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ABSTRACT 

Bell, Colin D. Ph.D, Purdue University, August 2016. Influence of Stormwater Control 
Measures on Watershed Hydrology and Biogeochemical Cycling. Major Professor: Sara 
McMillan. 

 

Urban development replaces vegetation with impervious surfaces and natural drainage 

channels with pipe networks that quicken flow paths and alter hydrologic regimes.  

Additionally, the import of food, application of fertilizer to lawns and gardens, and 

heightened atmospheric deposition increases nutrient availability in urban landscapes.  

These excess nutrients are ultimately routed to streams through the pipe networks before 

it can be processed by the vegetation and microorganisms of the landscape. This 

combination of physical and chemical disturbances impacts stream ecosystems and 

degrades their ability to perform valuable services such as removal of nutrients, 

degradation of pollutants, and provision of recreational and aesthetic value.  Stormwater 

control measures (SCMs) are a management strategy that can mitigate these impacts 

urbanization, ultimately preserving those valuable stream ecosystems.  

While the effects of urban development and individual SCMs on water quantity and 

quality have been well documented independently, studies examining the cumulative 

influence of SCMs on water quantity and nitrogen cycling throughout entire developed 

watersheds are lacking.  First, this work addresses this gap in knowledge by  
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empirically relating hydrologic regimes at sixteen urban watersheds in Charlotte, NC, 

USA to a series of metrics that describe the extent of urban development and mitigation 

with SCMs.  Next, water quality data were collected at four of the sixteen sites to 

determine how SCMs affect stream nutrient and carbon concentrations during storms, and 

how the extent and distribution of urban development modulates the effects of SCMs.  

Because of the limited ability for monitoring approaches to capture variability along a 

continuum of development and mitigation, a modeling approach was used to further 

understand the role of SCMs on hydrology and water quality.  A new model was 

developed, calibrated, validated, and used to assess uncertainty of the hydrologic and 

ecological processes that occur in SCMs.  Finally, these SCM routines were incorporated 

into an existing spatially-distributed watershed model to test how varying levels of 

impervious surface connectivity to SCMs changed hydrologic and water quality regimes 

in a watershed in Charlotte, NC.  

The results of the study indicate that the degree of urbanization, as measured by a 

watershed metric total imperviousness, controlled hydrologic behavior at the storm event 

time scale across the 16 sites monitored.  There is evidence that SCMs are able to effect 

the hydrologic record flashiness at an annual time scale by temporarily storing runoff and 

extending hydrograph recession.  An analysis of water quality data indicates that SCMs 

are able to reduce N, phosphorous and dissolved organic carbon concentrations in the 

stream in watersheds with a homogeneous urban land use.  However, in newly 

developing watersheds (e.g., suburban), the presence of SCMs coincides with the 

addition of urban impervious surfaces and SCMs are not sufficient to return water quality 
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to pre-development conditions, as reflected in increased in nutrient concentrations.  To 

understand how SCMs are able to affect nutrient concentrations along a continuum of 

development and mitigation intensity, we explored a hydrologic and water quality model 

of SCMs.  Through calibration, the model was able to match the distribution of outflow 

water and both nitrate and ammonium concentrations of a single SCM monitored in 

Charlotte, NC.  SCM inorganic N removal and retention increased with temperature and 

SCM water depth.  When the SCM routines were used at the watershed scale, results 

showed that increased mitigation of urban impervious surfaces with SCMs led to 

proportional reductions in total runoff volumes, and annual loads of both nitrate and 

ammonium. 

These results have implications for watershed managers looking to protect stream 

ecosystems through the use of SCMs.  Treating urban impervious areas with SCMs can 

reduce hydrologic record flashiness, which is correlated to stream invertebrate health.  

Mitigating impervious surfaces with SCMs may be able to reduce nitrogen loads by both 

reducing total water yield and reducing in-stream N concentrations, although the change 

in concentrations is likely to be dependent on climatic forcing, the distribution of land use, 

and design of the SCM.  Finally, a management strategy as simple as planting trees may 

also produce similar reductions in runoff and loads, as results showed lower runoff 

volumes and lower N concentrations in watersheds with greater tree coverage. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Roads and buildings of urban environments facilitate economic activity in cities, but also 

have a profound effect on the water cycle.  This infrastructure, and the storm sewers that 

protect it from flooding, shorten hydrological flow paths causing more frequent and 

intense flooding (Leopold, 1968).  These high-energy storm pulses lead to stream bank 

erosion and subsequent degradation of stream ecosystem health (Paul and Meyer, 2001).  

Additionally, the concentration of people in these areas leads to an increased supply of 

both nitrogen (N) from imported food, fertilizer and automobile activity, (Bernhardt et al., 

2008), and phosphorous (P) from food, fertilizer and detergents (La Valle, 1975; 

Waschbusch et al., 1994).  The hydrologically efficient flow paths that carry these 

nutrients from the watershed to the stream limit the terrestrial ecosystem’s ability to 

retain and remove the nutrients, leading to elevated concentrations in urban streams.  

Stream ecosystems are degraded by the erosive flows and high concentrations, and 

therefore lose their ability to provide valuable ecosystem services such as improving 

water quality for downstream lakes and estuaries, and promoting of recreational and 

aesthetic value.  Stormwater control measures (SCMs) are one strategy for mitigating the 

impacts of urbanization on hydrologic regimes by attenuating storm volumes, reducing 

peak discharges and promoting evaporation (Roesner et al., 2001).  Additionally, the  
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aquatic environments created by SCMs can improve water quality through vegetative 

uptake of N and P, microbial removal of N, and P burial through settling of sediments 

and organic matter with sorbed P (Kulzer, 1989; Comings et al., 2000; Hsieh and Davis, 

2005).  However, the ability of SCMs to restore natural hydrologic regimes and stream 

ecosystem function depends on both the extent of implementation within the watershed 

and the degree of impact from urbanization (Roesner et al., 2001; Hur et al., 2008; Roy et 

al., 2008; NRC, 2009; Burns et al., 2012). 

From a bird’s eye view, urban development appears as rectangular rooftops and parking 

lots connected with a lattice of roads and sidewalks.  These types of land coverage are 

collectively referred to as impervious surfaces because precipitation falling on these areas 

does not infiltrate into underground soil storage zones.  As reviewed by Paul and Meyer 

(2001), the impervious surfaces of the urban environment increase peak discharge, 

bankfull discharge, and runoff ratio at the event and annual time scales. The lag time 

between rainfall and runoff has also been shown to shorten with increasing urbanization.  

In a review of urban streams in the U.S. Southeast, O’Driscoll et al. (2010) demonstrated 

that these hydrologic changes alter channel geomorphology, reduce the ability of streams 

to retain and remove nutrients, and decrease the abundance of intolerant 

macroinvertebrate taxa.   

In addition to altered physical hydrological regimes, urban areas have more nutrients 

exported by the waterways that drain them.  In two surveys of N exported by the large 

rivers throughout the globe, both Peierls et al. (1991) and Howarth et al. (1996) found a 

strong correlation with N flux and population density, although water treatment 
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technologies in developed countries can reduce the strength of this correlation. The cause 

for this elevated N is twofold.  First, N loads are increased from imported food and 

fertilizer and localized atmospheric deposition is accelerated by automobile exhaust 

(Bernhardt et al., 2008).  Second, as urbanization increases, shortened flow paths reduce 

the time that N is retained in the watershed, limiting the potential for biological 

processing and removal.  Of particular importance is the short circuiting of runoff around 

the riparian zone, which can remove a disproportionate fraction of N relative to its area 

within the watershed when groundwater flowpaths are maintained (Groffman et al., 2002; 

Taylor et al., 2005, Duncan et al., 2013).  As with N, positive relationships have been 

found between urbanization and P export attributed to increased loading from fertilizer, 

food, and detergents (Smart et al., 1985; Walker Jr, 1985; Winter and Duthie, 2000; Hatt 

et al., 2004; Duan et al., 2012, La Valle, 1975; Waschbusch et al., 1994).   

A common solution to alleviate hydrologic impacts and elevated nutrient loading to 

stream ecosystems from impervious surfaces is through the use of SCMs.  SCMs take 

many forms of design (e.g. wet ponds, dry ponds, wetlands, bioretention areas) but all use 

depression storage to receive, retain, and then slowly release water to the drainage 

network.  SCMs are typically designed so that the peak of the outflow hydrograph for a 

particular design storm (e.g., a 10-yr return interval, 6-hour duration) matches the peak 

hydrograph for the same watershed without any urban development.  This process of 

water attenuation, shown in Figure 1-1, reduces peak flows and increases the time 

between precipitation and stormflow generation (Horner et al., 2001; Villarreal et al., 

2004; Hood et al., 2007).   
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Figure 1-1: Example of design objectives of SCMs for managing peak flows 

SCMs are also dynamic ecosystems, and as such can also impact water quality of urban 

runoff.  SCMs are hosts for plant, algal, and microbial communities that assimilate, store, 

release, and transform N, P and carbon (C).  Additionally, physical processes such as 

settling and burial can effectively remove N, P and C from the water column.  SCMs 

have been demonstrated to reduce outflow concentrations of N, P and C relative to inflow 

concentrations, although performance varies with the type, design, and age of SCM 

(Mallin et al., 2002; Hunt et al., 2008; Collins et al., 2010; Geosyntec Consultants and 

Wright Water Engineers, 2012; Kearney et al., 2013; Koch et al., 2014). 

1.2 Research Objectives 

As shown, there is abundant literature documenting the relationship between urban 

development and hydrologic and water quality impacts to streams.  Also, several 

monitoring studies have demonstrated the ability of individual SCMs to remove nutrients 
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from stormwater inflow.  However, few studies have explicitly linked urban development 

and subsequent SCM mitigation at the watershed scale.  Therefore, the purpose of this 

research is to characterize the relationship between varying degrees of both urban 

development and mitigation with SCMs on urban hydrologic regimes and nutrient 

cycling at the watershed scale.  Also, this work uses both monitoring and modeling 

approaches to identify the form and direction of these relationships so that managers can 

select watersheds likely to produce the greatest benefits from the addition of SCMs 

(Figure 1-2). 

 
Figure 1-2: Hypothetical response of hydrologic and nitrogen cycling variables to changing amount of 
urban development and mitigation with SCMs.  The highlighted area identifies a hypothetical threshold 
behavior which has the potential to maximize benefits to stream ecosystems with minimum changes to 

watershed development and mitigation. 
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1.2.1 Objective 1 

Empirically relate hydrologic regimes at 16 urban streams to metrics that describe the 

condition of urban development, urban surface connectivity to the stream network, and 

mitigation with SCMs. 

1.2.2 Objective 2 

Use high resolution water quality data at four urban watersheds to determine how SCMs 

affect stream concentrations of N, P, and dissolved organic carbon (DOC) and quantify 

how the type, extent, and arrangement of urban development modulates their effects. 

1.2.3 Objective 3 

Develop, calibrate, validate, and quantify uncertainty of a hydro-ecological model of 

hydrology, algae growth, and N cycling in SCMs and test the ability of SCMs to remove 

inorganic N under varying environmental and design scenarios. 

1.2.4 Objective 4 

Integrate the newly developed SCM model into a spatially-explicit, process-based 

watershed model to characterize how hydrology and water quality change as function of 

urban impervious surfaces connectivity. 

1.3 Hypothesis 

Hydrologic and water quality indicators of urban stream behavior will become more 

damaging as the extent of urban impervious surfaces within watershed increases, but 
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increasing connectivity of these surfaces to SCMs will ameliorate this intensity of this 

relationship. 

1.4 Document Outline 

This document is divided into six chapters.  This first chapter is an introduction that 

provides a background on the threat the urbanization poses to stream ecosystems, 

discusses how implementation of SCMs can mitigate this threat, identifies a gap in 

research linking urbanization and SCMs at the watershed scale, and outlines research 

objectives to fill that gap. Chapters two through six detail independent experiments aimed 

at addressing the four research objectives of the dissertation, sequentially.  Each of these 

four chapters is written as a journal manuscript as they all have been or will soon be 

submitted for peer-review publication.  The sixth and final chapter summarizes the results 

from the four experiments, discusses the management implications of those findings, and 

provides recommendations for future research. 
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CHAPTER 2. HYDROLOGIC RESPONSE TO STORMWATER CONTROL 
MEASURES IN URBAN WATERSHEDS 

2.1 Abstract 

Stormwater control measures (SCMs) are designed to mitigate deleterious effects of 

urbanization on river networks, but our ability to predict the cumulative effect of multiple 

SCMs at watershed scales is limited. The most widely used metric to quantify impacts of 

urban development, total imperviousness (TI), does not contain information about the 

extent of stormwater control. We analyzed the discharge records of 16 urban watersheds 

in Charlotte, NC spanning a range of TI (4.1 to 54%) and area mitigated with SCMs (1.3 

to 89%). We then tested multiple watershed metrics that quantify the degree of urban 

impact and SCM mitigation to determine which best predicted hydrologic response 

across sites. At the event time scale, linear models showed TI to be the best predictor of 

both peak unit discharge and rainfall-runoff ratios across a range of storm sizes. TI was 

also a strong driver of both a watershed’s capacity to buffer small (e.g., 1-10 mm) rain 

events, and the relationship between peak discharge and precipitation once that buffering 

capacity is exceeded. Metrics containing information about SCMs did not appear as 

primary predictors of event hydrologic response, suggesting that the level of SCM 

mitigation in many urban watersheds is insufficient to influence hydrologic response.  

Over annual timescales, impervious surfaces unmitigated by SCMs and tree coverage 
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were best correlated with streamflow flashiness and water yield, respectively. The shift in 

controls from the event scale to the annual scale has important implications for water 

resource management, suggesting that overall limitation of watershed imperviousness 

rather than partial mitigation by SCMs may be necessary to alleviate the hydrologic 

impacts of urbanization. 

2.2 Introduction 

Urbanization alters the response of river networks to hydrometeorological drivers, 

causing more frequent and intense floods (Leopold, 1968).  This new flood regime causes 

more stream bank erosion, destroys habitat, and subsequently degrades stream ecosystem 

health (Paul and Meyer, 2001).  Runoff generated during storm events is quickly 

concentrated in pipes and stream networks by stormwater drainage systems, which 

produce elevated peak flows and cause flooding and infrastructure damage. Additionally, 

urbanization can lead to rising or falling baseflow, which affects stream ecosystems by 

changing temperatures and nutrient cycling (Bhaskar et al., 2016). Stormwater control 

measures (SCMs) mitigate the impacts of urbanization by attenuating storm volumes, 

reducing peak discharges, accelerating groundwater recharge, and promoting evaporation 

(Roesner et al., 2001; Hamel et al., 2015). However, the capacity for SCMs to restore 

natural hydrologic regimes and stream ecosystem functions depends on both the extent of 

implementation within the watershed and the degree of impact from urbanization 

(Roesner et al., 2001; Hur et al., 2008; NRC, 2008; Roy et al., 2008; Burns et al., 2012).  

Total imperviousness (TI), which is the fraction of the watershed area covered by an 

impervious surface, has often been used as a way to quantify the degree of urbanization. 
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It is both integrative and easily measurable (Arnold and Gibbons, 1996). While the form 

of the relationship between stream degradation and TI is uncertain (e.g., linear or having 

a threshold after which degradation begins), it is well established that stream degradation 

does increase with TI (Schueler, 1995; May et al., 1997; Booth et al., 2002).  As reviewed 

by Paul and Meyer (2001), TI increases runoff magnitude manifested as peak discharge, 

bankfull discharge, and runoff ratio at both event and annual time scales. The lag time 

between rainfall and runoff generation has also been shown to shorten with increasing TI 

(Espey et al., 1966; Leopold, 1968). In a review of urban streams in the U.S. Southeast, 

O’Driscoll et al. (2010) demonstrated that these hydrologic changes have cascading 

effects on stream ecosystems by altering channel geomorphology, reducing the ability of 

streams to retain and remove nutrients, and decreasing the abundance of intolerant 

macroinvertebrate taxa.   

One criticism of TI as a metric for predicting stream response is that not all impervious 

surfaces are directly connected to drainage networks through surface conveyance 

channels or pipes. An example of a disconnected impervious surface is the rooftop of a 

building that is surrounded by vegetation on all sides. Effective imperviousness (EI) 

accounts for this important nuance in impervious surface connectivity and is defined as 

the portion of the watershed covered by impervious surfaces directly connected to the 

drainage network (Alley et al., 1980; Alley and Veenhuis, 1983; Shuster et al., 2005; 

Walsh et al., 2005).  As with TI, EI is an integrative measure characterizing urbanization, 

however it is not as easily quantified because it requires information on the connectivity 

of impervious surfaces.  
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SCMs are designed to produce hydrographs that mimic pre-development conditions, 

therefore impervious surfaces mitigated by SCMs are assumed to be disconnected from 

the streams when computing EI (Walsh et al., 2005).  SCMs take many forms (e.g. wet 

ponds, dry ponds, bioretention areas), but are generally hydrologically connected 

elements within the landscape that temporarily store and release water to the drainage 

network at a slower rate determined by the size and design of the SCM and its outlet 

structure.  This process of water attenuation reduces peak flows, and increases lag times 

between precipitation and stormflow volumes (Horner et al., 2001; Villarreal et al., 2004; 

Hood et al., 2007; Jarden et al., 2015).  However, the water balance of urban watersheds 

is often still perturbed, because of water importation and decreased evapotranspiration, 

unless the SCMs include a significant water harvest or reuse component (Askarizadeh et 

al., 2015).  

Accurately quantifying EI for large areas is time consuming and requires knowledge of 

roof downspout connections and pipe networks (Lee and Heaney, 2003).  Therefore, 

simply distinguishing unmitigated impervious areas from mitigated ones may be a simple 

way to derive a watershed metric similar to EI.  Here were propose an additional metric: 

unmitigated imperviousness (UI), which is the fraction of total watershed area occupied 

by impervious surfaces that are not mitigated by SCMs.  The ratio of UI/TI, then, is the 

percentage of impervious area that is unmitigated by SCMs.  This ratio is analogous to 

the directly connected impervious areas fraction (often abbreviated DC, DCI or DCIA) 

used in other studies (Lee and Heaney, 2003; Walsh et al., 2005; Walsh and Kunapo, 

2009; Shields and Tague, 2014).   
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Because UI and EI contain additional information about connectivity and the role of 

SCMs, they may explain the difference in hydrologic response to rainfall between sites 

better than TI. However, neither contains information about treated pervious areas.  

Inclusion of the treated pervious areas is important, particularly in residential urban and 

suburban environments, where lawns occupy on average 23% of the area (Robbins and 

Birkenholtz, 2003).  During construction, lawns are compacted which reduces infiltration 

and contributes to excess runoff (Pitt et al., 2008). Hence, treating surface runoff from 

these pervious, but potentially runoff-yielding areas may mitigate peak flows.  Therefore, 

quantifying the mitigated area (MA) of the watershed may prove to be useful for 

characterizing the benefits of treated pervious and impervious areas. 

We hypothesized that if stormwater management is affecting urban hydrology, then 

metrics that include both urbanization and SCM mitigation will explain variation in 

hydrologic response variables across sites better than those that quantify either 

urbanization or SCM mitigation alone.  Specifically, we predicted that MA, which 

accounts for potential storage of runoff from pervious and impervious surfaces in SCMs, 

would be most closely correlated with runoff volume.  Also, we predicted that UI would 

best explain variation in peak discharge and record flashiness because it enumerates the 

potential for impervious surface runoff to bypass SCMs and flow efficiently to the stream.  

In addition, water resource managers seeking to limit the impacts of urbanization can use 

the metrics that best explain hydrologic response to SCM mitigation in a planning and 

policy development. 
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2.3 Site Descriptions 

We examined 16 watersheds with SCMs in the Charlotte, North Carolina (35° 13' 36.9" 

N, 80° 50' 35.9" W) metropolitan region in the Piedmont physiographic province (Figure 

2-1).  Between 1971 and 2000, Charlotte’s mean annual precipitation was 1105 mm and 

was distributed evenly across months.  Over the same time period, the average daily 

temperature was 16.4°C annually, and 5.4°C and 26.8°C for the months of January and 

July respectively (State Climate Office of North Carolina, 2013). 

Of the 16 sites selected for hydrological analysis, streamflow was recorded at 12 of them 

by the United States Geologic Survey (USGS) (Table 2-1).  These twelve sites had 

drainage areas ranging from 2.5 km2 to 32.9 km2 and were selected to span a range of 

urban development and SCM density. Little Sugar Creek drains Charlotte’s city center 

and serves as an upper bound on urban development intensity in the city. Only 14% of 

the  Reedy Creek watershed is developed (Table 2-1), and it was included as a control 

against any effects that watershed size may have on the results at Little Sugar Creek. 

In addition to the 12 USGS sites, we included 4 smaller streams that were gaged as part 

of a larger study of the impacts of SCMs on multiple ecosystem services.  Two of these 

four watersheds, UP1 (1.4 km2) and UL1 (1.5 km2), were adjacent to one another and are 

subwatersheds of Edward’s Branch and Campbell Creek, respectively.  The other two, 

SP1 (1.0 km2) and SL1 (0.15 km2), were drained by a tributary to Beaverdam Creek  

(BD4), which flowed into Beaverdam Creek downstream of a USGS gage used in this 

study.  Changes to the hydrology and water quality during urbanization and contributions 
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Figure 2-1: Map of 16 watersheds analyzed in the Charlotte, NC region.  The dense cluster of impervious 

area in the southern portion of the Little Sugar Creek watershed is the city center. 

highly treated sites because they are smaller than watersheds typically gaged by the 

USGS.  Also, EI can be estimated at this scale with a few simplifying assumptions, but is 

not practical for larger watersheds with complex engineered drainage networks. This 

allows us to use these sites to test the ability of other metrics to serve as a proxy for EI. 

Drainage areas were calculated using the Hydrology Toolbox in ArcGIS (ESRI, Redlands, 

CA, USA) with a 6.1 m (20 ft) digital elevation model (DEM).  For the all sites, spatial 
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data from the City of Charlotte identifying the location of underground pipe networks 

was burned into the DEM prior to automatic delineation. For the highly treated sites, we 

manually adjusted watershed boundaries to incorporate additional knowledge of the 

underground storm sewer networks from field visits, aerial imagery and stormwater pipe 

network data.  These manual adjustments were made at the small, highly treated sites 

because misidentification of watershed area there could produce large relative errors 

when calculating metrics such as TI, EI, UI and MA.  

TI was determined from two spatial datasets: the first is a remote sensing land cover map 

developed for the year 2012 by Mecklenburg County, and the second is a vector shapefile 

of impervious surfaces used for stormwater taxation developed by the City of Charlotte.  

Tree coverage was also derived from the Mecklenburg County land coverage map. 

The location and extent of SCMs and corresponding drainage areas were taken from a 

database compiled by the City of Charlotte Division of Storm Water Services, accessed 

upon its first release in July 2015.  This dataset was created from records kept by the City 

of Charlotte’s Division of Land Management in compliance with the city’s post-

construction stormwater ordinances. The dataset is also linked to spatial data outlining 

the drainage area that each SCM mitigates, which was determined using a combination of 

high-resolution topographic data and site designs provided by developers in accordance 

with the post-construction ordinance. In addition to the City’s database, we used aerial 

photos available via Google Earth (Google Inc., 2015) dating from 1993 to 2012 to 

identify any SCMs in the watersheds missing from the database. We manually delineated 
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drainage basins and calculated drainage area for these additional SCMs using pipe 

network data, aerial photos, and elevation data.  

Only SCMs designed to add storage were included when determining SCM mitigated 

area, while conveyance SCMs (e.g. swales) were left out.  A number of in-line ponds 

existed in Charlotte, but were not considered SCMs unless they were included in the 

City’s pond rehabilitation program, which retrofits ponds with either an outlet weir, 

littoral zone vegetation, or both to provide water quantity and quality benefits.  We used 

the spatial datasets of SCM mitigated area and TI to compute UI and UI/TI at all 16 sites.  

We estimated EI at the highly treated sites only using the following simplifying 

assumptions: (1) all impervious surfaces within an SCM drainage area were considered to 

be not effective; (2) all hydrologically remote, disconnected impervious surfaces were 

considered to be not effective; (3) 100% of roads and parallel sidewalks drained by pipe 

networks leading directly to a stream were considered effective; (4) single-family 

residential rooftops with driveways tangent to an unmitigated road were assumed to be 50% 

connected on lots ≤ ¼ acre and 33% connected on lots > ¼ acre, but the driveways were 

assumed 100% effective at both parcel classifications; and (5) other larger, multi-family 

residential and commercial buildings and associated parking lots were considered 80% 

connected.  These assumptions were based on field observations and aerial photographs, 

and applying these assumptions produced land use specific EI estimates comparable to 

those of Alley and Veenhuis (1983) for 19 urban watersheds in Denver, CO, USA. 
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2.4 Data and Analysis 

2.4.1 Data Sources 

At the highly treated sites, a period of approximately one year (2011-2012) was used for 

hydrologic analysis.  The period was slightly different for each site, running from 6/21/11 

to 5/1/12 at UP1, 6/20/11 to 6/20/12 at UL1, 9/27/11 to 9/27/12 at SP1 and 8/18/11 to 

8/18/12 at SL1.  These time periods were chosen to include dates of stormwater quality 

sampling done as part of a companion study.  At the USGS sites, the 2012 water year was 

selected for analysis, as it is the water year that corresponds best with the records selected 

at the highly treated sites.  Data from Charlotte Douglas Airport (station ID: KCLT, 

downloaded from http://www.ncdc.noaa.gov/cdo-web/) indicated that the 960 mm of 

water fell during the 2012 water year, which was the 25th percentile of total annual 

precipitation on the station’s 72-year record. 

For the USGS sites, approved instantaneous discharge data, measured at 15-minute 

intervals, were downloaded from the USGS National Water Information System 

(http://nc.water.usgs.gov/char/streamflow.html).  At the highly treated sites, we recorded 

stream stage at 10-minute intervals using a 730 Bubbler Module Sensor attached to an 

ISCO autosampler (Teledyne Technologies Inc., Thousand Oaks, CA, USA). We 

developed stage-discharge relationships for each site using a HEC-RAS (US Army Corps 

of Engineers) hydraulic model built from cross sectional geometry data collected at 

approximately 1.5 m longitudinal intervals.  The modeled Manning’s roughness 

coefficient for the channel banks was calibrated to match four to five high storm flow 

observations collected using velocity-area and dilution gaging methods (USGS, 1982). 
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For calibrating Manning’s roughness in the channel at low flows, the total unit stormflow 

volume contributed from flows less than the 90th percentile discharge value was 

calibrated to be within ± 10% of the observed annual unit discharge from nearby gages 

over the same period.  The USGS gage at Edward’s Branch was used for calibration of 

low flows at UL1 and UP1, since the watersheds are adjacent and have similar land use 

and stormwater infrastructure. The USGS Edward’s Branch gage was located 0.4 km 

downstream from UL1. For the two suburban sites, the record for low-flow calibration 

was compiled from a capacitance water level record combined with a stage-discharge 

rating curve by Gagrani et al. (2014) for the BD4 watershed. 

