-R losses and eddy current losses in rotorbars, the sum of which must equal the instantaneous input line power. Power balances within a few percent were achieved. 
Motor torque at each time step is computed using the virtual work principle described previously. In contrast to Strangas and Theis [6], who used an airgap mesh composed of elements which could stretch elastically, the authors found it necessary to "lockstep" the rotor to prevent element distortion during rotation. Element distortion drastically affects the magnetic energy in the element as the element area changes and prevents accurnte torque calculation. The "lockstepping" technique consists of meshing the airgap with uniform elements and rotating the mesh an integral number of airgap elements at each time step. 

Calculated results from the model are instantaneous values of flux density, rotor bar currents, torques, line, main and auxiliary currents and voltages, and many others. Air gap flux densities can be plotted to check winding distributions, torques examined for alternating components, eddy current losses checked in rotor bars, etc. A plot of input power and motor output torque is shown in Figure 5 which clearly shows the alternating torque characteristic of single-phase motors. Table 2 shows representative time-averaged results together with dynamometer data where available. 

Table 2. PSC lndqction Motor- 230 Vac Line Volts 

3600RPM 3500 RPM 2900 RPM Locked Rotor (Synchronous} (Full Load} {Breakdown.) 
Measured Predicted Measured Predicted Measured Predicted Measured Predicted Torque• ·2.1 -2.1 67 67 158 156 13-15 11.7 Line Amps 1.26 1.36 10.2 10.3 - 41.9 58-62 60.2 Line Watts 172 150 2,363 2,365 - 8,113 - 8,521 Main Amps 5.07 5.14 8.1 8.1 . - 41.8 - 62.7 Main Watts ·690 -711 1,575 1,561 - 7,711 - 8,466 Awe Amps 5.02 5.24 4.4 4.6 - 2.87 3.23 333 Aux Watts 860 861 794 804 - 402 - 55 Aux Volts 280 - 257 262 - 141 - 23 Cap. Volts 377 397 333 343 - 214 245 250 

*Torque m Ounce-Feet ( 11.8 oz-ft = I nt-m} 
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The modeling technique inherently accounts for motor leakage reactances such as 

slot, belt and zig-zag leakages [I], but not end or skew leakage, which must be included in 

the circuit equations. Iron losses must also be separately included in the model, but are 

easier to estimate with the more complete knowledge of the magnetic field quantities. 

Friction and windage losses must also be separately considered and corrections made to 

calculated currents. 

CONCLUSIONS 

A method of modeling magnetic devices using a tw~dimensional finite element a~ 

proach coupled with electric circuit equations has been developed. The finite element 

solution yields the time-varying magnetic field solution within the device and the circuit 

equations account for both end effects and external circuit elements. The governing equa

tions have been cast in a form that allows the forcing functions to be time-varying tenni

nal voltages. Results give not only the magnetic field solutions for the entire device, but 

also permit calculation of eddy currents in conductors. Another result of the solution tech

nique is that magnetic flux density variation is calculated in every element of the mesh. 

Both major and minor flux reversals are modeled which permits core losses to be esti· 

mated. Experimental and predicted results for a'transforrner and a pennanent-split

capacitor induction motor both at standstill and with moving rotor have been presented. 

The model and experiment are in excellent agreement in all cases. 
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Figure 1. Transformer input voltage and magnetizing current versus time. 
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Figure 2. Transformer primary current versus time (25 MFD Capacitor). 
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Figure 3. Transformer secondary current versus time (25 MFD Capacitor). 
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Figure 4. PSC induction motor vector potential contour plot. 

Figure 5. Calculated torque and power input for PSC induction motor_ 
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