We used 5-minute precipitation data from 31 rain gages in the USGS National Water 

Information System (NWIS) (http://nc.water.usgs.gov/char/raingage.html) to construct 

composite precipitation records for each watershed using the Thiessen method (Thiessen, 

1911) (Figure 2-1).  The number of gages used to create the area-weighted composite 

record at a given site ranged from 1 to 8. 

2.4.2 Hydrologic Variable Considered 

To characterize the hydrologic response, we first developed a procedure to identify 

individual storm events. We modified the constant line separation method developed by 

Hewlett and Hibbert (1967) to separate stormflow from baseflow and to define the end of 

a hydrologic event (Figure 2-2). This method was originally applied in forested 

watersheds to separate stormflow from baseflow, but because response times are 

considerably faster in urban streams, we decreased the slope of the separation line to 

3.3x10-5 m3 s-1 km-2 hr-1 based on observations of a subset of individual events at each site. 



23 

 

We defined the initiation of an event as the time of the first positive hydrograph slope 

during a 60-minute period that exceeded the slope of the hydrograph separation line. We 

determined the end of the event as the time when the separation line intersected the 

hydrograph.  Of all hydrologic events identified, we retained only events in which total 

precipitation (PPTE) exceeded 2.54 mm (0.1 in) for analysis. While other hydrograph 

separation methods using digital filters exist (Lyne and Hollick, 1979; Eckhardt, 2005), 

these methods are not designed to determine the start and end of individual storm events 

at a sub-daily time step.  

 
Figure 2-2: Example of modification to Hewlett and Hibbert (1967) constant line separation method used to 

define the beginning and end of storm events storm events, and to separate stormflow from baseflow for 
runoff ratio calculation.  Example shown is for the first hydrological events of the 2012 calendar year at 

Little Sugar Creek 
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Using the discharge and precipitation data, we derived several metrics of event-scale 

hydrologic response. First we calculated the rainfall-runoff ratio as shown in Eq. 1.1: 

!"#$%%	!'()$ =
+ ,
--./

      (Eq. 1.1) 

where V is the total stormflow volume [L3] above the separation line (Figure 2-2), A is 

the watershed area [L2], and PPTE is the total event precipitation [L].  PPTE was the sum 

of all rain falling during the defined hydrologic event and any rain that had fallen 1.5 h 

prior to the event.  Using this 1.5 h time window, pre-event precipitation accounted for 

<10% of total event rainfall for 75% of events analyzed.   

We defined peak discharge as the largest instantaneous discharge value during the 

hydrologic event and normalized it to watershed area to allow for comparisons across 

sites. We calculated a “response rate” using the slope of a log-transformed linear model 

of peak discharge vs. maximum 60-minute precipitation intensity (I60).  This precipitation 

metric was chosen over PPTE and the maximum 15-minute precipitation intensity as it 

produced the highest R2 values at 9 of the 16 sites.   We also estimated the amount of 

storage within the watershed as the threshold of precipitation above which streamflow 

responds more rapidly to rainfall (Loperfido et al., 2014). We calculated this as the 

breakpoint in slope of piecewise linear models between peak discharge and total 

precipitation using the “segmented” package in R (R Core Team, 2013). For computation 

of these breakpoints only, precipitation events with PPTE less than 2.54 mm were also 

included.  
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In addition to these event-specific metrics, we computed two metrics to describe 

hydrologic behavior over longer timescales. We computed the annual water yield ratio as 

the slope of the regression line fit between cumulative daily flow depth and cumulative 

daily precipitation.  Additionally, we calculated the percent of time the instantaneous 

discharge was above the mean value to characterize flashiness, a metric that can be used 

to describe the regime of hydrologic disturbances to stream ecosystems and is also tied to 

ecosystem biological integrity (Booth et al., 2004; Cassin et al., 2005; Burns et al., 2015). 

2.4.3 Statistical Analysis 

We used the software R (R Core Team, 2013) to perform all statistical analyses and all 

results reported as significant are within 95% confidence unless otherwise indicated. To 

determine trends across sites, we fit both linear and log-transformed linear models 

through the hydrologic response variables using the eight watershed metrics (Table 2-2). 

The watershed metric producing a univariate model with the highest performance 

determined by R2 was deemed the primary control on hydrologic behavior across sites. 

To further characterize potential secondary controls, we performed a correlation analysis 

between the residuals of the linear models and the each of the remaining watershed 

metrics.  All correlations were quantified using the Pearson product-moment correlation 

coefficient (R).   

We computed 6 percentiles (10th, 30th, 50th, 70th, 90th and 99th) for peak discharge and 

runoff ratio at all 16 sites.  We then performed the linear modeling procedure outlined 

above on all these percentile values (6 models per variable, each with n=16) to 

characterize the primary and secondary control across the entire range of event scale 
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observations, rather than just characterizing the mean or median. Performing this analysis 

across the distribution of hydrologic variables allowed us to identify which watershed 

factors controlled hydrologic response under varying antecedent moisture, temperature, 

and precipitation characteristics, which contribute to the variability within each site. 

2.5 Results 

2.5.1 Watershed Metrics 

All of the watersheds metrics considered characterized either the intensity of urbanization, 

SCM mitigation or both (Table 2-1), and several of them correlated with each other 

(Table 2-3).  The level of urbanization, quantified by TI, spanned from 4% to 51%. 

Mitigated Area (MA) ranged from 1.3 to 89%, but only three sites (all from the highly 

treated sites group) had MA values > 20%. EI, computed at only the 4 highly treated sites, 

ranged from 0.2% at SL1 to 41% at UL1.  UI ranged from 0.48% to 52%.  UI was very 

strongly correlated with EI (Table 2-3), which indicates that it can serve as a suitable 

replacement for EI if SCMs are assumed to convert effective impervious areas into non- 

Table 2-3: Correlation matrix of 8 site metrics considered in this analysis.  Values in the table are Pearson’s 
product moment correlation coefficient (R).  EI correlations are only for the four highly treated sites, while 

the rest are for all 16 sites. 

 Area TI UI EI* MA Tree Coverage SCM Density UI/TI 
Area 1.00 0.07 0.27 0.64 -0.48 0.12 -0.34 0.49 

TI 0.07 1.00 0.91 0.87 -0.01 -0.51 -0.01 0.18 
UI 0.27 0.91 1.00 1.00 -0.41 -0.23 -0.34 0.56 
EI* 0.64 0.87 1.00 1.00 -0.65 0.24 -0.51 0.93 
MA -0.48 -0.01 -0.41 -0.65 1.00 -0.63 0.91 -0.94 

Tree Coverage 0.12 -0.51 -0.23 0.24 -0.63 1.00 -0.76 0.52 
SCM Density -0.34 -0.01 -0.34 -0.51 0.91 -0.76 1.00 -0.82 

UI/TI 0.49 0.18 0.56 0.93 -0.94 0.52 -0.82 1.00 
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effective ones.  UI and TI were also strongly correlated, and UI averaged 77% of TI. TI 

and tree coverage were moderately negatively correlated. 

2.5.2 Runoff Ratios 

For the analysis period, across 16 sites, we identified a total of 737 hydrologic events 

with precipitation ≥2.54 mm. Of the eight watershed metrics, TI was the best predictor of 

the 10-90th percentile runoff ratios, and runoff ratios increased with increasing TI (Figure 

2-3a, Table 2-4). No significant relationship was produced for 99th percentile storms, 

which were highly variable. Additionally, the coefficient of variation of runoff ratios 

decreased with increasing TI (R2=0.57, p<0.001). Significant linear models were also 

identified for the 30th-90th percentile runoff ratios using UI as the independent variable, 

and for the 10th-90th percentiles using tree coverage fraction. Runoff ratios increased with 

increasing UI and decreased with increasing tree cover. These models had lower 

explanatory power (R2) than the TI models. No significant relationships were identified 

for any runoff ratio percentile versus MA, SCM density or UI/TI. 

Table 2-4: Best linear models for predicting the 10th, 30th, 50th, 70th, 90th and 99th percentile rainfall-runoff 
ratios and peak unit discharge (log-transformed) using only a single site metric.  Only significant models 
(p<0.05) with the highest R2 are reported. This table describes the linear models shown in Figures 2-2(a) 

and 3(a). 

Percentile Rainfall-runoff ratio Peak unit discharge 
 Metric R2 Slope Metric R2 Slope 

10 TI 0.76 0.32 TI 0.76 7.8 
30 TI 0.75 0.41 TI 0.83 7.8 
50 TI 0.74 0.47 TI 0.87 8.1 
70 TI 0.72 0.51 TI 0.82 7.3 
90 TI 0.43 0.43 TI 0.63 5.8 
99 -- -- -- TI 0.45 5.6 
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Figure 2-3: Panel (a) plots all observations of event rainfall-runoff ratios vs. TI. The solid lines represent 

significant linear relationships at selected percentiles, indicated by the color in the legend. Panel (b) shows 
the residuals of each of the linear models in (a) vs. the percentage of unmitigated impervious area.  

Generally, sites with less mitigated imperviousness have a higher runoff ratio, after discounting the effect 
of total TI. 

To identify secondary controls on the 10-90th percentile runoff ratios, we correlated the 

residuals of the runoff ratio-TI models with the remaining site metrics. Residuals were 

most strongly correlated with the ratio of UI/TI (i.e., the percentage of impervious area 

that was unmitigated by SCMs). All correlations were negative (-0.46≤R≤-0.63), which 

indicated that sites with a higher ratio of unmitigated imperviousness to total 

imperviousness had higher runoff ratios (Figure 2-3b). 

2.5.3 Peak Discharge 

Across all events and watersheds, simple linear regression models show peak discharge 

to be most strongly predicted by TI at all percentiles (Figure 2-4a, Table 2-4). In addition, 

significant models with lower explanatory power (R2) were identified for UI (10th – 70th 

percentiles) and tree coverage (10th – 90th percentiles).  
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Figure 2-4: Panel (a) plots all observations of event peak unit discharge vs. TI. The solid lines are 

significant linear relationships at selected percentiles, indicated by the color in the legend.   Panel (b) shows 
the residuals of all of the linear models in (a) vs. watershed area.  The residuals of the 10th-50th percentiles 

were most strongly correlated to watershed area.  Generally, the residuals decrease as watershed area 
increases, however the smallest sites deviate from this trend.  Panel (c) shows the residuals of the 70th and 

90th percentile linear model vs. SCM density, as this produced strongest correlation, although it was heavily 
leveraged by one site.  Panel (d) shows the residuals of the 99th percentile model vs. tree cover, which 

produced the strongest correlation.     

Correlation with the residuals of the peak discharge-TI models identified multiple 

secondary controls, changing with event size. Watershed area was identified as the 

strongest secondary control for smaller peak flows (10th-50th percentiles, R < -0.53, 

shown in Figure 2-4b). Larger peak flows (70th and 90th percentiles) were inversely 

correlated to SCM density (R=-0.414 and -0.594, respectively, Figure 2-4c), and the 99th 
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percentile was best correlated to the tree coverage (R=0.556, Figure 2-4d).  However, the 

correlations for the 70th-90th percentiles were strongly leveraged by one point. 

Despite the shifting secondary control, when plotted against watershed area, the peak 

flow-TI residuals for all percentiles generally declined as area increased (Figure 2-4b).  

This indicated that as watershed size shifted from small to large, the TI model shifted 

from under-predicting to over-predicting peak discharge.  However, below 2 km2, the 

trend was reversed, potentially due to the high level of SCM mitigation at the small, 

highly treated sites. 

2.5.4 Peak Discharge Response to Precipitation Across Sites 

Two record-long metrics were used to characterize the form of the relationship between 

peak discharge and precipitation characteristics.  First, we defined the discharge response 

rate as the slope of the linear model of peak discharge (log-transformed) and I60. This 

site-specific variable ranged from 0.59 at Gar Creek to 1.65 at Briar Creek Trib.  As with 

the event scale metrics, the primary site factor that best predicted this variable across sites 

was TI (R2=0.54, p=0.001, Figure 2-5). Significant, but weaker linear models were also 

observed between the response rate and UI. 

The second metric describing the relationship between rainfall and peak discharge was 

the breakpoint in the slope of a linear model of peak unit discharge and PPTE.  Examples 

of this break in slope are shown for sites at the opposite ends of the urbanization 

spectrum. Figure 2-6a shows that Gar Creek, with 4% TI, had a flatter slope between 0  
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Figure 2-5: Peak discharge response rate vs. TI.  This value was computed as the slope of a linear model 

constructed between peak discharge and maximum 60-minute rainfall intensity at each site.  This plot 
shows that the sensitivity of peak discharge to equivalent forcing from precipitation increases as TI 

increases (R2 = 0.53 p = 0.001). 

 
Figure 2-6: Panels (a) and (b) give examples of breaks in the slope of log-transformed peak discharge vs. 
log-transformed PPTE at the lowest TI site, Gar Creek (a), and highest TI site, Little Sugar Creek (b).  The 

dashed, vertical lines run through the breakpoints for clarity.  Panel (c) shows that as TI increases, the 
breakpoints decrease indicating a more sensitive response to rainfall and therefore a loss in watershed 

storage.  Different symbols are used to show different levels of statistical significance, and sites with p > 
0.20 are plotted as open circles near the x-axis to indicate no change in slope, and therefore no storage.  The 

point for UL1 is left hollow despite being significant (α < 0.15) because the slope decreases at this 
breakpoint at this site, rather than increases. 
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and 12 mm of rain, above which the stream responded at a higher rate.  Little Sugar 

Creek, with 54% TI, shifted at precipitation levels as low as 1 mm (Figure 2-6b).  Our 

data showed that with increasing TI, runoff generation and streamflow response occurred 

during smaller rain events (Figure 2-6c).  There was a downward trend in the breakpoint 

as TI increased.  Determining the primary site metric controlling the breakpoints across 

site was difficult, as a number of sites did not exhibit a significant breakpoint (Figure 2-

6c).  Using subsets of the data based on breakpoint significance, TI consistently showed 

the strongest correlation with the breakpoint. 

2.5.5 Annual Metrics 

Two annual hydrologic metrics (water yield and time above mean) were also computed.  

Of all eight site metrics tested, water yield was most strongly correlated tree coverage 

(R2=0.53, p=0.002) (Figure 2-7a).  TI and UI also produced significant linear models, but 

with poorer performance. 

The second annual metric considered was the fraction of time the hydrologic record spent 

above the mean discharge.  This metric is an indication of flashiness with low values 

representing rapid watershed response (e.g., higher peaks and shorter duration). The time 

above mean ranged from 7.1% at Edwards Branch to 31% at SP1. UI was the best 

predictor of time above mean across all sites (Figure 2-7b, R2=0.60, p=0.005), and TI 

also produced a significant, but less explanatory model.  In search of secondary controls, 

no watershed metrics were strongly correlated (|R| < 0.45) with the primary model 

residuals. 
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Figure 2-7: (a) Annual water yield fraction decreased with increased tree coverage (R2 = 0.52, p = 0.002), 

and (b) time above mean decreased with increased UI (R2 = 0.60, p < 0.001). 

2.6 Discussion 

2.6.1 Total imperviousness controls event scale response 

At the event scale, TI was the dominant control on a range of hydrologic response metrics 

at 16 sites in Charlotte, NC that spanned a range of imperviousness and mitigation by 

SCMs. Regression analysis demonstrated that TI was best of a suite of spatially 

integrated, watershed-scale metrics at describing the variance of storm event runoff ratios. 

Additionally, a watershed’s ability to store small rain events, quantified by a breakpoint 
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in slope between total precipitation and peak discharge, was also tied best to TI.  These 

results are in alignment with other hydrologic effects of urbanization, including a loss of 

watershed recharge and storage (Booth 2002) and decreased evaporation and 

transpiration with loss of vegetation (Grimmond and Oke, 1999).  Lower storage capacity 

would lead to more frequent flooding events, and therefore alter disturbance regimes in 

stream ecosystems.  Additionally, TI had the strongest statistical control on both the 

distributions of peak discharge across sites and the rate of response of peak discharge to 

rainfall once initial storage (i.e., breakpoint) had been exceeded.  These results add to an 

increasing body of evidence of urbanization, measured by TI, causing increased surface 

runoff and drainage efficiency (Shuster et al 2005). This is also demonstrated by the 

negative correlation (R=-0.75) between TI and each site’s coefficient of variation of 

runoff ratios.  

Other metrics like UI and tree coverage fraction frequently produced significant linear 

regression relationships at our study sites, but the strength of these was consistently less 

than those produced by using TI.  Many studies have shown the relationship between 

hydrologic response and TI (see reviews by Arnold and Gibbons, 1996 and Shuster et al., 

2005).  However, modeling studies that considered both TI and EI (EI is assumed to be 

analogous to UI if SCMs operate as designed), found EI to be either a better metric than 

TI or an important control when modeling hydrologic response to rainfall (Lee and 

Heaney, 2003; Guo, 2008; Dewals et al., 2012; Shields and Tague, 2014). In the 

watersheds in our study, TI best explained event scale hydrology across sites, indicating 



36 

 

that TI is the single best metric for quantifying impacts of urban development on storm 

runoff delivered to streams. 

2.6.2 Secondary controls on event scale hydrology 

An analysis of residuals of the linear models between event hydrologic variables and TI 

was performed to identify secondary watershed controls. Analogous to the fraction of 

directly connected impervious surfaces (e.g., Shuster et al., 2005; Walsh et al., 2005; 

Shields and Tague, 2014), UI/TI was the dominant secondary control of runoff ratios.  In 

our 16 watersheds, the correlation between the residuals and UI/TI was negative, so that 

for a given TI, runoff ratios decrease as the proportion of untreated impervious increases. 

Counterintuitively, this suggests that as a higher percentage of TI is treated by SCMs (i.e., 

UI/TI decreases), runoff ratios actually increase for given a level TI.  We postulate that 

this effect is a result of different ages and styles of infrastructure within the SCM 

catchments than in areas with untreated imperviousness. In areas with high density of 

SCMs, development is likely newer, with less secondary permeability of pavement 

(Wiles and Sharp, 2008) and fewer joints and breaks in drainage pipes. Areas with SCMs 

may also be more likely to have a higher density of drainage pipes and curb and gutter 

systems, than in areas without SCMs, where informal drainage (e.g., roads without curbs) 

may be more prevalent (Walsh et al., 2012). Together or separately, these differences 

result in greater drainage efficiency of stormwater runoff to SCMs in newer 

developments, producing the higher runoff ratios observed in this study. The presence of 

a SCM may even spur greater connectivity of impervious surfaces because of the 

perception that the SCM will mitigate the effects of the runoff.  
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Although peak discharge did not have a consistent, dominant secondary control across 

the percentiles considered, watershed area was the most prevalent. The trend, as shown in 

Figure 2-4b was that as watershed area increases, the residuals decrease (i.e., peak 

discharge for a given TI decreases as area increases).  This finding is consistent with peak 

attenuation due to channel and floodplain storage during flood routing (Bedient et al., 

2002). It may also be attributable to non-uniform rainfall (both spatially and temporally) 

in larger watersheds, where isolated convective thunderstorms may produce high rain 

intensities in a small area while the rest of the watershed receives little or no precipitation. 

This finding contrasts that of Galster et al. (2006) who observed a positive linear 

relationship between peak unit discharge and area.  Galster et al. (2006) tracked a single 

event downstream within the channel network and attributed the observed relationship to 

downstream increases in TI, which does, however, agree with our findings of TI as a 

primary control.  Despite our observed trend of decreasing peak unit discharge residuals 

with increasing area, in the smallest watersheds (<2 km2) with the highest SCM treatment, 

the residuals are negative compared to positive residuals in slightly larger watersheds (2-

5 km2) with lower SCM treatment. The effects of flood routing and spatial variation in 

rainfall should be small over this range of scales, so the difference between the highly 

treated and less treated watersheds implies that SCM mitigation may be a tertiary control 

on peak discharges across sites. 

2.6.3 Tree coverage and SCM mitigation predict annual hydrologic response 

While processes associated with impervious coverage were found to dominate the 

hydrology at the event scale, at the annual scale, tree coverage and stormwater mitigation 
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of impervious surfaces have a larger impact. The water yield fraction across sites was 

best explained by tree coverage, as a linear relationship showed lower water yield as tree 

coverage increased (Figure 2-7a).  An urban forest canopy can increase transpiration, 

interception and subsequent evaporation (Nowak and Dwyer, 2007).  This is inconsistent 

with the finding for runoff ratios at the event time scale, which were best explained by TI.  

TI is approximately the complement of total vegetation (i.e., total vegetation coverage = 

tree coverage + lawn coverage ≈ 1 – TI).  At the event time scale, fresh rainfall is 

available for transpiration by both shallow-rooted lawns and deep-rooted trees, so TI may 

best represent plant access to water for transpiration.  However, at longer time scales, tree 

coverage may better represent vegetative effects on hydrology than TI because trees have 

deeper rooting systems than grasses that allow them to transpire groundwater between 

rain events when the water table is lowered.  The increased transpiration of urban trees 

compared to urban grasses was demonstrated by Shields and Tague (2014), where 

simulations of suburban and urban residential neighborhoods in semiarid Santa Barbara, 

California showed live oak consistently transpired more water per unit vegetated area 

than local grasses. 

We characterized stream flashiness as the fraction of time the hydrologic record spent 

above its mean discharge.  Low values of this metric occur if the flow distribution is 

skewed up towards fewer, larger events and this is indication of the intensification of the 

hydrologic response to precipitation.  A previous study demonstrated that increased 

urbanization, as measured by TI, lead to decreases in the time spent above the mean 

(Booth et al., 2004).  In this study, a similar relationship between the time above mean 
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and TI existed, but UI, the fraction of watershed area covered by impervious surfaces not 

mitigated by SCMs, was a stronger predictor. We attribute this to SCM design, which 

both delays the release of stored runoff from impervious surfaces and can promote local 

infiltration and groundwater recharge (Roesner et al., 2001; CMSWS, 2013). Localized 

infiltration in SCMs can lead to increased baseflow, which causes hydrologic records to 

spend more time above the mean discharge (Hamel et al., 2013; Bhaskar et al., 2016).  

However, a vast majority of the SCMs in this study were retention ponds and wetlands 

which designed with liners to limit infiltration (CMSWS, 2013).  Therefore, we attribute 

this result to attenuation of surface water in SCMs rather than elevated infiltration.  

Jefferson et al. (2015) used isotopic hydrograph separation to show that SCMs surface 

outflow contributes disproportionately high amounts of runoff to streamflow during 

hydrograph recession relative to their drainage area.  Our results, in combination with the 

goals of SCM design and observations of Jefferson et al. (2015), explain why UI, which 

implicitly incorporates SCM mitigated impervious surfaces, outperforms TI at predicting 

stream flashiness because SCMs temporarily retain surface runoff.  Together, results of 

annual hydrologic variables indicate that management strategies like tree planting and 

mitigating impervious areas can reduce total water runoff and decrease hydrologic record 

flashiness. 

2.6.4 Why was our hypotheses wrong?  Highlighting topics for further research 

We hypothesized that metrics incorporating both the extent of urban impact and 

mitigation with stormwater control measures (i.e., UI and MA), would better predict 

hydrologic variables than those quantifying urbanization or SCM mitigation alone.  This 
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hypothesis implied that SCMs are affecting storm event runoff.  However, at the event-

scale, TI produced the strongest relationships. We propose four possible explanations for 

these unexpected results: (1) the signal produced by the distribution of SCM mitigation 

was insufficient to overcome the signal from imperviousness, (2) these metrics do not 

incorporate necessary information on spatial arrangement of both impervious surfaces 

and SCMs, (3) TI is actually a better predictor than EI of the suite of hydrologic 

behaviors studied here and (4) SCMs are unable to reverse the connection between urban 

surfaces and streams formed by storm drainage pipes (i.e., some mitigated impervious 

surfaces are still effective).  These possible explanations highlight needs for future 

research. 

The sixteen sites span a range of urbanization and SCM mitigation that reflects current 

practices in Charlotte, NC.  The population of Charlotte grew by 14% between 2007 and 

2014 (United States Census Bureau, downloaded at: http://factfinder.census.gov/), and 

this growth has coincided with urban development under stormwater post-construction 

ordinances implemented in 2007.  This extensive, regulated development makes 

Charlotte a city with a relatively high level of SCM mitigation.  However, while the 

range of mitigated area at the sites considered in this study is broad, it is skewed toward 

sites with less mitigation, which may not be sufficient to compensate for the impacts of 

urbanization at the watershed scale.   

To investigate the sensitivity of our analyses to the influence of including a single very 

small, highly mitigated watershed (SL1), we repeated the analysis without SL1.  This 

analysis showed that TI was still the best predictor of the distributions of runoff ratios 
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and peak discharges, the breakpoint in slopes of the relationship of peak discharge vs. 

PPTE, and discharge response rates.  Similarly, tree coverage remained the best predictor 

of total water yield.  The only result that changed was that TI slightly outperformed UI 

(R2 = 0.58 and 0.54, respectively) at predicting the time above mean.  Since the results 

were mostly unchanged, we assert that these 15 sites may not have enough SCM 

mitigation to override the signal of urbanization.  This is similar to results from studies in 

Cincinnati, OH on the effects of implementing rain gardens and rain barrels, which are 

more distributed forms of stormwater management.  The authors found that partial 

mitigation (which reduced EI by ~9%) made small, but detectable changes to hydrology, 

however, these changes were not enough to effect stream biota (Shuster and Rhea, 2013; 

Roy et al., 2014). 

Secondly, while one of the strengths of the metrics we chose is that they are easily 

computed and readily incorporated into policy, their simplicity renders them blind to 

spatial arrangement. Our analysis was not able to address proximity of impervious 

surfaces to one another or to the watershed outlet. In a modeling study, Corbett et al. 

(1997) found that although clustering impervious surfaces did not change event-scale 

rainfall-runoff ratios compared to scenarios with distributed impervious surfaces, it did 

increase peak flows. Other modeling study showed that runoff volumes increased (Zhang 

and Shuster, 2014) and peak discharge decreased (Yang et al., 2011) as the average 

hydrologic distance between impervious areas and the outlet decreased. These studies 

highlight complexity of the interaction between impervious area distribution and 

stormwater hydrology. Similar information is lacking with regard to the location of 
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SCMs that could also have significant effects on runoff timing and volume.  At four sites 

in the Mid-Atlantic United States, Loperfido et al. (2014) showed that many small, 

distributed SCMs increased baseflow, increased precipitation-peak discharge breakpoints, 

and decreased extreme event runoff volumes more than a site with larger, more 

centralized SCMs.  This shows that metrics like TI, UI, and MA may be missing 

important information about the spatial arrangement of both urban surfaces and SCMs. 

Our hypotheses may also have been incorrect because one of two assumptions made in 

our theoretical framework was invalid.  The first assumption was that EI is a better 

predictor of urban event scale hydrologic response than TI because it accounts for both 

impervious surfaces and their connectivity.  There is a strong theoretical basis for EI as a 

predictor of urban hydrologic response (Shuster et al., 2005), and numerous modeling 

(Lee and Heaney, 2003; Guo, 2008; Dewals et al., 2012; Shields and Tague, 2014) and 

ecological studies (Walsh et al., 2005; Walsh and Kunapo, 2009) have demonstrated the 

importance of including connectivity. However, no empirical studies known to the 

authors have actually demonstrated the predictive power of EI with respect to hydrologic 

response. 

The second assumption is that because SCMs are designed to replicate the hydrology in 

an undeveloped watershed (i.e., meet pre-development conditions), mitigated impervious 

surfaces are no longer directly connected and therefore not effective (suggested by Walsh 

et al. (2005)).  However, this assertion requires that SCM design standards address all of 

the changes to flow regimes from urbanization, which some argue is not the case in 

practice (e.g., Burns et al., 2012; Askarizadeh et al., 2015).  Additionally, the 
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performance of a SCM may vary based on SCM type, design approach, age or a 

combination of these factors.  For example, in-line ponds may provide flow control and 

water quality benefits for smaller events, but larger events or events in wet antecedent 

conditions pass through with little retention.  Because these ponds are directly on the 

stream network, they typically mitigate much larger areas than those closer to the 

ridgeline.  This is further complicated because policies that specify SCM design, and 

therefore performance, vary both across political districts and in the same district through 

time.  If in-line ponds or other SCMs underperform, this will lead to a misrepresentation 

of metrics like MA, UI and EI.  The opposite effect may also be true: in-line ponds that 

we have ignored from our analysis, along with SCM approaches that provide small 

amounts of storage such as swales and infiltration trenches, may be affecting the 

hydrological signal.  A potential improvement to these problems is to base the metrics of 

SCM mitigation on their performance or quality.  However, quantifying “quality” in the 

face of varying design standards and watersheds is challenging. Indeed, this variability of 

performance is demonstrated by the wide range of volume reduction reported by the 

International Stormwater Best Management Practice Database (Geosyntec Consultants 

and Wright Water Engineers, 2011).  Finally, it is possible that the effects of a fully 

functioning SCM on local hydrology do not translate to the watershed scale where 

multiple SCMs influence streamflow at different times. 

2.7 Conclusions and Implications 

The purpose of this study was to test whether or not watershed metrics characterizing 

both urban development and mitigation with SCM were better able to explain variation in 
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hydrology across sites than those quantifying urbanization or mitigation alone.  We 

analyzed hydrologic regimes for 16 urban watersheds with stormwater control measures 

in Charlotte, NC.  Total imperviousness, a metric characterizing only urbanization with 

no information about SCMs, was the best predictor of storm event hydrologic variables 

including rainfall runoff ratios, peak discharge, the ability of watersheds to buffer small 

rain events, and the rate of response between peak discharge and precipitation once that 

buffering capacity has been exceeded. Watershed metrics that included SCM mitigation 

were only found to be secondary or tertiary controls on hydrologic behavior at the event 

scale.  These data indicate that SCMs implemented at the levels observed are not 

significantly affecting event hydrology at the watershed scale. 

Annual hydrologic behavior, however, was best correlated to metrics other than TI.  The 

total water yield was best related to the fraction of tree coverage, potentially because 

trees can transpire deeper groundwater between rain events.  The time the discharge 

record spent above mean, a measurement of streamflow flashiness, was best related to 

unmitigated impervious area, indicating that SCMs may affect baseflow recession at time 

scales longer than a single event, as defined in this study.  

Despite intense efforts to mitigate stormwater runoff through SCMs in newly developed 

areas and opportunistically through retrofits in older developments, our analysis 

demonstrates that these investments have not paid off in terms of storm event scale 

hydrologic response at the watershed scale.  Therefore, unless different results are 

produced by future empirical studies either at sites with a broader range of SCM 

mitigation (e.g., 20-80%) or that incorporate SCM performance, TI is the watershed 
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metric that policy makers should use to manage watersheds to mitigate impacts to 

streams.  Tree planting may be a desirable management strategy for reducing total runoff, 

while SCM mitigation of impervious surfaces is a strategy that may reduce hydrologic 

flashiness on longer time scales by extending baseflow recession. 
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CHAPTER 3. STORMWATER CONTROL MEASURES CHANGE URBAN 
STREAM NUTRIENT AND CARBON CONCENTRATIONS 

3.1 Abstract 

The urbanization of watersheds increases nutrient loading and lowers residence times for 

processing of reactive solutes (i.e., nitrate (NOx-N), total dissolved nitrogen (TDN), 

orthophosphate (PO4-P) and dissolved organic carbon (DOC)), which leads to increased 

concentrations and export of those solutes.  Stormwater control measures (SCMs) 

mitigate these impacts of urbanization, and therefore have the potential to improve stream 

water quality. Our goal was to characterize the effects of SCMs on in-stream solute 

during storm events, focusing on two urban and two suburban watersheds in Charlotte, 

NC. We measured solute concentrations in outflow from a SCM in each watershed and in 

the receiving stream immediately downstream of the stream-SCM confluence during 

baseflow and 47 storms from 2011-2012. Average concentrations during stormflow were 

generally greater than baseflow, indicating that storms are important times of solute 

export.  Watershed land use was an important control on export of nitrogen and 

phosphorus, as event mean concentrations of TDN and NOx-N were higher at sites with 

less forest coverage and event mean concentrations of PO4-P were higher at the suburban 

sites, possibly due to more fertilizer application.  In the two urban sites, lower solute 

concentrations in SCM outflow decreased in-stream concentrations below the stream-



 

 

 

52 

SCM confluence. However, SCM outflow in the suburban watersheds increased in-

stream concentrations, because the addition of SCMs coincided with additional 

impervious area. Taken together, these results suggest SCMs have the potential to 

improve water quality by decreasing solute concentrations from urban runoff, but the 

type, location, and extent of urban development in the watershed may influence the 

degree to which this occurs.  

3.1.1 Introduction 

The connection between urban development and increased nutrient and carbon export is 

well documented (e.g., Paul and Meyer 2001), but the role of stormwater management in 

mediating solute export at the watershed scale is not as well understood (Koch et al. 

2015). Urban impervious surfaces and storm sewers increase hydrologic efficiency which 

causes more runoff to quickly reach streams (Leopold 1968).  When these hydrologic 

changes are combined with the greater loading of solutes to urban watersheds, total mass 

export of those solutes increases.  These chemical disturbances damage downstream 

stream and lake ecosystems (O’Driscoll et al. 2010), and therefore erode the value of the 

services they provide (Brauman et al. 2007).  Stormwater management often sets the goal 

of re-establishing the hydrological and biogeochemical processes that characterize 

undeveloped watersheds (CMSWS 2013).  Specifically, stormwater control measures 

(SCMs), including detention ponds, wetlands and rain gardens, are designed to increase 

water retention in watersheds, thereby decreasing total runoff and nutrient and carbon 

export (Gagrani et al. 2014; Hale et al. 2015). In this paper, we seek to identify whether 
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SCMs alter stream water chemistry during storm events, and to determine how 

confounding environmental factors such as land use, seasonality, and SCM design affect 

these changes. 

Urbanization elevates export of nitrogen (N), phosphorous (P) and dissolved organic 

carbon (DOC) from watersheds. Loading of N into urban areas is increased by importing 

food and fertilizer and accelerated atmospheric deposition from automobile exhaust 

(Bernhardt et al. 2008).  However, the efficient hydrologic flowpaths that transport N 

across urban areas reduce retention time, limiting the potential for biological processing 

and removal. Of particular importance is the short circuiting of runoff past the riparian 

zone (Groffman et al. 2002; Taylor et al. 2005), which can remove a disproportionate 

fraction of nitrogen relative to its area within the watershed (Duncan et al. 2013).  P 

export is also positively correlated to urbanization (Duan et al. 2012; Hatt et al. 2004; 

Smart et al. 1985; Walker Jr 1985; Winter and Duthie 2000), and is attributed to 

increased loading from fertilizer, food, and detergents (La Valle 1975; Waschbusch et al. 

1994).  Mass export of DOC also increases with urbanization, which is related to 

increased carbon concentrations in water due to leaching from older organic material and 

the presence of wastewater treatment plants and urban open areas (Aitkenhead-Peterson 

et al. 2009; Sickman et al. 2007; Walsh et al. 2005).  Even if stream concentrations do not 

change, the excess runoff volume from urban watersheds alone leads to greater DOC 

mass export, which can accelerate respiration processes downstream (Hale et al. 2015; 

Petrone 2010; Vidon et al. 2009).  
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The increased solute export changes caused by urbanization can be compounded during 

storm events.  In some cases, storm events account for a temporally disproportionate 

amount of nutrient and carbon mass leaving urban watersheds, which is attributed to 

increased water runoff, increased transport from watershed sources (i.e., concentration 

effect), or a combination of the two (Hook and Yeakley 2005; Poor and McDonnell 2007; 

Shields et al. 2008).  However, other urban watersheds have shown either that storm 

events do not account for a majority of export, or that concentrations decrease or remain 

static during storms (i.e., dilution effect) (Groffman et al. 2004; Hook and Yeakley 2005; 

Lewis and Grimm 2007; Taylor et al. 2005). These dynamics are often site specific and 

depend upon multiple factors including, development patterns, land use history, 

topography and climate.  Because SCMs are only engaged during storms, it is important 

to establish whether or not storms account for a majority of mass export, in order to 

understand whether SCMs can have a meaningful impact on stream water quality. 

SCMs can reduce nutrient export in two ways, first by reducing total runoff volume and 

second by enhancing removal and retention processes within the SCM. SCMs are local 

depressions on the landscape that first collect and retain urban surface runoff, and then 

slowly release the water.   SCMs reduce peak flows in the stream by delaying runoff and 

promoting infiltration during storm events, and reduce total runoff volume by allowing 

for evapotranspiration between events (Roesner et al. 2001). 

In addition to hydrologic benefits of SCMs, accelerated biological activity, coupled with 

the physical settling process, can further reduce outlet concentrations of N, P and C 
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relative to inlet concentrations (Collins et al. 2010; Geosyntec Consultants and Wright 

Water Engineers 2012; Hunt et al. 2008; Kearney et al. 2013; Koch et al. 2014; Mallin et 

al. 2002).  Plants and algal biomass assimilate dissolved nutrients and later release them 

in organic forms during senescence.  Microbial communities also play an important role 

in altering water chemistry via denitrification and respiration, which convert dissolved N 

and C to gaseous forms.  Physical processes within SCMs also change water quality, 

particularly sedimentation of P sorbed to particulate organic material and suspended 

sediments (Boström et al. 1988). Additionally, if the sediments and organic material are 

routinely dredged from SCMs or permanently buried, P is effectively removed (Walker 

1987). Collectively, these processes enable SCMs to reduce concentrations of nutrients 

and carbon in outflow water relative to inflow.  

The effectiveness of these removal and retention processes is determined through SCM 

design, which is largely focused on water residence time (Passeport et al. 2013).  While 

many other design factors such as aerial footprint, geometry, and vegetation type affect 

SCM performance (Mallin et al. 2002), the simplest way to compartmentalize a 

continuum of SCM designs is by the depth of water maintained during dry periods, 

referred to as the permanent pool.  This variable has been shown to be important for 

predicting removal and retention of nitrogen (Koch et al. 2014).  Non-existent or shallow 

permanent pools create an ecosystem similar to a natural wetland.  Wetland SCMs have 

distinct dry and wet periods, which allows for both aerobic and anaerobic biogeochemical 

processes (Collins et al. 2010).  Additionally, shallow pooled water means wetland 

vegetation can populate a larger portion of the SCM’s footprint (Collins et al. 2010).  
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SCMs with deeper permanent pools mimic natural pond ecosystems.  In these “wet pond” 

SCMs, deeper water causes longer mean residence times of water and solutes, which is 

better suited to settle sediments and organic material out of the water column to the 

bottom sediments (Toet et al. 1990). Additionally, the deeper water leads to anaerobic 

conditions in the bottom sediments facilitating NO3-N removal via denitrification. Algal 

assimilation dominates in the surface waters while wetland vegetation along the 

perimeter (i.e., littoral shelf) allows for additional nutrient uptake (Perniel et al. 1998). 

While there is much literature on the nutrient retention and removal of individual SCMs, 

considerably less is known about the effects of stormwater management at the watershed 

scale.  Many studies have demonstrated the importance of water volume reduction, which 

acts to reduce nutrient and C export (e.g., Bedan and Clausen (2009); Hale et al. (2015); 

Selbig and Bannerman (2008)). Retention and delayed release of the storm pulse also has 

potential for altering the timing of nutrient pulses to receiving stream networks (Jefferson 

et al. 2015).  Recent studies have indicated that inclusion of SCMs can reduce in-stream 

concentrations of some solutes (Gagrani et al. 2014; Hale et al. 2015), but considerable 

uncertainty remains regarding local and watershed scale controls on these dynamics.  

We link knowledge of urban hydrology and biogeochemical export at the watershed scale 

with that of SCM biogeochemical processes at a more localized scale by identifying the 

cumulative influence of SCMs on urban stream nutrient and DOC export. Specifically, 

we address three questions.  First, are storm events times of elevated export due to 

increased runoff, increased concentrations, or both?  If so, this would indicate that SCMs 
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have the potential for influencing biogeochemistry at a crucial time. Second, does water 

flowing out of an SCM into the stream change the concentrations of nutrients and DOC 

in the stream itself?  And finally, what are the controls (e.g., seasonality, SCM type, land 

use) on the magnitude and direction of these stream concentration changes?  This 

knowledge could help inform management decisions seeking to minimize nutrient export 

by minimizing concentrations of runoff. 

3.2 Site Descriptions 

We examined nutrient export from two suburban and two urban watersheds with SCMs 

near Charlotte, NC (35° 13' 36.9" N, 80° 50' 35.9" W).  Charlotte's average annual 

precipitation is 1105 mm.   Daily average temperatures for the months of January and 

July were 5.4°C and 26.8°C, respectively, between 1950-2000 at the meteorological 

station at Charlotte-Douglas Airport (KCLT) (State Climate Office of North Carolina 

2013).  

We classified two pairs of the four watersheds as having either urban (U) or suburban (S) 

land use.  The differences between these land use categories were based on proximity to 

the city center and age of residential development.  The outlet of each watershed was a 

short distance downstream of an SCM that was monitored for stream water quality; one 

wet pond (P) and one wetland (L) were in each of the development categories (Figure 3-

1).  The two urban sites were adjacent to one another other and the two suburban sites 

were in the same residential development.  Approximately 12 miles separated the two 

pairs of watersheds.  The four watersheds were also the subject of a companion study of 
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hydrologic response to precipitation on gradients of urbanization and SCM mitigation 

(Bell et al. In review).  

We computed a number of metrics including total impervious area (TI), effective 

impervious area (EI), fraction of watershed area that is SCM-mitigated area (MA), and 

total vegetative coverage (Table 3-1).  Table 3-1 also contains the TI of the subwatershed 

of the monitored in each of the four watersheds.  We calculated drainage areas using the 

Hydrology Toolbox in ArcGIS (ESRI, Redlands, CA, USA) with a 6.1 m (20 ft) digital 

elevation model (DEM).  We manually adjusted watershed boundaries to incorporate 

additional knowledge of the underground storm sewer networks from field visits, aerial 

imagery, and stormwater pipe network data.  Impervious areas and vegetation coverage 

estimates came from a remotely sensed land cover map developed for the year 2012 by 

Mecklenburg County (Mecklenburg County GIS 2013). 

The 145 ha urban wet pond watershed (UP1) has 27% TI, with dense commercial 

buildings in the upper portion of the watershed, and medium-density residential land uses 

in the middle and lower watershed (Figure 3-1a).  There is forest coverage in the middle 

part of watershed, as well as a preserved riparian corridor. UP1 has three SCMs, 

including one inline wet pond in the upper watershed, a restored wetland, and a wet pond 

SCM near the watershed outlet. Together, these three SCMs treat 56% of the impervious 

area. 

The UL1 watershed is the most heavily urbanization and least mitigated of the four sites. 

It is adjacent to UP1 and has impervious area distributed similarly: dense, commercial 
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Figure 3-1: The locations of the four monitored watersheds near Charlotte, NC, USA.  The inset maps of 

UP1 (a), UL1 (b), SP1 (c) and SL1 (d) show the location of impervious surfaces, SCMs, the areas mitigated 
by the SCMs, and the surface drainage networks.  Inset (e) is a representative diagram of the sampling 

locations around the SCM-stream confluence.  OUT is outflow from the SCM, US is stream water 
upstream of the confluence, and downstream 1 (DS1) is a mixture of OUT and US.  Sampling following the 

scheme outlined in inset (e) was not possible at UL1, so instead we sampled at two tributaries, shown in 
inset (f).  Due to a pipe routing stormwater underneath the US-L branch and into the monitored wetland, 
US-R was stream water heavily influenced by SCMs, while US-L was stream water less influenced by 

SCMs 

development in the headwaters and 1950’s residential areas throughout the remainder 

(Figure 3-1b).  There are four SCMs in this watershed: a dry pond mitigating runoff from 

mixed residential and commercial land, a wet pond that mitigates runoff from an 

elementary school, a rain garden mitigating runoff from a single parking lot, and finally 

the monitored wetland just upstream of the outlet.  Collectively, the four SCMs treat 16% 

of the watershed. 
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The two suburban watersheds, one with a monitored wet pond SCM (SP1) and one a 

wetland (SL1), are located in an actively urbanizing portion of the Beaverdam Creek 

watershed southwest of Charlotte (Figures 3-1c and 3-1d respectively).  Impervious cover 

in the suburban watershed comprises a shopping center and freeway interchange in the 

upper watershed and medium density residential impervious areas in the lower watershed.  

Both clusters of impervious area are treated by one wet pond each.  At the time of the 

study, the area between these two clusters was a hardwood forest, a few decades old. 

At 15 ha, the SL1 watershed is considerably smaller than the others, and 24% of it is 

covered by residential impervious surfaces. The watershed contains three SCMs: a large 

in-line pond, a dry pond, and a wetland with no permanent pool that drains to the stream 

just above the monitored location.  The in-line pond pre-dated the residential 

development, and receives overland flow and piped stormflow from 55% of the 

watershed.  It was retrofitted with an outflow structure for flow control, however, water 

levels in the pond seldom reached levels high enough for the outlet structure to become 

activated.  Instead, water seeped through the dam and contributed a low but constant flow 

to the stream during both storm and baseflow conditions. 
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3.3 Data and Analysis 

3.3.1 Monitoring Framework 

3.3.1.1 Hydrology 

We monitored streamflow and water quality for a period of approximately one year 

(2011-2012).  The range of dates monitored at each site varied: 6/21/11 to 5/1/12 at UP1, 

6/20/11 to 6/20/12 at UL1, 9/27/11 to 9/27/12 at SP1 and 8/18/11 to 8/18/12 at SL1.  We 

chose the monitoring windows based on quality of hydrologic data and to coincide with a 

maximum amount of stormwater quality samples.  A 730 Bubbler Module Sensor 

attached to an ISCO autosampler (Teledyne Technologies Inc., Thousand Oaks, CA, 

USA) measured stream stage at 10-minute intervals at each of the four sites.  We 

developed a stage-discharge relationship using a calibrated HEC-RAS (US Army Corps 

of Engineers) hydraulic model (see Bell et al. (In review) for details). 

To describe historical precipitation data for the Charlotte area, we used data downloaded 

precipitation data from the National Oceanic and Atmospheric Administration’s 

meteorological station at Charlotte-Douglas Airport (KCLT).  However, the sub-daily 

rainfall patterns varied substantially between watersheds, particularly between the urban 

and suburban pairs.  We therefore used Theissen polygons to generate a sub daily rainfall 

record at each watershed using data from the United States Geological Survey’s 

Charlotte-Mecklenburg Network of rain gages (data downloaded from: 

http://nc.water.usgs.gov/char/rainfall.html). 
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3.3.1.2 Water Quality 

We collected discrete water samples by hand and using ISCO autosamplers, in order to 

characterize patterns in nutrient and carbon concentrations during storm events.  We 

configured the ISCO samplers to collect stream water from the center of the channel 

downstream of the confluence of the SCM and the stream, denoted as cross section DS1.  

DS1 was also the location of the hydrologic gage and considered the watershed outlet 

(Figure 3-1e). ISCO samplers began sampling once stream stage rose by 5-10% of the 

pre-event stage, after which the sampler pumped 800 mL of stream water into bottles 

every 15 minutes for two hours.  After these first 8 samples were collected, the ISCO 

collected samples every 2 hours for up to 32 hours to characterize the hydrograph 

recession.   

We also collected grab samples before, during, and after the storm at two other locations 

(Figure 3-1e): the ephemeral channel that transported water from the outlet of SCM to the 

stream (OUT); and within the stream, just upstream of the SCM-stream confluence (US).  

These sampling locations acted as end-members for the water sampled at DS1, which is 

inferred to represent a mixture of the two end-members.  The general sampling 

configuration (Figure 3-1e) was not possible at UL1, as the SCM outlet pipe became 

inundated during storm events, rendering sampling from the outlet culvert impossible.  

Instead, we sampled water from the upstream left (US-L) and upstream right (US-R) 

tributaries.  Three of the four SCMs in UL1 drain to US-R, while the US-L watershed has 

only a rain garden.  The monitored wetland captures stormwater runoff from a residential 
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area adjacent to US-L; however, a siphon inflow structure runs underneath the US-L 

tributary and outflow water from wetland drains to the US-R tributary (Figure 3-1b).  As 

a result, these two branches have the same land use, but very different levels of SCM 

mitigation, which allowed us to use the US-R and US-L end members in place of OUT 

and US, respectively. 

To complement grab samples, we installed passive siphon samplers (Diehl 2008) at the 

US location of all four sites, and at the SCM outlets at all sites but UL1.  These samplers 

act as first flush bottles because they fill on the rising limb, but do not allow for the 

exchange of water between and the bottle and stream once filled.  The temporal density 

of all sample types (ISCO, passive siphon, and grab) varied between events, and the 

minimum number of total samples collected for each storm analyzed was 7 per site. 

We collected ISCO samples upon conclusion of each rain event, returned them to the lab 

in coolers, and filtered them using pre-ashed 0.7 µm Whatman® glass fiber filters.  We 

stored one sample aliquot in the refrigerator until analyzed for concentrations of TDN 

(mg-N L-1) and DOC (mg-C L-1) on Shiamadzu TNM-1 and TOV-V analyzers 

(Shiamadzu Corp., Kyoto, Japan).  We stored two sample aliquots frozen in the dark until 

thawed for analysis of NOx-N and PO4-P (as mg-N L-1 and mg-P L-1, respectively) on a 

Lachat QuikChem 8500 Series 2 - FIA Automated Ion Analyzer (Hach Company, 

Loveland, CO, USA) using the cadmium reduction method for NOx-N (QuikChem 

Method 10-107-04-1-A; detection limit 0.016 mg NOx-N L-1) and the ascorbic acid 
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method for PO4-P (QuikChem Method 10-115-01-1-Q; detection limit 0.01 mg PO4-P L-1) 

(APHA et al. 2005). 

3.3.2 Data Analysis 

3.3.2.1 Monthly export estimates 

We calculated total mass export for all solutes during two 28 day intensively sampled 

periods in October (10/7/11-11/5/11) and February (2/1/12-3/1/12).  We determined 

export by linearly interpolating all measured concentration values, multiplying 

concentrations by stormflow volume, and dividing the cumulative sum by watershed area.  

We sampled all storm events at all sites during this period, except for one storm event at 

UL1 occurring on 10/11/11 and 10/12/11.  For this missing event, we computed the 

average event mean concentration (EMC, the methods of computation are described in 

the following section) for each of the constituents for all other events through the entire 

monitoring period.  We then assigned this average EMC as the concentration throughout 

the duration of the missing event. To account for uncertainty, we also calculated export 

using both the maximum and minimum observed EMCs from all other events as the 

concentration during the missing event, thus we generated a maximum, mean and 

minimum export estimate. 

3.3.2.2 Event-scale chemical export magnitude and timing 

During each storm, we calculated the peak concentration (CMAX) and the flow-weighted 

event mean concentration (EMC) for each of the four solutes sampled at DS1.  For 11 out 
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of 48 events considered, we took a grab sample at DS1 72 hr prior to the rain event.  

When this pre-event grab sample was not taken, we assumed the concentration at the time 

of hydrograph rise was equal to the mean of all samples taken while stream flow was 

below the 80th percentile of mean daily flow for the entire record.  For computation of the 

water quality variables, we defined the inception of each event based on the first period 

of a positive slope that resulted in hydrograph above antecedent conditions for at least 3 

hr.  The event’s conclusion was the time when the last water quality sample had been 

taken.  The length of the events was therefore sensitive to the sampling procedure.  On 

average, storm sampling continued until the hydrograph receded to 13% of the peak 

discharge, and sampling continued until the hydrograph receded until <20% of the peak 

discharge for 69% of the storms.  If water quality sampling persisted across multiple, 

distinct hydrograph pulses during which the hydrograph receded to ~20% of the peak 

discharge, we separated the pulses into individual events (i.e., two or more values of 

CMAX and EMC were determined).  

To compare the timing of each solute exported through the rain event, we computed a 

first flush coefficient (b), calculated as the slope of a linear model between log-

transformed mass export fraction and the log-transformed volume export fraction.  

Bertrand-Krajewski et al. (1998) explored this coefficient in depth, but generally as b 

decreases from 1 to 0, the export pattern displays a more positive gap in which the 

cumulative mass fraction leads the cumulative volume fraction.  This phenomenon is 

commonly referred to as the “first flush.”  As b increases from 1 to infinity, the reverse is 

true: the cumulative volume fraction leads the cumulative mass fraction.  We computed 
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these three variables (EMC, CMAX, and b) for each solute for each storm and used the 

variables to compare magnitude and timing of solute export across sites. 

We used the software R (R Core Team 2013) to perform all statistical analysis.  One-way 

analyses of variance (ANOVAs) with site as the grouping factor determined if the means 

of the three variables were significantly different among sites. For all tests we determined 

significance when p<0.05.  All ANOVA analyses employed a Bonferroni p-value 

adjustment for uneven sample sizes, and were complimented with a Tukey’s honestly 

significant difference (Tukey-HSD) post-hoc comparison test.  Where necessary, we 

transformed the data prior to the ANOVAs to ensure normality. 

3.3.2.3 SCM Influence on water chemistry 

To determine the influence of SCMs on stream chemistry through time, we analyzed 

hydro-chemographs of water from the three cross-sections around the SCM-stream 

confluence.  Time series rainfall data from the Charlotte-Mecklenburg Network rain 

gages supplemented this hydro-chemograph analysis.  For brevity, the data shown here 

are for only two successive hydrologic events occurring in the month of August.  These 

August events contained either the highest (UP1 and UL1), fourth highest (SL1), or fifth 

highest (SP1) recorded discharges at each site.  The events chosen were representative of 

chemograph behavior during other sampled events.  While all events occurred in first 

week of the month of August, the data shown for the urban sites is from the year 2011 

and the suburban sites from 2012.  Although they occur in different years, showing 

events from the same time of year from all sites minimizes variability due to seasonality.  



 

 

 

68 

Finally, we also chose to show these August storms because they had relatively dense 

temporal sampling at US and OUT or US-R end members.   Paired sample t-tests (p<0.05) 

determined if the differences in concentrations of samples take synchronously (within 2 

hr) at OUT and DS1 were significantly different than 0.  We chose to compare OUT to 

DS1 rather than to US because the number of sample pairs was higher, and results were 

comparable for both DS1 and US.  Values greater than 0 indicated that the SCM 

increased DS1 solute concentrations in the stream on average, while values less than 0 

indicated that the SCM decreased concentrations on average.  For UL1, we used the 

difference between concentrations at US-R and DS1 in place of OUT and DS1, as water 

in the US-R cross-section included outflow from the three large SCMs in the watershed. 

Using the entire period of record, we compared synchronous (within 2 hr) samples from 

SL-OUT and SP-OUT using paired sampled t-tests (p<0.05) to isolate the effects of SCM 

type.  Because the suburban SCMs are within ~730 m of each other and had identical 

land use in their contributing areas, we assumed that export per unit area to the SCMs is 

equal. This isolates SCM type as the dominant difference between the two sets of 

samples.  Only the suburban sites were chosen for the analysis of SCM type because we 

were unable to sample directly from the SCM outlet at UL1, and comparing UP1 to SP1 

would introduce variability associated with different land use and meteorological forcing. 
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3.4 Results 

3.4.1 Monthly export estimates 

We quantified the total export of four solutes at each site during October 2011 and 

February 2012 (Figure 3-2).  Additionally, we separated this export into storm and 

baseflow fractions, and computed a mean concentration for each flow condition by 

dividing the total export by the total volume. During October, which received 77 mm of 

rainfall, 38-72% of the runoff volume occurred during storms. Greater than 50% of the 

mass for all solutes at all sites was also exported during storm events.  In February, less 

rainfall (33 mm) led to smaller and less frequent storms with 28-50% of the runoff 

volume delivered during storms. Despite higher concentrations during February storm 

periods, greater solute export occurred during baseflow conditions at the two urban sites. 

Export at the suburban sites was more variable.  At SP1, baseflow periods also accounted 

for more mass export than storm periods for all solutes except NOx-N, however storm 

events accounted for more than half of the export of all four solutes at SL1. 

We calculated the average monthly concentration during baseflow and stormflow during 

the months of October and February for each solute (Figure 3-2). To compare baseflow 

and stormflow concentrations, we used the minimum concentration estimate at UL1 in 

October to be conservative. Mean storm condition concentrations were higher than 

baseflow with a few exceptions, which did not occur at a consistent site or for a single 

solute. 
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Figure 3-2: Total water runoff (top row) and solute export (rows 2-5) for the months of October and 

February.  Mass export (left y-axis) is shown as bars and average concentration (right y-axis) is shown as 
points of each subplot. Samples were separated into stormflow and baseflow time periods following the 

method of Bell et al. (In review).  Error bars on the October storm export at UL1 represent a maximum and 
minimum estimate given a storm occurring on October 11-12, 2011 was unsampled 
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Stormflow concentration of the two nitrogen species generally decreased in order of SL1, 

UL1, UP1 to SP1 (Figure 3-2). DOC concentrations were strongly affected by seasonal 

differences, with average baseflow and storm concentrations higher in February than 

October at all sites (Figure 3-2).  These higher concentrations lead to a greater mass 

export of DOC during February despite lower streamflow volume.  To a lesser extent, 

seasonality also influenced PO4-P concentrations, as the average storm concentrations 

were higher in October compared to February at all sites (Figure 3-2). 

Table 3-2: Summary of minimum, mean, and maximum values of two water quality variables, CMAX and b, 
for NOx-N, TDN, and DOC at each site.  Significant differences (p<0.05) in mean values between sites are 

indicated by unique letters in the “ANOVA Group” column. 

Solute Site 
CMAX b 

Min. Mean Max. ANOVA 
Group Min. Mean Max. ANOVA 

Group 

NOx-N 

UP1 0.16 0.32 0.55 a 0.86 1.1 1.7 a 
UL1 0.33 0.65 1.2 b 0.90 1.1 1.2 a 
SP1 0.067 0.30 0.56 a 0.90 1.1 1.3 a 
SL1 0.36 0.75 1.1 b 0.87 1.1 1.3 a 

TDN 

UP1 0.45 0.71 1.1 a 0.88 1.0 1.1 a 
UL1 0.67 1.2 2.4 b 0.93 1.1 1.1 a 
SP1 0.43 0.68 1.1 a 0.95 1.0 1.1 a 
SL1 0.88 1.4 2.5 b 0.92 1.1 1.3 a 

DOC 

UP1 4.0 8.0 22 a 0.97 1.0 1.2 a 
UL1 5.6 10 17 a 0.93 1.1 1.2 a 
SP1 7.2 12 19 a 0.77 1.0 1.1 a 
SL1 5.2 10 20 a 0.92 1.0 1.1 a 

 

3.4.2 Storm event solute export magnitude and timing 

Using the entire period of record (48 storms), we tested for differences in concentration 

among sites by comparing EMC and CMAX, and for differences in timing by comparing 

the flushing coefficient b. UL1 and SL1 had significantly higher EMCs compared to UP1 

and SP1 for both NOx-N and TDN (Figure 3-3).  Results were similar for tests performed 
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on the distributions of CMAX (Table 3-2).  We found no significant differences in mean 

values of b for either N species, and the average b values for both N species were 

between 1.0 and 1.1 at all sites (Table 3-2).  For DOC, we saw no significant difference 

in the means of EMC, CMAX, or b among any sites (Figure 3-3, Table 3-2). 

  
Figure 3-3: Boxplots of EMC for NOx-N (a), TDN (b), DOC (c), and PO4-P (d) at all four sites.  The mean 

value is plotted as a diamond.  Different letters above the boxplots in each panel indicate significant 
differences between sites (ANOVA, p<0.05).  No significant differences were found between any pairs of 

sites for DOC.  Number of storms at each site was 13 at UP1, 17 at UL1, 7 at SP1 and 11 at SL1 

Because the differences among sites in NOx-N and TDN followed similar patterns, we 

created exploratory plots of NOx-N vs. TDN for all individual samples, with the points 

coded by environmental factors such as discharge at time of measurement, two-day 

antecedent rainfall, time to peak discharge (if during an event), and season.  We found 

clear seasonal groupings at the sites with lower N concentrations (UP1 and SP1), 
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compared to the higher N sites (UL1 and SL1) (Figure 3-4).  The other factors considered 

did not display any groupings. 

Generally, PO4-P concentrations during storms were higher at the two suburban sites 

compared to the two urban sites.  One-way ANOVAs with site as the primary factor 

  
Figure 3-4: Plots of NOx-N vs. TDN coded by season at UP1 (a), UL1 (b), SP1 (c) and SL1 (d).  The low 
nitrogen sites (UP1 and SP1) show a clear grouping by season while the higher nitrogen sites (UL1 and 

SL1) do not.  Only points occurring during summer (6/21 - 9/21) and winter (12/21 - 3/21) are shown for 
clarity 

revealed significant differences in the means of observed EMC (Figure 3-3). Tukey-HSD 

tests of CMAX showed the same significant differences between urban and suburban sites, 

but also detected that CMAX at SL1 was significantly higher than at SP1 (Figure 3-5a).  

For b, SL1 was significantly higher than the other three sites (Figure 3-5b).  As b 

increases from 1 to infinity, the water volume fraction is exported faster relative to the 
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PO4-P mass fraction.  Therefore, the PO4-P export relative to water export was 

significantly delayed at SL1 compared to the other three sites. 

 
Figure 3-5: Boxplots of CMAX (a) and the b flushing coefficient (b) of PO4 at each site, with the mean value 
plotted as a diamond. Note that CMAX is plotted on a log scale in (a).  Values greater than 1 in (b) indicate 

that the fraction of water exported during the storm leads the mass fraction, while values less than one 
indicate the opposite.  Different letters above the boxplots in each panel indicate significant differences 

between sites (ANOVA, p<0.05).  Number of storms at each site was 13 at UP1, 17 at UL1, 7 at SP1 and 
11 at SL1 

3.4.3 Storm event dynamics 

We compared solute export patterns during storm events, coupled with end member grabs, 

to identify when different sources of solutes entered the stream. Here, we present data 

from two large, back-to-back storms in the month of August that have water quality data 

with a high temporal resolution and demonstrated chemograph pattern representative of 

those observed for the other storms (not shown). 
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3.4.3.1 UP1 

The first of the August events selected for hydro-chemograph analysis at UP1 had a peak 

discharge of 5.8 m3 s-1 km-2, which was the largest observed discharge value during the 

monitored period (Figure 3-6), and was followed by an event occurring approximately 

1.25 d later on 8/6/11 with a peak discharge of 0.30 m3 s-1 km-2.  For NOx-N and TDN, 

the 8/5/11 rain event also had the largest observed EMC and CMAX values during the 

monitoring period.  The 8/6/11 rain event, while much smaller, produced the second 

largest EMC and CMAX values.  Generally, NOx-N and TDN concentrations increased 

during hydrograph rise, peaked shortly after hydrograph peak, and receded more slowly 

than they rose after the flood peak (Figure 3-6b and c). SCM outlet (OUT) concentrations 

of both N species were lower than DS1 during hydrograph rise on 8/5/11, but increased 

through the storm, possibly elevating above DS1 concentrations during the recession 

between storms. 

DOC export patterns for this event were more variable than N (Figure 3-6d).  At DS1, 

DOC concentrations increased during hydrograph rise, peaked shortly after peak 

discharge and remained elevated during hydrograph recession. Two pulses in DOC 

concentration punctuated the general trend during recession of the 8/6/11 event, which 

also corresponded to elevated concentrations of TDN.  DOC concentrations at OUT were 

near or below DS1 concentrations for all 3 samples, and were lowest shortly after peak 

flow, when they were 67% of DS1 concentrations.  
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PO4-P chemographs mirrored those of the N species with one difference: both the 8/5/11 

and 8/6/11 rain events show very high concentrations during the first sample taken on 

hydrograph rise (Figure 3-6e), which could be evidence for near-stream sources of PO4-P  

 
Figure 3-6: Rainfall (a) and resulting hydrograph and chemographs of NOx-N (b), TDN (c), DOC (d) and 

PO4-P (e) at UP1 for two August storms 
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at UP1.  After this initial rise, both events show an elevation in concentration after peak 

discharge.  PO4-P patterns of OUT water also mirror those of the N species, as they are 

low at the onset of the event and enrich during the hydrologic event as the SCM releases 

new urban runoff. 

3.4.3.2 UL1 

At UL1, the first of two hydrologic events, occurring on 8/5/11, was also the largest 

observed storm event during the period of record with a peak discharge of 3.6 m3 s-1 km-2 

(Figure 3-7).  Although nearly adjacent to UP1, the hydrology of the 8/5/11 event was 

slightly more complicated with two distinct pulses of water, possibly reflecting the 

dynamics of the two stream branches that join at the watershed outlet.  Export patterns of 

NOx-N and TDN both showed concentrations that increased during hydrograph rise and 

decreased during hydrograph recession during the first pulse (Figures 3-7b and c).  

However, during the second, larger discharge pulse, concentrations increased during 

hydrograph recession. NOx-N concentrations during this event were negatively correlated 

(r = -0.58) to discharge, which could indicate a dilution effect. DOC concentrations 

mirrored those of TDN during the first event (Figure 3-7d).  

The 8/6/11 event was similar to other events sampled (not shown) in that NOx-N 

increased during hydrograph rise, peaked slightly after, and receded to pre-event levels. 

Concentrations of PO4-P remained below detection (0.01 mg-P/L) during both flood 

pulses (Figure 3-7e).  However, during hydrograph recession on 8/5/11, PO4-P  
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Figure 3-7: Rainfall (a) and resulting hydrograph and chemographs of NOx-N (b), TDN (c), DOC (d) and 
PO4-P (e) at UL1 for two August storms. DOC and TDN samples were not processed for the 8/6/11 event 

because the analyzer was temporarily out of service 

concentrations rose and remained elevated until the onset of the next rain event on 8/6/11.  

Again, concentrations remained below detection until after the discharge peak. 
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Paired samples from US-R (with SCMs) and US-L (without SCMs) were collected during 

rise of the 8/5/11 event and approximately 7 hr before the start of the 8/6/11 event. NOx-

N concentrations at US-R (SCM-influenced) were lower than US-L, whereas the opposite 

was observed for PO4-P. The first of two paired samples bracketed DS1 NOx-N 

concentrations during hydrograph rise, but measured concentrations between the 8/5/11 

and 8/6/11 events were lower than observed in-stream values, which suggests that the 

SCM may be a source of NOx-N during hydrograph recession. PO4-P concentrations were 

higher at US-L than US-R and DS1. 

3.4.3.3 SP1 

At the two suburban sites, we plotted a single event with two unique hydrograph pulses 

occurring on 8/6/12 and 8/7/12.  At SP1, the second discharge peak of 0.15 m3 s-1 km-2 

was the larger of the two, and was the 5th largest hydrologic event observed during the 

study period (Figure 3-8).  We observed similar patterns for all four solutes: 

concentrations rose during both discharge pulses, peaked at or near peak discharge, then 

receded during hydrograph recession.  In all cases, the peak concentration was higher 

during the first pulse than the second, and the difference in peak concentrations was 

greater for NOx-N (Figure 3-8b) and TDN (Figure 3-8c) than for DOC (Figure 3-8d) and 

PO4-P (Figure 3-8e).  This could indicate that the N sources had been exhausted by the 

time of the second storm pulse.   

Paired concentrations of the OUT and US end member concentrations were more similar 

on the rise of the first hydrograph pulse than they were on the recession of the second.  
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Both of the recession pairs had higher concentrations at OUT than at US, and the end 

member concentrations typically bounded the DS1 concentrations. 

 
Figure 3-8: Rainfall (a) and resulting hydrograph and chemographs of NOx-N (b), TDN (c), DOC (d) and 

PO4-P (e) at SP1 for one August storm with two peaks 
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Figure 3-9: Rainfall (a) and resulting hydrograph and chemographs of NOx-N (b), TDN (c), DOC (d) and 

PO4-P (e) at SL1 for one August storm with two peaks. 

3.4.3.4 SL1 

At SL1, the same rain event as at SP1 was plotted.  At SL1, this event also produced two 

distinct peaks.   The second discharge peak of 0.093 m3 s-1 km-2 was again the higher of 
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the two pulses, and was the 4th highest discharge observed (Figure 3-9).  As with SP1, all 

four solutes behaved similarly.  First, concentrations increased during rise of the first 

hydrograph pulse and then began to decline during hydrograph recession. However, this 

decline was punctuated by a single sample with high concentration of all solutes.    When 

the second event began, concentrations increased with discharge and declined after the 

hydrograph peak. An exception to this pattern was observed for DOC, where the first 

sample taken on the rising limb was highest of all observed samples (Figure 3-9d). End 

member pairs typically showed that OUT concentrations were greater than US, and that 

DS1 concentrations fell in between the two. 

3.4.4 Isolating SCM effects 

To further explore the influence of SCMs on stream concentrations, we compared water 

samples taken synchronously at the OUT and DS1 cross-sections across the entire 

sampling period.  For UL1, the outlet could not be sampled directly, so samples taken 

from the SCM-mitigated US-R tributary were used as previously described in Section 

3.1.2.  Water sampled from OUT (UP1, SP1 and SL1) and US-R (UL1) is collectively 

referred to as the SCM sample. The average time difference between the paired samples 

was 15.2 min at UP1, 5.38 min at UL1, 9.25 min at SP1, and 18.6 min at SL1.  

Generally, the results show that in-stream solute concentrations decreased downstream of 

the SCM confluence at the urban sites, but increased at the suburban sites.  At both urban 

sites, mean NOx-N concentrations were significantly lower in the SCM effluent compared 

to in-stream (Figure 3-10a). At the suburban sites, the mean NOx-N concentrations in 
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Figure 3-10: Boxplots showing the difference of concentrations of NOx-N (a), TDN (b), DOC (c), and PO4-
P (d) for all paired samples of SCM water and stream at DS1.   Observed differences greater than 0 indicate 

that SCMs raised solute concentrations in the stream downstream of the confluence, while those below 0 
indicate that SCMs lowered solute concentrations in the stream downstream of the confluence.  Because the 

outlet of the monitored SCM at UL1 could not be sampled directly, the paired samples are between the 
mitigated US-R tributary and the mixture of the mitigated and unmitigated tributaries at DS1.  If the mean 
of the differences were significantly greater than zero (paired t-test, p<0.05), they are marked with “raises” 

to show that SCMs increased concentrations relative to the stream concentrations, while if they were 
significantly less than zero they are marked with “lowers”.  Number of paired samples at each site varied 

with each solute, but was from 24-33 at UP1, 12-16 at UL1, 8-9 at SP1 and 11-17 at SL1. 

SCM water were not different than in-stream at SP1, but were significantly higher at SL1. 

Average TDN concentrations in SCM water were significantly lower than in-stream at 

UP1, not different at UL1 and higher than in-stream at the suburban sites (Figure 3-10b). 

Differences in DOC concentrations corresponded to SCM type with higher 

concentrations in SCM water at the wetland sites (UL1 and SL1), but no difference at 

SP1 and reduced concentrations at UP1 (Figure 3-10c). We observed greater PO4-P 
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concentrations in SCM water compared to DS1 at all suburban sites and either lower 

(UL1) or similar (UP1) concentrations in the urban sites (Figure 3-10d).   

 
Figure 3-11: Temporally paired samples taken at SP-OUT vs. SL-OUT for NOX-N (a), TDN (b),  DOC (c), 

and PO4-P (d).  Because the land use draining into both the wet pond SCM (SP-OUT) and wetland SCM 
(SL-OUT) is similar and the samples were taken at the same time, variation away from the one-to-one line 

can be attributed to SCM type 

To assess the effects of SCM type, we performed a paired t-test on synchronous samples 

taken at SL-OUT and SP-OUT. Only the suburban outlet pair was used for this analysis 

because directly sampling the outlet water at UL1 was not possible due to the submerged 

outlet structure.  The average absolute value of time between paired samples taken at SL-

OUT and SP-OUT was 43.7 minutes.  Because of high variability among the sample pairs, 

no significant difference between SP-OUT and SL-OUT emerged for any of the solutes. 

However, patterns of the ratios reveal interesting trends (Figure 3-11). A majority of the 

data points for TDN fall below the one-to-one line, indicating that this wetland SCMs 

may produce higher N concentrations, all else being equal.  Conversely, most PO4-P pairs 
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plot on the SP-OUT side of the one-to-one line, and the DOC pairs cluster tightly around 

the one-to-one line. 

3.5 Discussion 

3.5.1 Times of elevated nutrient and carbon export 

We found that at the four sites monitored in this study, storm events were important times 

of nutrient export.  Average concentrations in the months of October 2011 and February 

2012 were higher during storms that baseflow, and the total mass exported during storms 

during the intensively sampled month of October 2011 was higher than during baseflow 

at all sites for all solutes (Figure 3-2).  Even in February 2012, which was the 8th driest 

February on the 72 yr record, stormflow contributed 20-70% of total solute mass 

exported across all sites and solutes (Figure 3-2). This finding is consistent with results 

from Baltimore, MD where a majority of the N (NOx-N and total N) was exported during 

large flow events (Shields et al. 2008). 

Concentration patterns during individual events also underscore the importance of storms 

as times of increased nutrient export.  Concentrations of all solutes peaked at or near the 

time of peak discharge, and declined during hydrograph recession (Figures 3-6 though 3-

9). Our observations of in-stream solute enrichment during storm events agrees with the 

concentration pattern of an urban watershed in Oregon observed by Poor and McDonnell 

(2007), who attribute this pattern to solutes accumulating on urban surfaces between 

storm events and subsequent flushing when it rains. Our results showed that the timing of 

peak N species concentrations corresponded with peak discharge, which indicates that N 
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sources are transport limited, and may be derived from the impervious surfaces that 

contribute during peak discharge.  When hydrologic events occurred in rapid succession, 

concentrations were lower during the second hydrograph pulse.  This behavior is possibly 

due to an exhaustion of the nutrient source from the impervious surfaces, without 

adequate time to re-accumulate (Figure 3-7). Similarly, Divers et al. (2014) used an 

isotopic N partition in urban Pittsburgh, PA to show that a greater portion of NOx in the 

stream came from atmospheric deposition onto impervious surfaces during storms than 

during baseflow although the net effect of sewage inputs caused higher concentration 

during baseflow. These observed patterns contradicted other studies of urban streams. 

Hook and Yeakley (2005) showed that TDN concentrations in an urban watershed in 

Oregon were lower during storms than during baseflow because nitrogen enters the 

stream from either deep groundwater or riparian sources which contribute a larger portion 

of water during dry periods. 

 A notable exception to the accumulation and flushing pattern in our study was observed 

in the PO4-P chemographs. Although concentrations were low and frequently below 

detection, PO4-P concentrations tended to peak after the time of peak discharge. This 

delay of PO4-P could be due to the fact that it is derived primarily from slower flow paths.  

For example, if the PO4-P comes from soil stores or fertilizer applied to pervious areas, it 

would likely arrive in the stream later than PO4-P deposited onto the hydrologically 

closer impervious surfaces.  Despite this time lag, the pattern still showed a rise in 

concentrations associated with a rise in discharge.  This pattern has been observed in 
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other studies in suburban areas. For example, Hathaway et al. (2012) also found earlier 

flushing of dissolved N species compared to PO4-P in Raleigh, NC. 

By design, SCMs affect watershed hydrology most dramatically during or shortly after 

peak flow during storm events (Jefferson et al. 2015; Roesner et al. 2001). As such, their 

ability to reduce solute loading and thereby improve nutrient water quality depends on 

whether or not solutes are exported by pathways engaged during storm events. We 

observed that storms were important times for export of reactive solutes, which 

demonstrates that SCMs are hydrologically connected when nutrient concentrations are 

highest. 

In addition to storms acting as times of elevated solute export, seasonality also appeared 

to play an important role in the timing of solute export.  For example, distinct differences 

in average concentrations of DOC and PO4-P were observed between the months of 

October and February.  For each site, February DOC concentrations were much greater 

than during October, both during storm and baseflow periods. These seasonal differences 

in concentrations led to greater DOC export during the month of February compared to 

October at all sites, despite storm volumes being less or approximately equal (e.g., 

October volume was 3% greater than during February at SL1, but DOC export was 33% 

lower). We hypothesize that the differences are due to the leaching of organic matter 

from fallen leaves. Leaf fall in the area typically occurs in late October or early 

November, and the leaves do not reemerge until well after February.  Other studies have 

shown that leaf litter decay leads to increased stream DOC concentrations after season 
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leaf fall, and this period of leaf decomposition can last into February in North Carolina 

(Gulis and Suberkropp 2003; Meyer et al. 1998). 

The average storm concentrations during the month of October for PO4-P were higher 

than storm concentrations in February at each site.  These seasonal differences were most 

dramatic at the two suburban sites, and we attribute this difference to seasonal variations 

in fertilizer application. Surveys of fertilizer application in both Baltimore, MD and Cary, 

NC indicate that fertilizer is not applied in the winter, but is applied on or more times 

between spring and fall (Law et al. 2004; Osmond and Platt 2000).  Additionally, 

empirical studies show that PO4-P applied to turfgrass leaches rapidly, so it is unlikely 

that any fall applications contributed during the month of February (Easton et al. 2007; 

Easton and Martin 2004). In our study watersheds, it likely that lawn fertilizer application 

continued through the summer until leaf off, elevating PO4-P concentrations in October.  

Once application stopped in winter, concentrations decreased. 

3.5.2 Land use controls solute sources and how SCMs affect stream concentrations 

The distribution and density of land use categories throughout the watersheds were 

important controls on both the sources and processing of nutrients and carbon.  We found 

that EMC and CMAX of NOx-N and TDN were significantly higher at the wetland 

watersheds (UL1 and SL1) than the wet pond watersheds (UP1 and SP1).  Several paired 

samples of SCM outflow at the suburban sites had higher TDN concentrations at the 

wetland site (SL-OUT) than the wet pond site (SP-OUT), but the difference was not 

statistically significant. Wetlands typically have more oxic conditions than wet ponds, 
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which could lead to higher rates of nitrification and lower rates of denitrification, 

resulting in greater NOx-N export (Devito et al. 2000; Hefting et al. 2003). However, the 

in-stream monitoring locations in this study were not solely influenced by a single SCM, 

but rather all sites were mitigated by two or more SCMs and most included both types of 

SCMs, which suggests that the SCM classification may not be the primary cause for our 

observed differences between the site pairs. 

SCM type covaried with vegetation coverage: wet pond sites were more vegetated (73% 

at UP1 and 83% at SP1) compared to the wetland watersheds (57% at UL1 and 64% at 

SL1), and the difference in N species concentrations may be related to vegetation cover 

rather than SCM type.  Figure 3-4 provides support for an inference that vegetated areas 

may control water N processing. The plots of NOx-N vs. TDN at two high N sites (UL1 

and SL1) do not separate by season, but the low N sites (UP1 and UL1) do show a 

seasonal difference.  This seasonal difference at the more vegetated sites could be related 

to varying biological activity during these two times of the year. Bell et al. (In review) 

showed the importance of urban tree coverage on the annual water balance for 16 

watersheds in Charlotte, NC (including the four studied here), which highlights the 

potential for urban forests to affect runoff volumes and potentially access nutrient rich 

water in surface and shallow subsurface flowpaths. Indeed, many studies in forested 

watersheds have shown high N retention (Henderson et al. 1978; Likens 2013; Swank 

and Vose 1997), which can be tied to biological processes such as N uptake and 

incorporation of organic matter into soil (Aber et al. 1991). In a comparative study of 

forested and suburban watersheds, Groffman et al. (2004) observed that a larger portion 
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of N was retained in a forested watershed (95%) compared to a nearby suburban one 

(75%) that received similar amounts of atmospheric N deposition. Therefore, we 

hypothesize that land use factors, particularly nutrient cycling by vegetation, may be a 

more important control than biogeochemical processes within the SCMs themselves 

leading to higher nitrogen concentrations. 

As with N, land use controlled the concentration of PO4-P during storm events.  The 

mean values of EMC and CMAX were higher at the suburban sites compare to the urban, 

where concentrations were often below detection.  We attribute this to fertilizer 

application in the newly-developed residential areas of the suburban watersheds, as 

increased fertilizer application has been firmly linked to higher P concentrations (La 

Valle 1975).  When comparing our two development categories, it is important to first 

highlight that increased fertilizer application in urban North Carolina has been negatively 

correlated to development age and related to property value by a concave downward 

parabola (Law et al. 2004; Osmond and Platt 2000).  Indeed, the two suburban 

watersheds were approximately 40-50 years newer than the urban, and the value of the 

residential properties for sale in the suburban watersheds were ~$100,000 higher than 

those for sale in the urban (Mecklenburg County Register of Deeds 2016). CMAX at SL1 

was significantly higher than SP1, which could be due to more fertilizer application per 

unit area in the SL1 with 100% suburban residential development compared to SP1 with 

only 9%. The export of PO4-P during storm events, quantified by the b flushing 

coefficient, was significantly slower at SL1 compared to SP1, which we attribute to the 

distribution of residential areas clustered closer to the watershed outlet in SP1, compared 
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to more evenly distributed throughout SL1. Together, the observed PO4-P trends indicate 

that both the extent and location of urban development can affect the magnitude and 

timing of export during storms. 

3.5.3 SCMs change stream solute concentrations 

SCMs are key contributors to changes in solute concentrations at the stream-SCM 

confluence, but the direction of change depends on the land use and level of SCM 

mitigation.  At the two urban sites, the land use upstream of the stream-SCM confluence 

is very similar to that within the SCM’s subwatershed.  At these sites, we showed that 

outflow from SCMs had lower concentrations than in the stream itself, implying that 

SCMs decrease concentration.  Specifically, the SCMs significantly decreased 

concentrations of NOx-N, TDN, and DOC at UP1 and NOx-N and PO4-P at UL1.  Results 

for these two sites indicate that SCMs decrease concentrations of nutrients and carbon, 

and have the potential to decrease total mass export by lowering concentrations and 

decreasing flow volumes.  Because land use in the SCM watersheds is similar to that of 

the rest of the watershed (e.g., the UP-OUT drainage area and UP1 have similar land use 

and impervious cover, see Figure 3-1 and Table 3-1), we assert that solute loading and 

processing is similar, and therefore the SCMs directly impact and decrease in-stream 

concentrations. This is supported by other studies that have demonstrated the ability for a 

single SCM to reduce decrease concentrations from urban runoff (Collins et al. 2010; 

Geosyntec Consultants and Wright Water Engineers 2012; Hunt et al. 2008; Kearney et al. 

2013; Koch et al. 2014; Mallin et al. 2002). At larger scale, when comparing two 
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residential neighborhoods, Dietz and Clausen (2008) found that including smaller, 

distributed SCMs decreased total N and total P export relative to a neighborhood without 

SCMs.  However, they did not report if these reductions were due to the observed 

decreases in runoff volume, or if stream concentrations also decreased. 

In contrast, at the two suburban sites, the SCMs were found to increase in-stream solute 

concentrations, but the effects of the SCMs are difficult to disentangle from the 

watershed-scale effects (e.g., land use, distribution of impervious surfaces).  At SP1, the 

addition of area mitigated by SCMs corresponded to the addition of urban surfaces to a 

mostly forested watershed.  Indeed, the impervious cover fraction for the SP-OUT 

watershed is more than twice that of the entire SP1 watershed (Table 3-1).  Therefore, we 

are unable to empirically separate the effects of SCMs from the addition of urban land 

use.  The net result, however, was significant increases in TDN and PO4-P below the 

stream-SCM confluence.  At SL1, the land use upstream of the stream-SCM confluence 

is similar to the land use in the SCM watershed (Table 3-1, Figure 3-1), but this upstream 

area was also fully mitigated by SCMs.  In fact, the upstream urban surfaces were 

mitigated by two SCMs, one of which was a pond that had so much storage capacity, that 

it rarely contributed to storm flow.  This implies that the upstream water during storms at 

this site was not urban surface runoff but rather it came from the same sources as during 

periods of baseflow.  Therefore, at SL1 we also attribute the increase in concentration 

from SCM water due to the addition of urban surface runoff, in a way similar to SP1.  

Together, results from the suburban sites show that even if SCMs are able to lower 
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outflow concentrations relative to inflow, the addition of nutrients from urban surfaces 

can outweigh these benefits, and ultimately increase in-stream concentrations. 

3.6 Conclusions 

We analyzed nutrient (NOx-N, TDN and PO4-P) and carbon (DOC) concentrations from 

two urban and two suburban watersheds in Charlotte, NC to determine if SCMs were able 

to change the water quality in stream ecosystems downstream of the stream-SCM 

confluence.  The ability of SCM’s to change stream concentrations has implications for 

protecting local stream ecosystems and downstream lakes and estuaries by reducing total 

mass loading. We showed that storm events were key times of nutrient and carbon export, 

both because concentrations increased during storms and because a large fraction of 

water volume and nutrient mass was exported during storms.  This has important 

implications for the effectiveness of the SCMs in these watersheds, as they contribute 

most significantly to runoff during and after times of elevated discharge (Jefferson et al. 

2015).  We also found that seasonality is an important control on concentrations of DOC 

PO4 due to leaf fall and decay and fertilizer application, respectively.  

We also found that SCMs change stream water quality throughout storms, although the 

direction of this transformation depended on the spatial distribution of developed surfaces 

and SCMs in the watershed.  In the urban watersheds, SCMs reduced in-stream 

concentrations immediately downstream. In these watersheds, land use in the area 

drained by the SCMs was comparable to that throughout the remainder of the watershed. 

However, in the suburban watersheds, the land use drained by the SCM at the watershed 
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outlet had significantly more runoff-contributing urban area than the rest of the watershed, 

resulting in elevated concentrations downstream of the SCM confluence. As a result, 

even if individual SCMs decrease watershed-derived nutrients, SCM outflow can locally 

increase stream solute concentrations because their presence corresponds to the addition 

of urban surfaces with greater nutrient sources. Collectively, these results imply that 

retrofitting SCMs in urban watersheds will decrease concentrations of nutrients and 

carbon in the stream at the watershed outlet, but new urban development accompanied by 

SCMs may increase stream concentrations. 

We observed differences in in-stream N concentrations based on SCM type, however 

these were confounded by land use. TDN and NOx-N concentrations were lower at wet 

pond sites but these were also the watersheds with more forest cover. The type of SCM 

may influence N transformation rates within the SCM as wetland redox conditions could 

lead to elevated rates of nitrification and suppressed denitrification compare to wet ponds. 

Additionally, forested soils may stimulate soil respiration and biological N assimilation 

resulting in greater N retention in watersheds with greater forested areas.  While selection 

of SCM type (e.g., wetland vs wet pond) and design of the system (e.g., residence time, 

volume retention) will likely influence nutrient cycling with the SCM, our results also 

suggest that preserving forested areas within the watershed may be an important strategy 

to reduce N concentrations in urban streams.  

PO4-P concentrations were higher in the suburban sites with newly-developed residential 

areas, which likely receive more P from fertilizer.  Additionally, clustering urban surfaces 
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near the outlet caused faster export of PO4-P relative to water, suggesting that the spatial 

distribution of fertilized areas affected the timing the PO4-P export during storms.  Source 

reduction through the use of P-free fertilizers in lawns may be an effective strategy for 

limiting PO4-P export form these watersheds. 
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CHAPTER 4. A MODEL OF HYDROLOGY AND WATER QUALITY IN 
STORMWATER CONTROL MEASURES 

4.1 Abstract 

The impervious surfaces, efficient drainage networks, and increased loading of urban 

watersheds causes increased water runoff and nitrogen (N) export which lead to 

eutrophication in downstream river and estuary ecosystems.  Stormwater control 

measures (SCMs), such as wet ponds, are a management strategy that can reduce runoff 

and N export by providing additional water storage and by creating an ecosystem that 

promotes N retention and removal.  This work develops and explores a computer model 

that simulates hydrologic and water quality processes of SCMs.  The SCM model is 

incorporated into RHESSys, a watershed hydro-ecological model, so it can be used to 

answer questions about the function of SCMs across scales from individual SCMs to 

whole watersheds.  Data from a wet pond SCM in Charlotte, NC was used for model 

calibration and validation.  The hydrologic component of the SCM model successfully 

simulated distributions of observed storm event outflow volumes and duration without 

any calibration.  Through calibration, the model simulated distributions of observed 

outflow concentrations of both nitrate (NO3) and ammonium (NH4).  A global sensitivity 

analysis highlighted the five water quality parameters that should be targeted during 

calibration when applying the model to other regions or during future empirical studies to 
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restrict model parameter uncertainty.  Finally, the model simulated changes in inorganic 

N removal under varying hydrometeorological conditions, N loading, and SCM design 

scenarios.  Simulations show that increasing air temperatures by 10°C can increase 

removal efficiency of NO3 from 0.52 to 0.61and NH4 from 0.56 to 0.66.  Mass removal 

of NH4 was insensitive to changes in inflow N concentrations, but removal of NO3 

decreased under higher N loading simulations.  Finally, results showed that deeper SCMs 

have greater inorganic N removal efficiencies because they have more stored volume of 

relatively N-deplete water, and therefore a greater capacity to dilute relatively N-rich 

inflow.  This emphasizes the importance of this design parameter, but also the importance 

of N-uptake between events which can lower SCM concentrations before storms, and 

thus intensify the dilution process. 

4.2 Introduction 

The urbanization of undeveloped watersheds causes increased rainfall runoff and mass 

export of nitrogen (N) (Leopold, 1968; Peierls et al., 1991; Howarth et al., 1996).  

Reductions in transpiration, groundwater recharge, and temporary storage from the 

replacement of vegetation with impervious surfaces are the causes of increased runoff 

volumes (Dunne and Leopold, 1978; Arnold and Gibbons, 1996; Bell et al., In review).  

N loading to urban watersheds is elevated from imported food, fertilizer, and heightened 

atmospheric deposition (Bernhardt et al., 2008).  This additional N load is not efficiently 

retained or removed by the watershed’s biological processes because residence times are 

reduced by storm drainage networks, notably storm pipes that route water and nutrients 



 

 

 

104 

from the upland impervious surfaces directly to the stream, bypassing the riparian zone 

(Groffman et al., 2002; Groffman et al., 2004; Taylor et al., 2005). Increased water runoff, 

increased N loading, and decreased N processing cause urban streams to have high N 

export and contribute to river and coastal eutrophication (Castro et al., 2003). 

To reduce urban N export and thus protect downstream aquatic ecosystems, the United 

States federal government has established the National Pollutant Discharge Elimination 

System (NPDES) {, 40 CFR Part 122`, 2011 #13}.  This program requires that state 

governments issue permits to municipalities before they are allowed to discharge 

stormwater runoff into any receiving stream.  These NPDES permits usually stipulate 

targets for reductions in mass loading of a number of solutes, that often include N 

(Collins et al., 2010). 

One way that municipalities can meet the water quality targets is to require that 

stormwater control measures (SCMs) be included on site at locations of new and re-

development to mitigate any hydrologic impacts of the build out.  SCMs are depressions 

in the urban landscape that receive and store rainwater runoff, which provides hydrologic 

benefits like reductions in runoff volume and peak discharge. Stored water that 

evaporates between rain events can lead to a reduction in nutrient loads to downstream 

aquatic ecosystems, as loads are often correlated to runoff volumes (Hale et al., 2015).  In 

addition to reducing runoff volume, SCMs can reduce peak flow by retaining runoff, and 

slowly releasing it to the stream.  This phenomenon, sometimes referred to as peak 

shaving (Roesner et al., 2001), is accomplished by promoting infiltration and by 
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restricting surface water outflow though a designed outlet structure.  Outlet structures are 

vertical risers affixed with one or more openings that reduce the rate at which stored 

water leaves the SCM.  The openings are typically orifices or weirs.  The elevation and 

size of riser’s openings depends on design goals stipulated by the local stormwater 

ordinance.  Some SCM types, like wet ponds, permanently store surface water to create 

an aquatic ecosystem that is both functional and aesthetically pleasing.  The depth of this 

permanent pool is based on the elevation of the lowest orifice on the outlet structure. 

Additionally wet ponds will have an emergency spillway that routes overflow out of the 

wet pond to the stream during extreme events. 

Within SCMs, vegetation and dynamic redox states caused by hydrologic fluctuations 

create an ecosystem that is a potential hot spot for biogeochemical activity, which can 

transform or remove nutrients from the water column.  Terrestrial vegetation, which 

populates the perimeter of wet ponds and the entire area of wetlands or bioretention cells, 

and algae within ponded water assimilate dissolved inorganic N species like ammonium 

(NH4) and nitrate (NO3) and incorporate the molecules into their cell structure.  The 

plants and algae later release this N as organic N during senescence, often stimulated by 

changing seasons.  Collectively, SCMs that facilitate the processes of assimilation and 

senescence convert inorganic N to organic N.  Under aerobic conditions, microbial 

communities transform NH4 to NO3 (i.e., nitrification), which produces energy used by 

the microbes in ATP synthesis.  While these transformation processes are important to 

nutrient cycling within the SCM, none of them truly remove N from the environment.  

Denitrification, the energy-yielding conversion of NO3 to nitrous-oxide (N2O) or nitrogen 
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(N2) gases, is a microbial process that does remove N from the aquatic system. SCMs 

generally have high concentrations of NO3, organic carbon (C), reducing conditions, and 

extended residence times.  As such, they are ideal locations to promote removal via 

denitrification (Collins et al., 2010).   

Removal and retention processes within SCMs enable them to reduce the mass of N that 

is exported relative to inflow (Mallin et al., 2002; Hunt et al., 2008; Collins et al., 2010; 

Kearney et al., 2013; Koch et al., 2014).  The amount of reduction has been demonstrated 

to vary substantially, and the causes for this variation are attributed to differences in 

inflow concentrations, climate, land use, location, and SCM properties including size, age, 

and type (Barrett, 2005; Hunt et al., 2012; Geosynthetic Consultants and Wright Water 

Engineers, 2014; Koch et al., 2014).  Despite this variability, most municipalities assume 

a single, static removal rate when planning for compliance to their NPDES permit. 

Similarly, many of the watershed models currently used for simulation of urban 

hydrology and water quality do not adequately account for the variability of N removal 

and retention by SCMs.  Many widely-used watershed models simulate hydrologic 

processes of SCMs and therefore address the advection component of nutrient loading, 

but do not include any water quality processes within the SCM (e.g., the Environmental 

Protection Agency’s SWMM v. 5.1 and SUSTAIN, see  Rossman (2015)).  The 

watershed models that do account for changes in N concentrations, typically only use a 

first order rate reduction with some irreducible or background concentration (e.g., 

MUSIC model of Wong et al. ( and LTHIA-LID of Ahiablame et al. (2012)).  None of 
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these models account for the dynamic behavior of the SCM ecosystem, and the important 

controls of seasonality, SCM design, and system memory. 

This work addresses these shortcomings by developing a process-based hydrologic and 

water quality model of a wet pond SCM. The SCM routines are added to a spatially 

distributed, processed-based hydro-ecological model called the Regional Hydro-

Ecological Simulation System (RHESSys) (Tague and Band, 2004).  Because RHESSys 

is spatially distributed, users are able to simulate different configurations of SCMs and 

urban areas across a landscape.  Because the SCM routines are process-based, they are 

able to simulate changes in N removal efficiency under different environmental 

conditions and SCM designs.  The applications of this novel modeling approach for 

SCMs are wide reaching as it can be a tool for optimizing design of individual SCMs as 

well as SCM implementation throughout a watershed to maximize hydrologic and water 

quality benefits in urban watersheds. 

4.3 Methods 

A simple realization of RHESSys was used to explore newly-developed model routines 

of hydrological and ecological processes within SCMs. A global sensitivity analysis was 

then performed to gain understanding of the system dynamics.  The model was calibrated, 

validated, and parameter uncertainty and sensitivity were quantified.  With the model 

parameter uncertainty constrained, inorganic N retention and removal was quantified 

within a single SCM under varied environmental forcing and SCM design scenarios. 
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4.3.1 Overview of the RHESSys model 

RHESSys is a community-based research tool, and a number of recent modifications 

have been made to hydrologic and biogeochemical cycling modules since it was 

documented by Tague and Band (2004). An hourly timestep version of RHESSys 

(version 5.19, available online at: https://github.com/RHESSys/RHESSys) was expanded 

to include the SCM hydrologic and water quality routines.  RHESSys is a spatially-

explicit, process-based, hydro-ecological model that simulates water, carbon and nitrogen 

cycling with lateral and vertical redistribution. RHESSys distributes the watershed area 

into a series of patches, the spatial unit where mass balances of water, carbon and 

nitrogen are computed. Lateral redistribution of surface and subsurface water between 

neighboring patches depends on topographic and soil characteristics.  All surface water 

that exceeds the soils storage capacity is routed to one or more downslope patches within 

one timestep, whereas only a portion of the patch’s subsurface water store is routed to the 

downslope patches.  An exponential transmissivity decay model determines the portion of 

subsurface flow.  RHESSys also models vertical redistribution of water through the soil 

profile, which is discretized into a root zone layer, an unsaturated soil layer, a saturated 

soil layer, and a deep groundwater layer.  Infiltration from the surface into the soil profile 

follows the Green-Ampt model (Green and Ampt, 1911), and infiltrated water moves 

vertically through the layers based on hydraulic conductivity and pressure gradient at the 

boundary of the saturated and unsaturated zones.    Water can also move vertically from 

the root zone layer through vegetation back to the atmosphere via transpiration, simulated 
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using the Penman-Monteith model (Monteith, 1965).  Evaporation from canopy and 

ground surface detention stores also follows the model of Penman (Monteith, 1965). 

RHESSys simulates vegetation and soil carbon and nitrogen cycling similar to dynamic 

global vegetation models like CTEM, 3PG and Biome-BGC (Running and Hunt, 1993; 

Landsberg and Waring, 1997; Arora and Boer, 2003).  The model includes vegetation 

litterfall, respiration, assimilation, and the allocation of biomass accumulation through 

photosynthesis into separate plant physiological components. The vegetation’s canopy 

attenuates radiation following Beer’s law.  Incoming radiation, which is partitioned into 

diffuse and direct components, drives photosynthesis at variable rates based on sun 

exposure and other controls including moisture and nutrient availability.  Soil and litter 

decomposition models are similar those used in Biome-BGC (Running and Hunt, 1993), 

and nitrification and denitrification follow Century N-GAS (Parton et al., 1996).  Other 

authors have used RHESSys to answer to numerous questions about hydrologic and water 

quality across ecoregions, and have applied it successfully in urban areas (Tague and 

Pohl-Costello, 2008; Mittman et al., 2012; Shields and Tague, 2012; Shields and Tague, 

2014). 

4.3.2 SCM model development 

The RHESSys SCM model has two novel components: a hydrologic routing component 

that simulates the rate of surface water outflow from an SCM patch to downslope patches, 

and a water quality routine that simulates C and N cycling associated with algae growth, 
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death, respiration, and settling within the SCM.   Figure 4-1 shows these new state 

variables and fluxes within an SCM. 

 
Figure 4-1: Diagram of state variables and fluxes within SCM model, as well as connection of the SCM 

model to the RHESSys watershed model. 

4.3.2.1 Hydrologic routing model 

For hydrologic routing, the model assumes the SCM to be rectangular frustum, the design 

of which is specified by parameters detailing surface area, length to width ratio, side 

slope, and outlet structure design.  Equation 4.1 is used to represent the balance of water 

in the pond: 

!"
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111 

where V is the pond volume [m], E = evaporation [m hr-1], Qout is the volume leaving 

pond [m hr-1], Qin is the volume entering pond [m hr-1], I is infiltration to soil beneath the 

pond [m hr-1], and PPT is incident precipitation [m hr-1].  The RHESSys watershed model 

simulates Qin using the surface routing processes described above, and simulates E based 

on estimates of radiation and windspeed at the SCM surface.  PPT is net precipitation 

computed by subtracting any interception losses by canopy layers above the SCM from a 

time series input, using existing RHESSys routines that account for both storage and 

evaporation of intercepted water by canopies.  Computation of Qout is done using 

equations that model flow over the weirs and through the orifices of the outlet structure.  

These equations are dependent on pond depth, and subsequently on V (see Appendix A 

for more details).  Therefore, the routine uses a finite-difference approximation, referred 

to as the Storage-Outflow method (see Wurbs and James (2002)), to solve the differential 

equation for Qout and V.  This solution is unstable at the hourly time step used by the 

hillslope routing routines, so the routine subdivides the hour into one-minute time steps, 

and assumes Qin, I, PPT and E are uniform over the hour. 

4.3.2.2 Algae growth model 

Algae growth is a critical component to C and N cycling within an SCM, particularly wet 

detention ponds that are continually inundated with water. The new SCM routine 

simulates the processes of algal growth, respiration, settling, and death.  For algae, 

represented by mass of cholorphyll-a (chl-a), the mass balance follows that of the well-

tested stream water quality model QUAL2K (Pelletier and Chapra, 2003), adapted 
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slightly for application to SCMs.  The SCM is modeled as a continuous stirred-tank 

reactor. Equation 4.2 describes the mass balance: 

!1
!#
= 234 5 − 264 5 −	2!4 5 −	
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∗ 5    (Eq. 4.2) 

where a is the mass of chl-a in the SCM [kg chl-a m-1], kg
’ 

 is the effective first order 

growth rate [d-1], kr
’ is the effective first order respiration rate [d-1], kd

’
 is the effective first 

order death rate [d-1], ain is the mass of chl-a entering the SCM [kg chl-a m-1], vs is the 

settling velocity of algae [m d-1], and H is the average pond depth [m].  Because algal 

growth, death, and respiration are all dependent on SCM water temperature, the routine 

includes a simple empirical model of water temperature as a function of air temperature 

developed by Stefan and Preud'homme (1993) (Appendix B).   

A full description of the algae growth model, including the temperature, nutrient and light 

controls, is found in Appendix C.  Generally, the effective algal growth rate is quantified 

by a base growth rate parameter (kg) that is augmented by temperature and inhibited by 

availability of light and nutrients (N and phosphorous (P)).  The RHESSys watershed 

model contains a radiation attenuation regime which estimates the radiation at the pond 

surface.  This incident radiation is also attenuated through ponded water at a rate that 

increases with higher concentrations of chl-a.  NH4, is a more reduced form of inorganic 

N, so algae preferentially assimilate it over NO3
 based on a parameter and the relative 

abundance of both species (see Appendix D for more details) (Dortch, 1990).   The 

routine models death and respiration as a parameterized first order loss base rate (kd and 

kr respectively) that increases with water temperature.  Algae death releases N to the 
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water column as dissolved organic nitrogen (DON), whereas respiration releases N to the 

water column as NH4.  Death also returns algal carbon (C) to the water column as 

dissolved organic carbon (DOC), and respiration releases C to the atmosphere as carbon 

dioxide.  Algae can enter the SCM with water from an upstream SCM, and exit with 

water outflow.  The SCM model also simulates advection of DOC, DON and inorganic N 

with water from the watershed model (Appendix D).  Finally, algae settles to a labile 

litter pool with relatively low C to N ratios, where it is decomposed and nitrified or 

denitrified, depending on the simulated chemical and physical conditions.  Algal litter 

decomposition routines follow the existing leaf litter decomposition routines in RHESSys, 

modeled after BIOME-BGC (Running and Hunt, 1993). 

4.3.3 Calibration and validation dataset 

A wet pond SCM located in Charlotte, NC (35°15'37.2" N, 80°47'29.9" W) was used to 

calibrate and validate the SCM model routines. Charlotte-Mecklenburg Stormwater 

Services (CMSWS) monitored hydrology and water quality at a wet pond SCM, called 

the North Tryon Wet Pond (NTWP), from April 2008 – May 2011 as part of its Pilot 

Stormwater Control Management Program (CMSWS, 2016).  NTWP is a 0.7 acre SCM 

serving 12.5 acres of urban residential development, which retains a permanent pool 

depth of 1.52 m (5.0 ft) above the deepest part of the pond.  The sampling protocol, 

described by CMSWS (2015), included monitoring flow and water quality for storm 

events flowing into and out of the SCM.  Data obtained from the county during the 

monitoring period described total inflow and outflow volume for 23 discrete events, as 
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well as inflow and outflow duration for 22 events.  Additionally, the data documents the 

event mean concentrations (EMC) of NO3 and NH4 for 25 events entering and 29 events 

leaving the SCM, which was used for analysis of the water quality model. The 

discrepancy in the number of inflow and outflow samples is due to some events being 

sampled successfully at the inlet but not the outlet, or vice versa.  Similarly, more data 

describing event water quality than hydrology was used because duration was not 

reported for all the hydrologic events sampled.  This data limitation is addressed using a 

stochastic analysis approach, discussed later. 

A simple four patch representation of NTWP and its watershed was used to perform all 

simulations in RHESSys.  The four (4) patches were the (1) NTWP watershed, (2) NTWP 

itself, (3) a single downstream terrestrial patch, and (4) a single stream patch.  These 

patches were hydrologically connected in series in the order listed.  For this paper, the 

processes of the contributing watershed were not simulated in order to focus on the 

processes in the SCM only.  This allowed for examination of the parameter sensitivity of 

the new SCM model routines only.  To test the SCM component of the model, time series 

of precipitation and atmospheric deposition of NO3 and NH4 (described in detail below) 

were used to simulate inflow into the SCM from the NTWP watershed. Volumes 

assumed an effective contributing area of 7.9 ha, which is 63% of the actual watershed 

area, based on relationships between observed rainfall and inflow. 

Because hydrologic and water quality data from SCM monitoring programs are typically 

recorded as discrete events, a time series of inflow and outflow was not available. 
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Therefore, a stochastic approach was used to generate a synthetic time series of water, 

NO3, and NH4 inflow to force the SCM model.  This was done by first selecting the best-

fitting of five candidate probability density functions (PDF) through observations of 

inflow volume, inflow event duration, and EMC of both NO3 and NH4 made at NTWP.  

The goodness-of-fit of the five candidate PDFs was quantified by the Akakie Information 

Criteria (AIC) and the Kolmogorov-Smirnov statistic (D).  The candidate distributions 

were the normal, log-normal, gamma, Weibull, and exponential.  The “fitdistplus” 

package in the R programming language and software environment was used to fit PDFs 

and quantify goodness-of-fit (Delignette-Muller and Dutang, 2014; R Core Team, 2014).  

Because many of the NH4 values observed were below detection, a left-truncated 

distribution (truncated at 0.0 mg-N L-1) was fit through the observations-using the 

“EnvStats” R package (Millard, 2013).  PDFs were also fit through observations of the 

interarrival times for rain events with a cumulative rainfall ≥ 2.54 mm, using a minimum 

antecedent dry period of 6 hr, as suggested by Hydroscience Inc. (1979) and Driscoll et al. 

(1989).  Interarrival time of these rain events was assumed to correspond to that of SCM 

inflow events.  The rainfall data was taken from a United States Geological Survey gage 

~1 km away at Hidden Valley Elementary School (Site no: 351604080470845, data 

downloaded from: http://nc.water.usgs.gov/char/rainfall.html).  Table 4-1 describes the 

selected PDFs, the PDF’s  parameters, and goodness-of-fit quantified by Kolmogorov-

Smirnov statistic (D).  Only D, which quantifies the maximum difference in probability 

between two empirical cumulative distribution functions (CDFs), is reported in Table 4-1 

because AIC only has value when compared relative to other model permutations. 
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Table 4-1: Description of best-fit PDFs of the variables used to generate stochastic inflow time series. In 
this table, the abbreviation “sd” stands for standard deviation. 

Variable Distribution Distribution Parameters Kolmogorov-
Smirnov statistic (D) 

Volume Lognormal mean = 1.78, sd =0.135 0.091 
Duration Gamma shape = 2.15, rate = 0.00298 0.12 

Interarrival Time Exponential rate = 0.00783 0.077 
EMC of NO3 Gamma shape = 2.52, rate = 10.1 0.082 
EMC of NH4 Truncated Lognormal mean = -2.13, sd =0.620 0.13* 

* D value reported is the largest distance between empirical and fitted PDF to the right of the 
truncation only 
 

The continuous PDFs of inflow volume, duration, interarrival period, and EMC were 

randomly sampled 131 times to generate characteristics of 131 discrete storm events. 

These synthetic events were then merged in time, resulting in an inflow water and N time 

series that spanned a period of 2 years from 10/01/2011 to 10/01/2013 (i.e., 2012 and 

2013 water years).  Inflow volume was distributed over the duration of the event using a 

triangular distribution, which peaked in the middle of the event (i.e., an isosceles triangle).  

Inflow mass of organic N for each time step during an event was determined by dividing 

the inflow volume at that time step by the randomly generated EMC.  In addition to this 

stochastic inflow data, observed times series of maximum and minimum daily 

temperature from the National Oceanic and Atmospheric Administration’s 

meteorological station at Charlotte-Douglas Airport (KCLT) for the same time period 

were used to force the model.  

4.3.4 Calibration, validation and sensitivity analysis 

The 2012 water year was used as a spin up period for water, algae, and N state variables, 

and the analyses described below were performed on the 2013 water year only. 
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4.3.4.1 Hydrologic validation 

The geometry and design of the wet pond and outlet structure at NTWP are documented 

in two reports (McKim & Creed, 2006; CMSWS, 2015).  Because the design parameters 

controlling hydrologiv bevaior were known (Table 4-2), they were not calibrated.  The 

parameters were validated by comparing simulated vs. observed CDFs of outflow volume 

and duration from discrete events only. A discrete event was defined as the period of time 

between the start of inflow into the SCM until the resulting outflow concluded; a  

Table 4-2: NTWP design parameters used for water volume validation, as well as water quality calibration, 
validation, and sensitivity analysis.  Also shown is the range of outlet structure parameters varied to 

quantify how the permanent pool design height affects inorganic N removal. 

SCM Parameter 
Name Value Permanent pool design 

scenario range Unit Reference 

Maximum SCM 
Height 4.57 3.35-5.79 by 0.305 m CMSWS (2015) 

Length:Width Ratio 1.5 -- m m-1 CMSWS (2015) 

Side Slope (H:V) 2 -- m m-1 CMSWS (2015) 

Infiltration Rate 0.006096 -- m d-1 CMSWS (2013) 

Riser Length 0.365 -- m McKim and Creed 
(2009) 

Riser Weir 
Coefficient 3.33 --  Wurbs and James (2002) 

Riser Orifice 
Coefficient 0.6 --  Wurbs and James (2002) 

Riser Height 3.05 1.83-4.27 by 0.305 m McKim and Creed 
(2009) 

Number of Orifices 1 --  
McKim and Creed 

(2009) 

Orifice Diameter 0.144 -- m McKim and Creed 
(2009) 

Orifice Coefficient 0.6 --  Wurbs and James (2002) 

Orifice Height 1.52 0.305-2.74 by 0.305 m McKim and Creed 
(2009) 
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definition guided by the sampling protocol (CMSWS, 2015).  If inflow from an event 

occurred prior to the cessation of the previous event, both events were excluded from 

analysis.  Twenty discrete events were identified over the 2013 water year. 

4.3.4.2 Water quality model parameter uncertainty, sensitivity, and calibration 

A Monte Carlo approach was used to perform a global sensitivity analysis of state 

variables to water quality parameters (following the procedure outlined by Marino et al. 

(2008)), and to quantify parameter uncertainty (following the Generalized Likelihood 

Uncertainty Estimation (GLUE) procedure of Beven and Binley (1992)).  The twelve 

water quality parameters are grouped into three groups of four: first order rate parameters, 

growth-limiting nutrient parameters, and physical parameters (Table 4-3).  A Latin 

hypercube sampling (LHS) technique was used to generate 10,000 parameters sets for 

Monte Carlo simulation (McKay et al., 1979).  The “spartan” package in R was used to 

perform the LHS (Alden et al., 2015).  The parameters were assumed to follow a uniform 

distribution across the ranges listed in Table 4-3.  These ranges were taken from peer-

reviewed literature, referenced also in Table 4-3. 

The relationship between the concentrations of two water quality state variables (NO3, 

NH4) and the water quality parameters was assumed to be non-linear and monotonic.  

Therefore, partial rank correlation coefficient (PRCC) was used to measure model 

sensitivity.  The PRCC quantifies the strength of linear correlation between the rank of a 

given state variable and the rank of each parameter from the 10,000 simulations.  The 

PRCC between the two water quality state variables and each of the twelve parameters 
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was computed at the beginning of each day during the simulations.  This sensitivity 

analysis was performed through time to explore how the strength of the relationship 

between SCM concentrations and these parameters changed with season and times of 

different water and nutrient loading. 

Table 4-3: Description of water quality parameters and ranges used for Monte Carlo sensitivity analysis, 
uncertainty estimation, and calibration 

Group Symbol Description Unit Low High Reference 

Rate kg 
Base growth rate of chl-A in 

algae d-1 1.5 10 Cho and Ha (2010) 

Rate kd Base death rate of chl-A in algae d-1 0 1 Cho and Ha (2010) 

Rate kr 
Base respiration rate of chl-A in 

algae d-1 0 1 Cho and Ha (2010) 

Rate vs Settling rate of algae as chl-A m d-1 0 5 Cho and Ha (2010) 

Nutrient ksn 
Half saturation concentration of 

nitrogen mg-N L-3 0.005 0.02 Chapra (1997) 

Nutrient ksp 
Half  saturation concentration of 

Phosphorous mg-P L-1 0.001 0.005 Chapra (1997) 

Nutrient P Phosphorous concentration in the 
SCM mg-P L-1 0.01 0.1 Unpublished 

observation 

Nutrient kpn 
Constant of preferential NH4 

uptake, over NO3 
mg-NH4 L-1 0.01 0.1 Tetra Tech, Inc. 

(2009) 

Physical θg 
Constant for kg dependency on 

temperature -- 1.053 1.08 Chapra (1997) 

Physical θd 
Constant for kd dependency on 

temperature -- 1.072 1.088 Chapra (1997) 

Physical θr 
Constant for kr dependency on 

temperature -- 1.072 1.088 Chapra (1997) 

Physical Is 
Optimum radiation level for 

algae growth kJ m-2d-1 9414 11506 Chapra (1997) 

 

The GLUE procedure was used to calibrate water quality parameters and to assess their 

uncertainty.  This method acknowledges potential equifinality in the parameter sets, and 

therefore results in a range of acceptable parameter sets rather than one optimum set.  

First, an initial, prior likelihood distribution was assigned to all 10,000 parameter sets.  
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The prior distributions of each parameter were assumed to be uniform, with bounds set 

by literature and physical constraints.  Simulations were run using all 10,000 parameter 

sets.  Next, a threshold of acceptable model performance was determined, and the 

parameters sets that did not meet this threshold were discarded. The Kolmogorov-

Smirnov D test statistics between CDFs of observed and simulated outflow EMCs were 

used to determine acceptability.  All parameter sets that produced a Kolmogorov-

Smirnov D < 0.2 for both NO3 and NH4 were deemed acceptable. Only the CDFs of 

EMCs above the detection limit, 0.05 mg-N L-1 for NO3 and 0.1 mg-N L-1 for NH4, were 

compared with the D statistic.  With acceptable parameter sets identified, a likelihood 

measure for each parameter set was computed.  These measures were then rescaled to 

create likelihood weights with a cumulative sum equal to 1.  The likelihood measure used 

was the sum of Kolmogorov-Smirnov D for both NO3 and NH4 (Dsum), and the likelihood 

weight was computed as in Equation 4.3: 

D, =
EFG H?9I J	H?9I,<

EFG	(H?9I)JEMN	(H?9I)
EFG H?9I J	H?9I,<

EFG	(H?9I)JEMN	(H?9I),
    (Eq. 4.3) 

where W is the likelihood weight, max(Dsum) and min(Dsum) are the maximum and 

minimum Dsum of all acceptable parameter sets, respectively, and i represents each 

acceptable parameter set. This function gives parameter sets with a lower Dsum greater 

weight.  The distributions of simulated outflow EMC of both NO3 and NH4 from the prior 

parameter distribution were compared to the same distribution from the posterior to gain 

insight to the parameter uncertainty.  
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4.3.4.3 Model sensitivity to environmental inputs 

A final sensitivity analysis was performed to determine how the model responded to 

changes in air temperature, inflow volume, and inflow NO3 and NH4.  This analysis 

identified environmental controls on the model and addressed the limitations of 

synthetically generated inflow based on relatively few observed measurements from the 

SCM.  First, a reference time series of each model input was established.  The reference 

temperature scenario was the actual daily temperatures of the 2012 and 2013 water years.  

The 2013 water year demonstrated typical air temperatures, as the average annual air 

temperature was in the 40th percentile of the of the water years 1949-2013 on record at 

KCLT.  The reference inflow volume scenario was the synthetically generated time series 

for the NTWP SCM as described above.   The reference scenario used for inflow N 

concentrations was the synthetically generated inflow time series used during calibration, 

multiplied by a factor of three.  The distributions of the 3x augmented concentrations 

corresponded with the 25th, 50th and 75th percentiles of NO3 inflow concentrations into 

retention ponds reported in the International Stormwater BMP Database (Geosynthetic 

Consultants and Wright Water Engineers, 2014). 

To consider SCM behavior outside of the reference scenario, either air temperature, 

inflow volume, or inflow NH4 and NO3 concentrations were systematically perturbed, 

while the other inputs were left at reference scenario values. Temperature was varied 

from -5°C to +5°C, by increments of 1°C.  Karl et al. (2009) has summarized climate 

change projections, and projected an maximum likely increase of annual average 
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temperature of 5°C above the 1961-1979 average by the year 2099 for Charlotte, NC.  

Because monitored inflow volumes were used instead of precipitation to calibrate and 

validate the model, climate change projections were not used to simulate possible 

environmental variability.  Rather, the reference scenario inflow volumes were increased 

and decreased by 2%, 5%, 10%, and 20%. For these volume perturbations, N mass inflow 

was simultaneously altered to keep inflow EMCs constant.  Finally, the reference 

concentrations of both NO3 and NH4 were varied by factors of 1/6, 1/2, 1/3 (equal to our 

observed concentrations), 2, 3 and 6. All 11 temperature, 7 inflow volume, and 7 inflow 

nitrogen scenarios were run across the all of the acceptable parameter sets. 

4.3.5 SCM design scenario testing 

Because the design of an SCM will likely affect processing of N and C, the depth of the 

permanent pool was varied to determine how this design parameter affected N retention 

and removal.  NTWP has a permanent pool depth of ~1.52 m (5.0 ft).  The depth of the 

permanent pool was varied from the actual depth, across a range of 0.30 m to 2.74 m by 

increments of 0.30 m (1.0 ft to 9.0 ft by 1.0 ft).  The SCM design parameter ranges that 

reflect these permanent pool designs are shown in Table 4-2.  As with the environmental 

input sensitivity analysis, these scenarios were run across the entire range of acceptable 

parameter sets from the GLUE analysis. 
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4.4 Results 

4.4.1 Hydrologic Validation 

SCM design parameters were taken directly from monitoring data at NTWP, and 

therefore were not calibrated (Table 4-2).  Figure 4-2a shows the CDFs of modeled and 

observed event outflow volume using those parameters.  The Kolmogorov-Smirnov D 

between observed and modeled volume was 0.197.  Thirty-one percent of the observed 

inflow events did not produce any outflow, while 23% of the modeled events had no 

outflow.  The CDFs of outflow volumes aligned best in the middle quartiles.  In the upper 

quartile, observed outflow volumes were generally larger than those modeled, excluding 

the largest modeled outflow event which was 2.4 times greater than the largest observed 

outflow volume.  The Kolmogorov-Smirnov D between modeled and observed CDFs of 

outflow duration was 0.274 (Figure 4-2b).  The model underestimated the duration of  

 
Figure 4-2: Validation of hydrologic model  by comparing modeled and observed CDFs of outflow volume 

(a) and event duration (b). 
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events through the lower three quartiles, above which the model tended to over predict 

event duration.  

4.4.2 Water quality parameter global sensitivity analysis 

To explore global sensitivity of the model to water quality parameters, daily time series 

of the PRCC values between both SCM NO3 and NH4 concentration and the 12 selected 

parameters were computed (Table 4-3).  Figures 4-3 and 4-4 show the strength of the 

correlation between the 12 selected parameter sets and NO3 and NH4, respectively, 

through the year and relative to different inflow conditions (panel a).  Higher positive 

PRCC values indicate a stronger positive correlation between the state variable and the 

parameter, whereas lower negative values indicate a stronger negative trend.  Values 

around zero mean less correlation, and therefore less sensitivity. Figure 4-3b shows the 

PRCC values for the first order parameters.  The PRCC was consistently below -0.5 for 

kg, but was predominately above 0.5 for kd. The parameter kd did not show a seasonal 

pattern, whereas kg showed a stronger negative correlation in the colder months (Nov.-

Mar.).  The PRCC for kr and vs also showed a seasonal pattern: they were more positive 

in the colder months (Nov.-Mar.) and were either negative (kr) or near zero (vs) in the 

warmer growing months (May-Oct.).  The sub-seasonal patterns were inverted, vs was 

more positively sensitive (peaks) on days when kr was less positively sensitive (troughs).  

The sensitivity of SCM NO3 to the nutrient (Figure 4-3c) and physical (Figure 4-3d) 

parameters was not as strong as the first order  algae parameters, as the PRCC values for 

all parameters but one were between -0.13 and +0.25.  The parameter, ksn, was 
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consistently positively correlated to NO3, and the strength of this correlation, which 

peaked at 0.5, increased continually between inflow events. 

 
Figure 4-3: Global sensitivity, quantified by a PRCC, of SCM NO3 concentrations to model parameters.  

Subplot (a) shows the inflow time series, and a 7-day moving average of parameter sensitivity grouped into 
the remaining subplots by first order rates (b), nutrient limitation parameters (c), and physical parameters 

(d). 
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The sensitivity of NH4 concentrations to the 12 water quality parameters followed similar 

patterns as for NO3 (Figure 4-4).  The first order algae parameters showed much stronger 

control than the physical and nutrient parameters (Figure 4-4b).  As with NO3, the  

 
Figure 4-4: Global sensitivity, quantified by a PRCC, of SCM NH4 concentrations to model parameters.  

Subplot (a) shows the inflow time series, and a 7-day moving average of parameter sensitivity grouped into 
the remaining subplots by first order rates (b), nutrient limitation parameters (c), and physical parameters 

(d). 
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strongest negative correlation was between NH4 and kg.  For both NO3 and NH4, kg 

showed a seasonal pattern as colder months had a greater negative PRCC than the 

warmer months.  However, the strongest positive correlation was between NH4 and kr. 

The other two parameters, kd and vs, tracked each other both seasonally (positive during 

the colder months of Nov. – Apr., and negative during warmer months of May – Nov.) 

and sub-seasonally. The sub-seasonal peaks in PRCC of these two parameters occurred at 

the same time as the troughs in PRCC of the respiration parameter, and these variations 

correspond with inflow events.  As with NO3, the nutrient (Figure 4-4c) and physical 

(Figure 4-4d) parameters showed weak (-0.16 to +0.25) PRCC values through time, apart 

from ksn, which was elevated during the dry period to a peak PRCC of 0.50. 

To further explore the effect of both season and hydrologic conditions on these PRCC 

values, a simple correlation analysis between the daily time series of PRCC for the five 

most sensitive model parameters and the average daily air temperature and depth of water 

in the SCM was performed (Table 4-4).  The correlations between the parameters and air 

temperature agreed with the qualitative observations of the time series described above.  

NO3 and NH4 were more sensitive to kg during the warmer months.  NO3 concentrations 

were also slightly more sensitive to kg values when depth of water was low.  The 

sensitivity of both inorganic N parameters to ksn was not correlated with temperature.  

When analyzing the effects of hydrologic conditions on the NO3 concentration sensitivity, 

sensitivity was more negatively correlated to ksn during wetter periods.  The remaining 

parameters all showed weaker (< 0.3) correlations.  The same phenomena were true for 
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NH4, as model sensitivity to ksn decreased during wetter periods.  NH4 concentrations 

also showed increased sensitivity to vs and ks to increased SCM water depth 

Table 4-4: Correlation coefficients between PRCC values of NO3 and NH4 and the average daily SCM 
water depth and daily air temperature for the 5 most sensitive water quality parameters.  Correlations 

greater than 0.5 are highlighted with bold text. 

Parameter 
Temperature Depth 

NO3 NH4 NO3 NH4 

kg 0.50 0.67 -0.24 -0.06 
kd 0.00 -0.70 -0.04 0.47 
kr -0.65 -0.36 0.19 -0.27 
vs -0.51 -0.62 0.27 0.53 

ksn 0.00 0.07 -0.72 -0.67 
 

4.4.3 Water quality parameter uncertainty and calibration 

Of the 10,000 initial water quality parameter sets, only 246 met the acceptability criteria 

that the Kolmogorov-Smirnov D statistic between modeled and observed CDFs of both 

NO3 and NH4 must be less than 0.2.  Figure 4-5 shows the envelopes of the 1-99th 

percentiles of simulated outflow EMC of both inorganic N species before (dark grey) and 

after (light grey) applying this acceptability filter.  Constraining the parameters reduced 

the uncertainty of EMC, which is reflected in the horizontal width of the grey envelopes 

in Figure 4-5.  The average horizontal distance of contraction of the simulated CDF 

envelopes was 0.145 mg L-1 for NO3 and 0.099 mg L-1 for NH4. 

Additionally, Figure 4-5 shows the weighted ensemble mean of all the acceptable 

parameter sets which aggregates the 246 simulations based on performance.  Acceptable 

parameter set weights ranged from 0 to 0.0086, which was 2.1 times the average (or 
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uniform) weight.  The absence of observed NO3 and NH4 values below the 45th and 85th 

percentiles, respectively, was due to an abundance of samples below analytical detection 

making it difficult to determine the goodness-of-fit of the parameters below these 

percentiles.  However, all observations above these percentiles, save the highest observed 

NH4, fell within the posterior envelope.  Observed values of NO3 outflow deviated from 

the ensemble mean at higher percentiles, as the model over predicted EMCs above 0.1 

mg-N L-1.  

 
Figure 4-5: Evaluation of uncertainty from model parameters by comparing the range of simulated CDFs of 
NO3 (a) and NH4 (b).  All 10,000 parameter sets are reflected in the prior distribution (light gray), whereas 

only the 246 acceptable parameter sets are shown in the posterior distribution (dark gray).  The red line 
represents the aggregated ensemble mean of all 246 acceptable parameter sets, weighted by performance. 

4.4.4 Model sensitivity to environmental inputs 

To quantify how N removal efficiency varied with environmental input, either air 

temperature, inflow volume, or inflow N concentrations was systematically altered, while 

the other two inputs were kept constant. N removal fraction was calculated as the 
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difference between mass inflow and mass outflow, divided by the mass inflow.  Figure 4-

6 shows how the mass removal fraction of inorganic N changes with temperature.  

Results showed that as temperature increased, so did the mass removal fraction.  Figure 

4-6 also shows that at higher temperatures, the width of the parameter uncertainty 

envelope widens.  The removal of NH4 was greater than removal of NO3 for all simulated 

temperature regimes.  Figure 4-7 shows how changing inflow water volumes, but keeping 

concentrations constant, influenced mass removal fraction.  As with temperature, NH4 

removal was greater than NO3 removal across all simulated inflow volumes.  As inflow 

volume increased, mass removal fraction decreased.  Additionally, the parameter 

uncertainty envelope did not change significantly with volume.  Finally, the effect that 

changing N inflow concentrations had on removal fraction was tested.  Figure 4-8 shows 

that, for NO3, increased concentrations result in decreased removal efficiencies.  For NH4,  

 

Figure 4-6: Changes in mass removal of NO3 (a) and NH4 (b) with changes in air temperature, relative to a 
reference scenario, the 2013 water year. 
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Figure 4-7: Changes in mass removal of NO3 (a) and NH4 (b) with changes in inflow volume, relative to a 

reference scenario.  Inflow nitrogen mass changes with water volume in order to keep concentrations 
constant. 

 
Figure 4-8: Changes in mass removal of NO3 (a) and NH4 (b) with changes in inflow concentrations of both 
N species.  The bottom x-axis shows the multiple of inflow concentration relative to the reference scenario, 

while the top x-axis shows the median concentration of each scenario.  The x-axis is scaled so that the 
multiples on either side of 1 are plotted linearly, rather than the concentration.  For example, this scaling 

causes the multiples 1/3 and 3 to be an equal distance from one. 
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removal efficiencies remained between 0.58 and 0.60 across all inflow scenarios.  For 

both NO3 and NH4, the parameter uncertainty envelope shrunk with increased inflow 

concentrations, although the effect was more exaggerated for NO3.  For the lowest N 

concentration simulation, removal of NO3 was greater than NH4, the only time this 

relative difference was observed in all environmental input simulations. 

4.4.5 SCM design scenario testing 

To quantify how different SCM designs change N removal, the depth of the permanent 

pool in NTWP was varied.  Figure 4-9 shows how mass removal fraction of both NO3 

and NH4 changes with the depth of the permanent pool.  In both cases, increased pool 

depth caused increased removal.  Removal increased approximately linearly until the 

observed depth of 1.524 m, after which the slope began to decline but still remained  

 
Figure 4-9: Changes in mass removal of NO3 (a) and NH4 (b) with change in depth of the SCM permanent 

pool 
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positive.  The ensemble means of removal fraction varied dramatically across the range 

of simulate depths, ranging from 0.31 to 0.67 for NO3 and 0.31 to 0.71 NH4. 

4.5 Discussion 

4.5.1 Model evaluation 

Validation of the SCM hydrologic model is critically important for urban water quality 

modeling, because mass export of solutes from urban watersheds is directly tied to runoff 

volume and density of SCMs within the basin (Hale et al., 2015). An important first step 

is accurate simulation of water retention and routing. This work presents a new model 

that successfully replicates the distribution of observed outflow volumes through the 

lower three quartiles without any calibration (Figure 4-2a).  This result underscores the 

model’s ability to capture the effects that SCMs have on the water balance in urban areas, 

which is one of the benefits that SCMs provide.  Although the model generally under 

predicted observed outflow volumes in the upper quartile, issues with both observation 

and simulated values during larger events exist.  First, uncertainty in the rating curves at 

both inlets and the outlet at higher stages, a problem that has been explored for gauging 

river discharge (e.g., Clarke (1999)).  Additionally, because the inflow record was 

generated stochastically, event volume, duration, and antecedent dry period were grouped 

randomly.  It is possible that the durations and dry periods paired with the large volume 

events introduced uncertainty to the model. 

The model was also able to reasonably reproduce the distribution of event outflow 

duration without calibration.  Simulating event outflow duration is important for 
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capturing the effects that SCMs have on timing of stream discharge.  Despite the success, 

the routine under predicted the duration of outflow during storm events through the first 

three quartiles and over predicted the duration in the upper quartile (Figure 4-2b).  Again, 

this could be due to both to limitations in the observation procedure and the stochastic 

modeling framework.  If sampling was stopped prior to complete cessation of the 

hydrograph due to logistical reasons, it could lead to this discrepancy.  As with the large 

volume events, the random paring of inflow volume and antecedent dry periods to the 

generated inflow durations could introduce variation in the simulation results.   Still, 70% 

of the modeled outflow events had ceased within 60.5 hours of initiation, which 

corresponds to the designed drain down time of 48 hr (McKim & Creed, 2006) plus 12.5 

hr, the median observed duration of  inflow (data not shown). 

The GLUE framework was used to both quantify parameter uncertainty, and to constrain 

plausible parameter sets to a reasonable range.  The ensemble mean, which reflects a 

performance-weighted average of all acceptable parameter sets, predicted NO3 EMC well 

up through the third quartile, but over-predicted NO3, in the upper quartile.  NH4 EMC 

estimates closely matched observed EMCs.  As with the modeled outflow volumes, the 

stochastic pairing of inflow N concentrations with inflow volume, duration, and 

interarrival times could be the source of some of the variability at these higher percentiles. 

Additionally, a global sensitivity analysis was performed to determine the correlation 

between simulated SCM NO3 and NH4 concentrations and twelve water quality model 

parameter values.  This analysis provided insight into the behavior of the model, but also 
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identified the parameters that should be constrained either through empirical observation 

or through calibration to limit model uncertainty.  Of the 12 parameters, the base growth 

rate, kg, demonstrated the strongest control on both state variables over the course of the 

simulation.  This result is expected as algae growth relates directly to inorganic N uptake, 

and therefore faster growth rates will be negatively correlated to both NO3 and NH4 

concentrations.  Other parameters that showed strong, positive correlations to NO3 and 

NH4 were kd (base death rate) and kr (base respiration rate) respectively.  The reason for 

the correlation to NH4 is clear, as the model routines cause algal respiration to release 

NH4 directly to the water column.  However, the correlation between NO3 and kd is not as 

direct, as algae death does not release NO3.  The cause for the correlation could be realted 

to a secondary control.  Algae death removes the stock of chl-a without adding inorganic 

N, therefore limiting growth by reducing the stock chl-a, resulting in less NO3 uptake.  

The final first order rate parameter, vs, also demonstrated strong control on both NO3 and 

NH4, although the direction on the correlation changed seasonally.  As with kd, vs does 

not directly affect the mass balance of inorganic N, but it removes algal chl-a stocks 

which limits growth and subsequent N uptake.  

Collectively, the four first order rate parameters of the algae submodel exerted far 

stronger control on inorganic N concentrations than the 4 nutrient limitation parameters 

and 4 physical parameters.  The only parameter of the remain 8 nutrient limitation and 

physical parameters with an absolute value of PRCC greater than 0.2 was ksn: the half 

saturation constant of Michaelis-Menten uptake of inorganic N during chl-a growth 

(Figures 3b and 4b).  We attribute the strong sensitivity of the SCM model behavior to 
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this parameter to the fact that available N frequently limits algal growth.  This could be 

due, in part, to inflow concentrations at NTWP being relatively low compared to other 

similar systems. The distribution of inflow NO3 concentrations at NTWP were 

approximately 1/3 lower than those reported in the International Stormwater BMP 

Database (Geosynthetic Consultants and Wright Water Engineers, 2014). 

In addition to informing model behavior, the global sensitivity analysis also highlights 

the parameters that contributed the most to model uncertainty.  This uncertainty could be 

constrained either through calibration, application of literature-based parameters that 

govern algal community dynamics in other systems, or additional monitoring and 

experimentation. Future application of the SCM model in other regions should minimize 

parameter uncertainty by calibrating the four first order growth parameters (kg, kr, kd, and 

vs), as well as ksn. 

4.5.2 Environmental controls on water quality model sensitivity 

Analyzing how sensitivity to model parameters changes through time illuminates the 

change of system dynamics with season, under different hydrologic conditions, and N 

availability.  Model sensitivity of both inorganic N species changed with air temperature 

and therefore season.  The time of year strongly controlled sensitivity of modeled NO3 to 

kg, kr and vs and also sensitivity of modeled NH4 to kg, kd and vs. The strength of 

correlation for the two loss parameters (kr and vs for NO3 and kd and vs for NH4) is 

opposite to the growth term, kg.  In the colder months, when kg exerted a weaker effect on 

the inorganic N concentrations, greater loss parameter values lead to lower algae stocks.  
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Lower stocks of algae lead to less gross uptake, and therefore greater N concentrations.  

This explains the positive correlation between inorganic N concentrations and the loss 

parameters.  However, during the warm months, the correlation with the loss parameters 

approached zero or even goes negative.  This may be because N uptake during growth 

quickly assimilates any release of inorganic N. Understanding the environmental controls 

on model sensitivity adds to fundamental knowledge of the system dynamics and 

provides useful information for future users looking to parameterize the model under 

different environmental conditions.  

Additionally, results showed that increasing temperatures exaggerated the effects of 

parameter uncertainty.  Figure 4-6 shows that as input temperature increased, the 

envelope of the 5-95th percentile of simulated inorganic N removal fraction widened.  

Three of the first order rate parameters (kg, kr and kr), the group identified as 

demonstrating the most control on SCM inorganic N concentrations, were all influenced 

positively by temperature.  Therefore, warmer temperatures caused increased rates of chl-

a cycling, likely causing the divergence of simulated N concentrations relative to the 

mean.  The implications of this are that parameter values must be carefully constrained if 

simulations are done in places with warmer climates or during years of higher 

temperatures.  Changing sensitivity of simulated water quality variables to ecological 

model parameters with season was also shown by Yi et al. (2016) using a more complex, 

but similar model of algae growth in a lake ecosystem. 
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SCM water depth, a proxy for recent hydrologic and N input, also influenced model 

parameter sensitivity.  The PRCC of both NO3 and NH4 showed stronger positive 

correlation to ksn when SCM depth was lowered, indicating that this parameter exerts 

greater control during dry periods (Table 4-4).  Because ksn controls the degree to which 

N concentrations limit growth, the parameter increased in importance between inflow 

events as the stocks of inorganic N gradually depleted through algae N assimilation.   

Therefore, higher values of ksn lead to less N uptake between events and greater inorganic 

N concentrations.  This remaining N rich water could be flushed out of the system during 

subsequent rain events, ultimately decreasing the ability of the SCM to remove inorganic 

N.  This highlights that N availability constrained algae N uptake between storm events 

when concentrations declined, more than it did during events when N is high. PRCC 

sensitivity values of NH4 to kd and vs increased when SCM pond depth increased.  This 

could be because these two chl-a loss fluxes are of greater importance when N 

concentrations are high, immediately after inflow events. 

Unlike temperature, increased event inflow volume did not influence parameter 

uncertainty.  Increased N concentrations, however, led to a reduction in parameter 

uncertainty.  The cause for this could be that, as constraints on growth from N limitation 

are removed, model simulations become more homogeneous.  Application of the SCM 

model at low-N sites where N limitation dominates must account for the potential for 

parameter uncertainty to influence simulation results. 
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4.5.3 Environmental and design control on N removal by SCMs 

Reduction of mass export of nutrients, including NO3 and NH4, is often a stated goal of 

stormwater management plans (e.g., City of Charlotte (2015)).  These plans often 

stipulate that SCMs are a strategy to reduce export, and post-construction compliance 

permits are issued on the assumption that SCMs of a given type (e.g., wet pond, wetland) 

remove a constant fraction of inflow mass on average.  This removal fraction is based on 

a broad dataset of multiple studies (e.g., International Stormwater Database) or limited, 

local empirical studies.  These assumptions ignore watershed condition, nutrient loading 

to the SCM, performance deterioration/enhancement through time and other 

hydrometeorological forcing (Koch et al., 2014).  The model developed here uses a 

calibrated SCM model to test how mass removal of NO3 and NH4 changes with air 

temperature, inflow volume, and inflow N concentrations.  Estimated mass removal 

efficiencies for both N species across all scenarios tested fell between 0.30-0.65, in line 

with those reported in the International Stormwater BMP Database (Geosynthetic 

Consultants and Wright Water Engineers, 2014).  For all scenarios tested, the ensemble 

mean of mass removal fraction of NH4 was greater than that for NO3. The cause for this 

is likely due to the simulated algal community preferentially assimilating and removing 

NH4 from the water column over NO3 when both are in abundance.  This phenomenon, 

which has been explored in detail by Dortch (1990), is due to the structure of the two 

inorganic N ions that allows NH4 to be more readily utilized by algae. 
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Varying average annual air temperature from 10.7°C to 20.7°C increased the ensemble 

mean of the mass removal fraction of NO3 from 0.52 to 0.61, and the mass removal 

fraction of NH4 from 0.56 to 0.66 (Figure 4-6).  The cause for this moderate increase in 

removal was increased rates of algal biomass turnover, which caused more net inorganic 

N uptake.  This N was then converted to organic forms, which were settled and or 

advected from the system.  The control of temperature and seasonality on the ability of 

these SCMs to remove N is supported by a field study by Roseen et al. (2009), who 

showed that removal efficiencies of inorganic N in stormwater wet ponds were lower in 

winter months compared to summer. 

While the relationship between the efficiency of inorganic N removal and air temperature 

was monotonic for both species, the effect of changing nitrogen concentrations was not as 

clear.  For NH4, mass removal efficiency was relatively unchanged across all the 

simulated inflow (Figure 4-8b).  Because algae preferentially assimilated NH4 over NO3, 

any additional inflow or release of NH4 during respiration is quickly assimilated.  NO3, 

however, showed moderately decreased uptake when the median inflow concentrations 

increased above ~0.2 mg-N L-1 (Figure 4-8a).  Thus, there is a threshold concentration at 

which algae can no longer effectively utilize additional NO3. This result indicates that 

wet pond SCMs promoting algae growth have better potential to remove NH4 at high 

concentrations compared to NO3.  There may also exist a threshold concentration of NH4 

where algae growth becomes saturated.  This saturation has been observed in batch 

studies of algae treating wastewater with NH4 at a concentrations as high as 129 mg L-1 

(Aslan and Kapdan, 2006).  However, even the scenario with the highest distribution 
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inflow concentrations explored here (which ranged from 0.37 - 7.0 mg-N L-1), a 

substantial fraction (> 50%) of NH4 was removed. 

The influence of inflow volume on inorganic N mass removal was also tested.  Results 

showed that increased inflow volume caused inorganic N removal by the SCM to 

decrease (Figure 4-7).  This highlights that, even if N inflow concentrations remain static, 

N removal efficiency in wetter years is likely to decrease.  Additionally, if impervious 

surfaces (and the increased N loading associated with them) are added to in the SCM’s 

watershed, increases in runoff for a given rain event will also lead to a decreases in SCM 

N removal.  Finally, the controls of permanent pool depth of the SCM on inorganic N 

removal were tested.  Results showed that increasing the permanent pool from 0.30 m to 

2.74 m increased the ensemble mean of NO3 removal from 0.31 to 0.67 and NH4 from 

0.31 to 0.71.  These changes are substantially greater than changes associated with 

temperature and input concentration scenarios, highlighting the importance of pond depth 

as a design parameter.  While each additional 0.30 m of permanent pool depth led to 

increased N removal, the change in removal began to flatten above 1.52 m.  These results 

are contrary to those observed by Koch et al. (2014), who found that the removal 

efficiency of NH4 from individual inflow events increased in BMPs with shallower 

depths and lower volumes.  This discrepancy could be because the Koch et al. (2014) 

study included both wetland and wet pond style SCMs, or because they were only able to 

analyze removal from individual events, rather than over a complete annual cycle.     
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The cause for increased inorganic N mass removal efficiency with both decreased inflow 

volume and deeper pool depth is likely due to the same phenomenon: the dilution of 

relatively N-replete inflow water by relatively N-deplete SCM water.  Figure 4-10 shows 

that for all permanent pool depth simulations, concentrations in the pond are lower than 

the inflow.  The same was true for the inflow volume scenarios (data not shown).  For 

both sets of model permutations, as the ratio of SCM pool volume to inflow volume 

increased, so did mass removal of inorganic N.  Therefore, deeper permanent pools, or 

similarly lower inflow volumes, allow for more dilution of the inflow volume.  One 

reason SCMs may have lower concentrations than inflow water may be due to the 

prevalence of N-limited algae growth between events, a phenomena highlighted in the 

previous discussion of the ksn parameter.  Additionally, shallower permanent pools, with 

their decreased volume, cause the same mass of algae to exist at higher concentrations.   

 
Figure 4-10: CDFs of pond concentrations of NO3 (a) and NH4 (b) at different permanent pool depths, 

compared to inflow concentrations. 
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These higher chl-a concentrations increase the effect of self-shading, which reduces light 

availability and limits N uptake through growth.  This could lead to greater inorganic N 

concentrations in shallower ponds.  Because most outflow occurs 1-5 days after inflow 

(Figure 4-2b), which are times of ample N for algae growth, biological activity over the 

course of the storm event is not as important for N removal as the mixing process that 

dilutes inflow with inter-event SCM water, which has low inorganic N concentrations. 

4.6 Conclusions 

The hydrologic and water quality model of a wet pond SCM described in this paper is 

novel because it uses eco-hydrological process, rather than a simple first order removal 

efficiency, to simulate retention and removal of inorganic N from urban runoff.  It 

improves on existing watershed models of SCMs because it can account for changes in N 

retention due to controls hydrometeorological forcing, nutrient loading, and SCM 

geometric design.  Because the model is installed in RHESSys, a spatially distributed 

watershed model, it can be used to test stormwater management scenarios at larger spatial 

scales.  This work limited the modeling environment to just a single SCM with one 

upstream and two downstream patches, in order to focus on internal SCM process by 

controlling inputs to the SCM, rather than introducing additional variability associated 

with running the watershed model at the full scale. Future work will use a full RHESSys-

SCM watershed model to investigate the effectiveness of multiple and spatially 

distributed SCMs within a watershed.  
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The model reproduced observed hydrology without calibration, and it simulated the 

distribution of outflow NO3 and NH4 concentrations after calibration of water quality 

parameters.  Using a global sensitivity analysis of water quality parameters, results 

showed that 5 parameters dominated NO3 and NH4 concentrations in the SCM.  These 5 

parameters should be the target of empirical studies or calibration during future model 

applications.   Additionally, results showed that model sensitivity to and uncertainty from 

these parameters changed with season and hydrologic condition.  Notably, higher 

temperatures and lower inorganic N inputs increased model uncertainty to these 

parameters.  Therefore, careful calibration is required if the model is applied in 

watersheds with warmer climates or low N concentrations in runoff. 

Because the model is process based, it was able to simulate how changes in air 

temperature, inflow N concentrations, inflow water volume, and SCM design influenced 

the ability of the SCM to retain and remove inorganic N.  Increasing air temperature 

caused increase removal of both NO3 and NH4, which has implications for the success of 

SCMs in different regions and under climate. However, changes in N removal efficiency, 

were relatively moderate over a fairly substantial (10 °C) temperature range and suggest 

that other factors, such as pond depth are likely to play a more substantial role in 

explaining variation in SCM performance within a given region and over time. Similarly, 

changes in inflow concentration did not affect NH4 removal efficiency, but greater 

concentrations caused removal of NO3 to slight decrease.  The difference is likely due to 

algae preferentially assimilating NH4 over NO3.  This implies that removal efficiency of 

NO3 by SCMs in high N watersheds may decrease.   
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Finally, decreased inflow volumes and increased SCM permanent pool depths led to 

relatively large increases in inorganic N removal.  Because SCM concentrations were 

always lower than inflow concentrations, we attribute this to increased dilution of inflow 

water.  Additionally, model sensitivity to N uptake parameters increased during dry 

periods, when algae growth was N limited.  Together, these results show that N removal 

is dependent on both the physical process of mixing of inflow and SCM water during 

storm events, and biological processes that reduce SCM inorganic N concentrations 

between events.  This finding has direct implications for design of SCMs, that more water 

storage will result in greater inorganic N removal efficiency. 
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CHAPTER 5. MODELING CHANGES IN HYDROLOGY AND NITROGEN 
EXPORT BY CONNECTING URBAN IMPERVIOUS SURFACES TO 

STORMWATER CONTROL MEASURES 

5.1 Abstract 

The addition of impervious surfaces during urban development increases runoff and 

nutrient loads.  The problems of impervious surfaces are exaggerated by storm pipe 

networks that directly connect them to streams, because pipe networks bypass many of 

the urban ecological zones where important hydrologic and biogeochemical process 

occur.  Stormwater control measures (SCMs) are a management strategy that disrupts the 

connectivity between urban impervious surfaces and stream networks, and aims to restore 

the beneficial processes that are lost during urbanization.  This work uses a RHESSys 

model of a watershed in Charlotte, NC to simulate runoff under different scenarios of 

urban surface connectivity to SCMs to develop a simple predictive relationship between 

watershed condition and N loads.  The metric unmitigated imperviousness (UI), which is 

the percent of the watershed area covered by an impervious surface that is unmitigated by 

SCMs, quantified watershed condition.  Result showed that as SCM mitigation decreased, 

or as UI increased from 3% to 15%, runoff ratios and nitrite+nitrate (NOx) and total 

dissolved nitrogen (TN) loads increased by 26% (21-32%), 14% (3-26%) and 13% (2-

25%), respectively.  The shape of the relationship between these variables and UI was 

linear, which indicates that mitigation of any impervious surfaces will result in 
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proportional reductions at the range of UI in this study. Loads of ammonium (NH4), 

however, decreased linearly with increases in UI, demonstrating that increased SCM 

mitigation increased stream NH4 concentrations drastically enough to overcome 

reductions in water runoff volumes.  The simulated change in NH4 loads between the 

most and least mitigation scenarios was -37% (-73% to +37%).  These results have 

implications for watershed managers seeking to reduce impacts to stream and lake 

ecosystems from impervious surface runoff by mitigating them with SCMs  

5.2 Introduction 

During the process of urbanization, the land surface is covered with roads, parking lots 

and buildings necessary to support the urban economy.  These impervious surfaces limit 

the infiltration of rainfall and cause increased runoff volumes during more frequent and 

intense flood events, which negatively impact stream ecosystems (Leopold, 1968; Arnold 

and Gibbons, 1996; Paul and Meyer, 2001; O’Driscoll et al., 2010).  While the extent of 

urban impervious surfaces is an important control on watershed scale hydrology, the 

hydrologic connectivity of these surfaces to stream networks through constructed 

drainage channels and storm sewers is also very important (Alley and Veenhuis, 1983; 

Shuster et al., 2005; Walsh et al., 2005; Walsh and Kunapo, 2009; Dewals et al., 2012; 

Shields and Tague, 2014; Bell et al., In review-a).  These drainage networks cause runoff, 

rich in nutrients like nitrogen (N), to bypass biologically active zones in both the 

terrestrial and riparian environments, which limits the ability of urban ecosystems to 

remove or retain the excess nutrients imported as food and fertilizer (Groffman et al., 
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2004; Hatt et al., 2004; Bernhardt et al., 2008; Kaushal and Belt, 2012; Duncan et al., 

2013). 

 Stormwater control measures (SCMs) are a management strategy aimed at interrupting 

the connectivity of urban impervious surfaces and the stream network.  Some examples 

of SCMs are detention ponds, constructed wetlands, or smaller bioretention basins that 

collect and store stormwater runoff in a surface depression.  This stored runoff is 

temporarily retained until it leaves the SCM as surface outflow through a designed outlet 

structure, infiltration or evaporation.  Retention of water in SCMS decreases the 

connectivity between urban surfaces and the streams, and has the potential to reduce peak 

discharges and discharge response times (Horner et al., 2001; Villarreal et al., 2004; 

Hood et al., 2007; Jarden et al., 2015).  Water stored in SCMs may also evaporate.  The 

presence of SCMs has been shown to reduce total runoff volumes in urban watersheds 

(Gagrani et al., 2014; Hale et al., 2015).   

Additionally, SCMs may increase water and nutrient residence times, promoting 

biological activity, and ultimately reducing nutrient export by urban streams.  SCMs are 

typically vegetated, and this vegetation has the potential to uptake dissolved N from the 

retained stormwater.  Some SCMs retain a permanent pool of water, which allows aquatic 

algae communities to also assimilate N, removing it from the water column.  Because 

SCMs receive runoff during storm events, they have very dynamic hydrologic conditions.  

This, in turn, creates rapidly changing redox conditions in pond sediments that can 

promote the microbial processes of nitrification and denitrification that can also lead to 
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removal of N.  Together, these processes within SCMs may reduce concentrations of N in 

outflow compared to inflow, although the amount of reduction is highly variable (Mallin 

et al., 2002; Barrett, 2005; Hunt et al., 2008; Collins et al., 2010; Kearney et al., 2013; 

Geosynthetic Consultants and Wright Water Engineers, 2014; Koch et al., 2014). 

There is a large body of research that documents the relationship between the percentage 

of watershed area covered by impervious surfaces, typically referred to as total 

imperviousness (TI), and changes to hydrologic and water quality regimes (see reviews 

by Arnold and Gibbons (1996); Brabec (2009)).  A smaller number of studies have 

examined the role of connectivity of these surfaces by relating stream hydrology and 

water quality to a watershed’s effective imperviousness (EI).  EI is the fraction of 

watershed area that is covered by an impervious surface that is directly connected to the 

stream network through artificial drainage.  Modeling studies have shown that EI is an 

important factor for predicting hydrologic behavior, but less is know about the controls 

on water quality (Lee and Heaney, 2003; Guo, 2008; Dewals et al., 2012; Shields and 

Tague, 2014).  SCMs are designed to restore hydrographs to mimic the hydrographs prior 

to development (Roesner et al., 2001).  Therefore, the mitigation of impervious areas 

with SCMs could be a way to effectively disconnect impervious areas from the stream, 

and therefore reduce EI (Walsh et al., 2005).  However, the effect of disconnecting 

impervious surfaces through the use of SCMs is less well documented. 

This work uses RHESSys, a fully distributed, process-based watershed model, to develop 

an empirical relationship between a metric that describes both urban impervious surface 
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connectivity and mitigation to watershed response, quantified by water runoff and 

nitrogen export.  The watershed metric unmitigated imperviousness (UI), a is the fraction 

of the watershed populated by impervious surfaces that are connected directly to the 

stream by storm pipes.  This excludes impervious surfaces that are mitigated by SCMs or 

that are undrained by storm infrastructure. This metric is analogous to EI and it quantifies 

the interaction of impervious surfaces and their connection to either SCMs or the stream 

directly.  Bell et al. (In review-a) found UI to be the best of a suite of urban impervious 

surface connectivity metrics at predicting hydrologic record flashiness.  Since UI is 

inherently bounded by the watershed’s TI, the ratio of the two (UI/TI) is another metric 

that characterizes the fraction of TI that is directly connected to the stream.  This is 

analogous to directly connected impervious area (DC, DCI, or DCIA) used in other 

studies analyzing the effects of EI on hydrology and stream ecosystem health (Lee and 

Heaney, 2003; Walsh et al., 2005; Walsh and Kunapo, 2009; Shields and Tague, 2014).  

Because RHESSys is spatially explicit, it can systematically change connectivity of urban 

surfaces between SCMs or the stream network directly at a very high spatial resolution.  

This allows for rigorous testing different connectivity scenarios. Additionally, because 

RHESSys is process based, it can simulate the dynamic effects that SCMs have on water 

quantity and quality across seasons, storm event sizes, and antecedent conditions.  

Therefore the goal of the study is to use RHESSys to characterize the relationship 

between connectivity of impervious surfaces (expressed though UI) and hydrologic and 

water quality regimes by systematically varying connectivity of a residential watershed in 

Charlotte, NC.  Identifying this relationship will provide managers with insights on what 
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levels of SCM implementation that can be targeted to effectively disconnect urban 

impervious surfaces and to protect stream ecosystems. 

5.3 Methods 

5.3.1 Site Description 

The Beaverdam Creek (BD) watershed is an actively urbanizing watershed in Charlotte, 

North Carolina that has been the subject of a 10-year stormwater monitoring effort by 

Charlotte-Mecklenburg Stormwater Services (CMSWS) and documented by Allan et al. 

(2013).   BD consists of 5 subwatersheds, of which the subwatershed named “BD4” is the  

 
Figure 5-1: Map of BD4, showing location of SCMs and the urban surfaces that they mitigate   

¹

0 0.50.25
Kilometers

Darker areas represent 
more impervious 
surface density

North Carolina, USA

Charlotte, NC

Legend
BD4 Watershed

Wet Pond SCM

Wetland SCM

Bioretention SCM

Dry Pond SCM

SCM Drainage Area

Stream

Street

Buildings

Flow Direction



 

 

 

157 

most developed.  BD4 is the subject of this study, and has also been studied in the past by 

Gagrani et al. (2014).  BD4 is a 1.7 km2 in area and is built out with a medium-density 

residential neighborhood in the lower watershed, and an interstate exchange and 

commercial shopping center in the upper watershed (Figure 5-1).  These impervious 

surfaces, which cover 15% of the watershed, are treated by a total of 16 SCMs: 1 dry 

pond, 1 bioretention basin, 5 wetlands, and 9 wet ponds. Soils in the BD4 watershed are 

generally sandy clay and sandy loams, with a dominant “B” hydrologic soils group 

classification (USDA-NRCS, 2010).  The middle of the watershed was largely 

undeveloped at the time of the study, although has since been developed.  A 70-100 m 

forested buffer populates the riparian areas along the BD4 channel 

5.3.2 Model Description 

A Regional Hydro-Ecological Simulation System (RHESSys) watershed model was used 

to simulate hydrological and ecological process in the BD4 watershed.  RHESSys is an 

open-source computer model documented by Tague and Band (2004), but has been 

expanded significantly since then.  This study used a version of RHESSys that includes 

routines that simulate the hydrologic and ecological processes within SCMs in addition to 

terrestrial processes (available at: https://github.com/RHESSys/RHESSys/tree/scm) (Bell 

et al. In review-b)  

RHESSys is fully distributed in space, and simulates processes that affect cycling and 

advection of water, C and N.  The “patch” is the fundamental spatial unit used by 

RHESSys to simulate these processes.  Each patch is populated by consistent soil, 
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vegetation, and topographic properties.  Subsurface water is routed between adjacent 

patches based on topographic and soil characteristics.  The amount of subsurface water 

routed to downslope patches is computed using an exponential transmissivity decay 

model.  This subsurface water can migrate to one or more downstream patches.  Surface 

water that exceeds infiltration potential and a parameterized detention storage depth is 

immediately routed to downstream patches. SCM patches retain ponded surface water for 

longer periods of time, at a depth parameterized by the design of the SCM outlet structure.  

Outflow from the SCM through the outlet structure is modeled based on a series of weir 

and orifice equations (Bell et al., In review-b).  At this time, RHESSys does not explicitly 

simulate discharge in storm pipes.  However, it does have the ability to route surface flow 

between any two (or more), non-adjacent patches which approximates the connectivity of 

storm pipes. 

RHESSys also simulates vertical redistribution of water within patches.  This includes 

evaporation from surface detention stores (for example, from SCMs) and soil and 

transpiration by vegetation.  Both evaporation and transpiration are modeled using that of 

Penman-Monteith (Monteith, 1965).  Infiltration into the soil profile is model by the 

Green-Ampt equation (Green and Ampt, 1911).  Infiltrated water moves vertically 

through subsequent soil layers including a root zone layer, saturated and unsaturated soil 

layers, and a deep groundwater reservoir. 

RHESSys also models vegetation processes including C and N uptake during 

photosynthesis, and subsequent release during litterfall and respiration in each patch.  
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RHESSys allocates assimilated C and N to different physiological stores, based on 

parameters described by White et al. (2000).   These vegetative processes are analogous 

to those modeled by dynamic global vegetation models including CTEM, 3PG and 

Biome-BGC (Running and Hunt, 1993; Landsberg and Waring, 1997; Arora and Boer, 

2003). RHESSys simulates diffuse and direct radiation attenuation through the vegetation 

canopy using Beer’s law.  Litter decomposition and soil respiration follow the routines of 

Biome-BGC (Running and Hunt, 1993), and microbial N cycling follows that of Century 

N-GAS (Parton et al., 1996).  In addition to terrestrial vegetation, this version of 

RHESSys also simulates the carbon and nitrogen cycling of algae in the aquatic 

ecosystem within the SCMs (Bell et al., In review-b).  Algae uptake inorganic forms of N 

from the water column during photosynthesis, release ammonium (NH4) during 

respiration, and release dissolved organic forms of C and N during death. 

5.3.3 Data 

To construct the distributed model of the BD4 watershed, spatial data describing the soils, 

vegetation coverage, location of impervious surfaces, location of SCMs, and pipe 

network connectivity was obtained.  Soil data was taken from the NRCS’s Web Soil 

Survey (Soil Survey Staff, 2013), and vegetation data from North Carolina University’s 

Gap Analysis Program database (http://www.basic.ncsu.edu/ncgap/).  There were five 

major classes of vegetation in the watershed: coniferous forest, deciduous forest, riparian 

forest, lawns, and non-vegetated areas.  The allometry and phenology of these five 

vegetation classes were parameterized from the RHESSys vegetation default file database.  
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A digital elevation model, an impervious surface coverage map, and pipe network data 

were downloaded from the Mecklenburg County Open Mapping GIS database 

(http://maps.co.mecklenburg.nc.us/openmapping/).  Because the landscape within BD4 is 

actively changing, spatial data that best described the watershed during 2009 water year 

was used in all cases. Spatial data that did not match BD4 during this time period was 

manually altered using high-resolution aerial photography from 2009, also downloaded 

from Mecklenburg county database. The aerial photography was also used to identify the 

locations of the 16 SCMs.  Field surveys were used to characterize the geometry of these 

SCMs, specifically the design of outlet structure.  Bell et al. (In review-b) contains a list 

of geometric parameters required to describe an SCM. 

From these spatial datasets, a map of patches with consistent soil, land cover, and 

topography was constructed.  The BD4 watershed was discretized into 10 x 10 m square 

patches.  This allowed for explicit routing between urban surfaces at a relatively high 

spatial resolution.  An exception to this patch size was the SCM patches, for which the 

patch area was equal to the footprint of the existing SCM.  RHESSys uses files called 

“flowtables” to specify the subsurface and surface routing between patches based on 

topographic position.  However, stormwater infrastructure in urban environments often 

routes water across the boundaries of these topographical subwatersheds.  Therefore, the 

surface flowtables were altered to reflect the routing between urban impervious surfaces 

and the SCM subwatersheds in the existing watershed.  To do this, the subwatersheds of 

each SCM were manually delineated using the digital elevation model, storm network 

pipe data, site design plans, and field visits (Figure 5-1).    Additionally, the flowtable   
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was edited to reflect impervious surfaces connected to the stream directly, i.e. not to 

mitigated by an SCM. 

Table 5-1 lists the time series data from 2009 and data sources used to drive and calibrate 

the model.  Hourly rainfall, daily wet and dry N deposition, and daily air temperature 

forced the model.  The model was calibrated using observed daily discharge and monthly 

nitrogen export data.  In some cases, time series from observed data at multiple collection 

sites were aggregated into one record to account for large distances between sampling 

points and the watershed (e.g., N deposition data) or spatial heterogeneity within the 

watershed (e.g., rainfall). 

5.3.4 Hydrologic calibration and parameter uncertainty estimation 

Prior to calibration, soil stores of C and N were spun up by simulating the model for a 

period of 600 years until soil state variable varied by < 5% over a 10 year period.  

Additionally, vegetation nitrogen and carbon stores were spun up for a period of 20 years, 

as this correlates to the age of the riparian forest.  Repeated input data from the 2000-

2010 water years forced the model during spin up.  Then, a Monte Carlo calibration 

approach, along with a Generalized Likelihood Uncertainty Estimation (GLUE) was used 

to assess uncertainty of the calibrate parameters (Beven and Binley, 1992).  For the 

Monte Carlo simulations, 10,000 sets of seven groundwater parameters were generated 

using a Latin Hypercube Sampling (LHS) (McKay et al., 1979) technique in “spartan” 

package in R (Alden et al., 2015).  Table 5-2 contains a description of the calibrated 

groundwater parameters.  
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Table 5-2: Description and range of groundwater parameters varied during hydrologic calibration 

Parameter Description Unit Parameter 
Value Range* 

Scalar 
Low 

Scalar 
High 

k Saturated hydraulic conductivity at 
the ground surface m d-1 0.731-1.55 0.1 2000 

svalt1 Pore size index (PSI) unitless 0.088-0.204 0.5 2 

svalt2 PSI air entry pressure m 0.218-0.630 0.5 2 

Parameter Description Unit  
Parameter 

Low 
Parameter 

High 

gw1 Fraction of rainwater bypassing 
rootzone to deeper reservoir unitless  0 0.05 

gw2 Drainage coefficient from deeper 
reservoir d-1  0 0.1 

m Decay of saturated hydraulic 
conductivity with depth m-1  0.1 1.2 

depth Depth of soil profile m  1 10 

* These parameters are dependent on soil type, which varied spatially.  We report the range of parameter 
values across soil types, and the scalar applied to each of these spatially distributed values. 
 

The GLUE framework was used to quantify uncertainty in LHS-generated hydrologic 

parameter sets. This framework is quasi-Bayesian, and acknowledges that multiple 

parameters sets could reasonably predict streamflow.   Therefore, rather than producing 

one optimum parameter set, GLUE produces a range of parameters, which are 

subsequently used during simulation experiments.  To perform the GLUE procedure, an 

initial, or “prior”, distribution of likelihood must be assigned to all parameter sets.  The 

likelihood of all parameters was assumed to follow uniform distributions, and the ranges 

of the 7 distributions are shown in Table 5-2.   Next, calibration simulations that spanned 

the 2008 and 2009 water years were run using all 10,000 parameters sets.  The 2008 

water year was used as a spin up period only, and the 2009 water year was used to 

compare simulated and observed daily discharge.  Next, goodness-of-fit statistics were 

computed between simulated and observed watershed discharge at a daily timestep for all 
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10,000 simulations.  Two goodness-of-fit statistics were computed: the Nash-Sutcliffe 

Efficiency of daily discharge (NSE) (Nash and Sutcliffe, 1970) and the percent bias of 

annual stream discharge (PBIAS).   Next, a standard of performance that produced 

acceptable model results was determined.  The performance standard was that the NSE 

must be at least 0.3 and PBIAS must be between -15% and +15%.  Any parameter sets 

that did not meet this two-part standard were discarded from further analysis.  Only 10 of 

the 10,000 parameter sets met these performance criteria.  The 10 parameter sets retained 

populated the “posterior” distribution. 

The next step of the GLUE methodology is to determine a likelihood measure of all the 

acceptable parameter sets.  The likelihood measure combined the two goodness-of-fit 

statistics (NSE and PBIAS) combined, as shown in Equation 5.1: 

!
"
=

$%&'()*+	($%&)

)/0 $%& ()*+	($%&)

∗
)/0	( 2345% )( 2345%'

)/0 2345% ()*+	( 2345% )

  (Eq. 5.1) 

where L is the likelihood measure of each posterior parameter set i, and max() and min() 

represent the maximum and minimum of the specified goodness-of-fit statistics.  Next, a 

likelihood weight was determined by rescaling all the posterior L values so that their sum 

was equal to 1.  Finally, these weights were used to perform a weighted average across all 

of the model output variable.  This weighted average is called the ensemble mean. 

The GLUE methodology can also be used to assess model sensitivity to parameters.  

Following the Hornberger-Spear-Young method (Hornberger and Spear, 1981; Young, 

1983), comparing cumulative density functions (CDF) of the prior and posterior 
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parameter likelihood distributions informs model sensitivity to these parameters: the 

greater the differences in CDFs indicates greater sensitivity. 

5.3.5 Water quality validation 

Once hydrologic calibration had been completed, the model predictions were compared 

to observed monthly export and average concentrations of three N parameters: 

nitrate+nitrite (NOx), ammonium (NH4), and total dissolved nitrogen (TN).  TN was 

assumed to be equal to the sum of NOx, NH4 and dissolved organic nitrogen.  Allan et al. 

(2013) was the source of observed N export data.  To express uncertainty in the 

validation simulations, all 10 acceptable groundwater parameters were paired with 25 

water quality parameter sets that control algae C and N cycling within the SCMs.  These 

25 SCM water quality parameters were randomly selected from the 246 parameter sets 

deemed acceptable by a previous GLUE analysis that used the SCM routines in 

RHESSys to simulate inorganic N processing in a single SCM in Charlotte, NC (Bell et 

al., In review-b).  Only 25 of the 246 acceptable parameter sets, or approximately 10%, 

were taken from the Bell et al. (In review-b) study to limit model run time. This produced 

a total of 250 simulations for validation: 10 groundwater parameters sets each paired to 

one of the 25 water quality parameter sets.  The validation simulations also spanned the 

2008 and 2009 water years, and output from the second year of simulation was compared 

to observations.  Modeled seasonal patterns were evaluated by computing the Pearson’s 

correlation coefficient (r) between observed and simulated monthly export and 
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concentration.  The PBIAS mass export over the 2009 water year is reported to quantify 

the accuracy of modeled annual export. 

5.3.6 Watershed connectivity scenario testing 

To test how connectivity of impervious surfaces changed hydrologic and water quality 

regimes, the surface flowtable used in calibration was systematically altered to reflect 

different levels of UI/TI, and subsequently UI.  Twenty-one different flow tables 

reflected BD4 realizations that span a range of UI/TI from 0.21-1.0 (Table 5-3).  All 21  

Table 5-3: Summary of the watershed impervious surface connectivity scenarios 

Simulation TI 
[%] 

Interstate 
Impervious 

Surfaces [%] 

Fraction of other* 
impervious 

surfaces connected 
to stream (x) [%] 

Fraction of other 
impervious 

surfaces connected 
to SCM (1-x) [%] 

UI 
[%] 

UI/TI 
[%] 

Existing 15 3.2 0 69† 12 75 
1 15 3.2 0 100 15 100 
2 15 3.2 5.0 95 15 96 
3 15 3.2 10 90 14 92 
4 15 3.2 15 85 14 88 
5 15 3.2 20 80 13 84 
6 15 3.2 25 75 12 80 
7 15 3.2 30 70 12 76 
8 15 3.2 35 65 11 72 
9 15 3.2 40 60 11 68 

10 15 3.2 45 55 10 65 
11 15 3.2 50 50 9.3 61 
12 15 3.2 55 45 8.7 57 
13 15 3.2 60 40 8.1 53 
14 15 3.2 65 35 7.5 49 
15 15 3.2 70 30 6.9 45 
16 15 3.2 75 25 6.3 41 
17 15 3.2 80 20 5.7 37 
18 15 3.2 85 15 5.1 33 
19 15 3.2 90 10 4.5 29 
20 15 3.2 95 5.0 3.9 25 
21 15 3.2 100 0 3.2 21 

* Other refers to impervious surfaces not associated with the interstate.  This includes the residential and 
commercial areas treated by SCMs in the existing watershed (Figure 5-1) 
† This value is not 100% because we assumed 50% of the rooftops were connected directly to the SCM 
via downspouts, and the other 50% drained to adjacent pervious surfaces. 
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Figure 5-2: Graphical description of impervious surfaces (grey) connectivity scenarios.  In all case, 

impervious surfaces associated with the interstate exchange were connected directly to the stream.  We 
varied the parameter “x”, which is the fraction of impervious surfaces mitigated by SCMs in the actual 

watershed, from 0 to 100%.  The relative area of the boxes are not to scale 

simulations used a TI of 15%.  In all cases, the impervious surfaces associated with the 

interstate exchange in the middle part of BD4 were left disconnected to SCMs (Figure 5-

1).  This area accounts for the lowest UI/TI of all simulations being equal to 21%.  These 

surfaces were never mitigated in the model because there is no SCM in the existing 

watershed.  The 21 flowtables were manipulated so that impervious surfaces mitigated by 

SCMs in the actual watershed were routed either to an SCM or the stream directly.  

Figure 5-2 contains a graphical description of how connectivity varied across these 21 
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scenarios.  The ratio of impervious surfaces that were connected to the stream (x) vs. 

SCM (1-x) were consistent between the sub watersheds of al 16 SCMs.  For example, for 

simulation 2 (Table 5-3), 5% of the impervious surfaces in each of the 16 SCM 

subwatersheds was routed to the stream, whereas the remaining 95% was routed to the 

SCM.  Impervious surface patches routed to the stream or to SCM were selected 

randomly.  The result of these routing scenarios were 21 realizations of the BD4 

watershed with UI values ranging from 0.3 to 0.15 (Table 5-3). 

RHESSys then simulated water and N export for these 21 watershed connectivity 

scenarios for the 2008-2009 water years.  To account for uncertainty in calibrated 

parameters, each of the 21 scenarios was parameterized with the 250 hydrologic and 

water quality parameter sets used in model validation.  From these 250 simulations, 

hydrologic changes were determined by annual rainfall-runoff ratios, annual surface 

evaporation, and monthly surface evaporation for the 2009 water year. The mean value 

and one standard deviation from across the 250 simulations per each connectivity 

scenario is reported here.  Flow duration curves were plotted to qualitatively characterize 

the hydrologic regimes.  For clarity, only the mean of the 250 simulations from three UI 

scenarios is reported: scenarios 1, 11 and 21 (Table 5-3).  Annual loads of NOx, NH4 and 

TN were also computed for each of the connectivity scenarios.  As with the hydrologic 

variables, the mean and standard deviation of the 250 simulations for each connectivity 

scenario are reported.  
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5.4 Results 

5.4.1 Hydrologic calibration, sensitivity analysis, and uncertainty estimation 

During hydrologic calibration, only 10 of the 10,000 groundwater parameter sets met the 

performance criteria.  The NSE and PBIAS of the 10 accepted parameters ranged from 

0.301-0.338 and 8.7-14.9%, respectively.  All acceptable parameter sets were greater than 

zero, which indicates the model consistently overestimates discharge.  Figure 5-3 

summarizes the simulated daily discharge for all 10,000 simulations, and compares them 

to observed.  Comparing the posterior ensemble mean (red line) to observed discharges 

(black line) shows that that model tends to under predict high flows.  Specifically, the 

model under predicted the peak of all 9 of the highest discharge events.  Additionally, the 

model tends to extend recession of hydrograph over a period much longer than observed.  

These elevated hydrograph tails are the source for the overestimated total discharge 

volume. 

Figure 5-3 also shows the range between the 5-95th percentiles of simulated discharge of 

the prior 10,000 simulations and only the posterior 10 simulations.  The width of these 5-

95th ensembles is substantially reduced for the posterior simulation compared to the prior.   

On average, the posterior ensemble is 0.807 mm narrower than the prior, with a 

maximum contraction of 11.3 mm on 6/4/2009.  Figure 5-4 shows the differences in 

cumulative distribution functions (CDF) of all 7 hydrologic parameters between the prior 

and posterior distributions.  A greater change in the CDFs indicates that the model is  
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Figure 5-3: Results from hydrologic calibration and GLUE uncertainty estimation for the 2009 water year.  

Panel (a) shows the rainfall time series that forced the model, and panel (b) shows the observed hydrograph, 
and the 5-95th percentiles of the GLUE prior and posterior parameter envelopes, and a performance-

weighted ensemble mean of the posterior parameter sets. 

 
Figure 5-4: Comparison of prior and posterior CDFs of the 7 hydrologic parameters. 
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more sensitive to that parameter.  The model appears to be least sensitive to the pore size 

index (PSI) and the PSI entry air pressure parameters.  The model appears to be most 

sensitive to the deep groundwater entry fraction (gw1) and the deep groundwater 

drainage rate (gw2).  Only the gw1 and gw2 values in the lowest 10th percentile of the 

prior distribution made it through to the posterior.  The model also shows sensitivity to 

hydrologically active soil depth, as only depths greater than 7.0 m were retained from the 

initial range of 1-10 m. 

5.4.2 Water quality validation 

Generally, the simulated monthly NOx loads are reasonably well correlated to those 

observed (r = 0.47), although the model over predicts total export by 22% (Figure 5-5b).  

There is a distinct seasonal pattern of model performance, as the model tends to over 

predict NOx loads during the time period spanning form October 2008 to February 2009, 

but under predict between May and September of 2009.  For 9 of the 12 observed 

monthly NH4 loads, the observed average concentrations were below the detection limit 

(0.01 mg-N L-1), which means monthly load was estimated at 0 g m-2.  This makes 

comparing simulated and observed loads difficult.  However, simulated flow-weighted 

mean monthly NH4 concentrations were also consistently below that detection limit, 

spanning a range of 0.001-0.005 mg-N L-1.  The simulated loads that reflect these 

concentrations are shown in Figure 5-5c.  Over the simulation period, the model 

underestimated total mass export of TN by 7% (Figure 5-5d).   While the net N retention 

behavior was well modeled, monthly correlations of both TN load were negative (r=-
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0.02), which indicates seasonal dynamics were not well captured.  Overall, the simulated 

N loads were within reason, given that the estimates were generated without calibration. 

 
Figure 5-5: Observed vs. simulated monthly water and nitrogen mass export for the 2009 water year.  Error 

bars on the simulations bar indicate one standard deviation from the mean of simulations using the 250 
combinations of water quality and hydrologic parameters.  Bars missing from the NH4 plot in panel (c) 

indicate that observed concentrations were below detection. 
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5.4.3 Watershed connectivity scenario testing 

For each of the connectivity scenarios, hydrologic behavior was quantified by annual 

runoff ratios, annual surface evaporation, and monthly surface evaporation.  As the UI of 

the watershed increased, so, too did the runoff ratio (Figure 5-6).  The scenario with the 

least connectivity to SCMs had 26% (21-32% within one standard deviation) more runoff 

volume than compared to the most connected scenario.  The shape of the relationship 

between runoff ratios and UI is positive and linear, which indicates that each additional 

impervious surface that is connected to the SCM will result in a proportional reduction in 

runoff volume.   

 
Figure 5-6: Changes to runoff ratios under the 21 impervious surface connectivity scenarios (quantified by 
UI).  Filled circles represent the mean of the 250 parameter sets tested for each level of UI, and the error 

bars represent one standard deviation. 
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Figure 5-7 shows that as UI increases, annual surface evaporation decreased.  While the 

two are intertwined, the shape of the relationship between evaporation and UI is 

markedly different than runoff ratio and UI.  Instead of the simple, linear response, the  

 
Figure 5-7: Panel (a) shows changes surface evaporation under the 21 impervious surface connectivity 
scenarios (quantified by UI).  Filled circles represent the mean of the 250 parameter sets tested for each 

level of UI, and the error bars represent one standard deviation.  Panel (b) shows only the mean estimated 
monthly evaporation for five select UI scenarios, 
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rate of change of evaporation with respect to UI increases at high levels of UI.  Figure 5-

7b shows monthly evaporation totals for five select connectivity scenarios (scenarios 1, 6, 

11, 16, and 21).  Between the months of November and February, evaporation totals 

across all levels of UI are relatively consistent.  However, in the warmer months, it 

becomes clear that connectivity exerts a control on total evaporation, as there is more 

disparity in evaporation estimates between the connectivity scenarios.  Figure 5-7b also 

shows that the low UI scenarios (e.g. scenarios 1, 6, and 11 with a UI of 0.032, 0.063 and 

0.093, respectively) behave more similarly than the high UI scenarios.  This reflects the 

shape of the evaporation vs. UI curve. 

While simple metrics such as runoff ratios are useful indicators of hydrologic behavior, it 

is important to analyze the entire flow regime when evaluating how SCM implementation 

may effect stream ecosystems.  To do this, we analyzed flow duration curve for three 

select connectivity scenarios (Figure 5-8). For clarity, the entire flow duration curves are 

separated into four separate panels, each representing a quartile of exceedance probability, 

and each with its own vertical scale (Figure 5-8).   The flow duration curves show that 

greater levels of UI consistently result in higher discharge values.  However, the flow 

duration curves converge at higher exceedance probabilities.  The flow duration curves of 

the 0.093 and 0.153 UI scenarios cross 12 times in highest quartile of exceedance 

probability (Figure 5-8d), while they only cross 3 times throughout the rest of the range 

(Figure 5-8a-c). 
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Figure 5-8: Flow duration curves between three select connectivity scenarios.  For clarity, the curves are 

broken up into four sub-panels, each spanning a single quartile of exceedance probability, and each plotted 
on its own y-axis.  Note the y-axis in all panels are on a logarithmic scale. 

As impervious surfaces were more connected to SCMs, watershed export of NOx and TN 

decreased (Figure 5-9a and 5-9b).  The average change in total load between the least 

mitigated scenario relative to the most mitigated was 14% (3 to 26%) and 13% (2 to 25%) 

for NOx and TN, respectively. The relationship between the load and UI was generally 

positive and linear.  However, NH4 loads show an opposite trend.  As UI increased, 

average loads decreased.  The percentage change between the least and most mitigated 

scenarios, relative to the most, for annual loads was -37% (-73% to +37%).  Error bars, 
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indicating one standard deviation from the mean, for NH4 were wide relative to changes 

in the mean across simulations, indicating that simulated NH4 is sensitive to model 

parameters (Figure 5-9b).  Because NH4 loads were linearly related to UI in a direction 

opposite of runoff, increased loads were due to increased concentrations.   

 
Figure 5-9: Changes in annual load of (a) NOx, (b) NH4 and (c) TN species across ranges of UI.  Filled 

circles represent the mean of the 250 parameter sets tested for each level of UI, and the error bars represent 
one standard deviation. 
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5.5 Discussion 

5.5.1 Model evaluation 

Calibration of hydrologic parameters produced acceptable model performance at 

predicting daily streamflow.  Typically, NSE values > 0.7 are deemed to demonstrate 

good performance, although this number can vary with sample size and outliers (McCuen 

et al., 2006).  Here, only 10 of the 10,000 parameter sets used produced NSE values > 0.3.  

Application of the GLUE acceptability filter reduced model uncertainty by an average of 

0.807 mm, which accounted for approximately 30% of total rainfall over the 2009 water 

year.  The model did not successfully reproduce the flashiness of the urban system, as 

peak flows were under predicted and recession periods were extended.   Additionally, the 

model showed sensitivity to both groundwater and soil depth parameters (Figure 5-4).  

These two results together indicate that the model may be simulating a greater fraction of 

subsurface flow than actually occurs, although there is no way to quantify this without 

experimental analysis of runoff sources.  The model may also underrepresent the effects 

that urban development has on compaction of pervious surfaces, and how these areas can 

limit infiltration and become contributing source areas that contribute to runoff during 

rain events (Pitt et al., 2008; Miles and Band, 2015). 

The model reasonable predicted seasonal dynamics of NOx, as monthly loads were well 

correlated.  However, seasonal dynamics of TN showed low correlation.  Reproducing N 

export dynamics is challenging for a number of reasons.  Correctly parameterizing the 

magnitude and timing of N loading is difficult, as there are many varying sources 
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including atmospheric deposition, and applied fertilizer (Bernhardt et al., 2008).  Here, N 

deposition data was taken from the closest sites with available data, but these locations 

were at least 100 km away.  This distance could cause issues for the model, as N 

deposition was the only external N source simulated.  Additionally, there are clear 

limitations of the observed data.  For four of the twelve months, the reported observed 

TN loading was less than reported NOx.  Still, the overall loads of the N species were 

only off by 7-22%, and therefore model performance was deemed sufficient. 

5.5.2 Watershed connectivity 

SCMs are designed to interrupt the connectivity between urban impervious surfaces and 

stream networks, and to promote hydrologic and biogeochemical processes that protect 

stream ecosystems.  This work sought to explore how hydrologic and biogeochemical 

regimes of urban streams change as impervious surfaces are connected to SCMs.  Results 

show that as more impervious surfaces are mitigated by SCMs, corresponding to a 

decrease in the watershed metric UI, annual runoff ratios decrease (Figure 5-7).  The 

decrease in reduction is linearly proportional to decrease in UI across the range explored 

here (3-15%).  Other studies have demonstrated the role that increased mitigation urban 

areas by SCMs has on reducing runoff volumes (Gagrani et al., 2014; Hale et al., 2015; 

Liu et al., 2015). 

Using a simple water balance, runoff is equal to precipitation minus the sum of 

evaporation, transpiration, and storage.  SCMs pond water, exposing it to sun and wind, 

and promoting evaporation.  As shown in Figure 5-8, basin-wide surface evaporation 
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decreased as UI increased, particularly during summer months, when evaporation 

potential is high.  The relationship between UI and surface evaporation is non-linear, 

which is different from the relationship between UI and runoff ratio.  This implies that 

evaporation plays a less significant role in decreasing runoff ratios as UI decreases.  

Therefore, the processes of storage and transpiration must increase relative to evaporation 

to produce linear change in runoff ratios.  The SCMs modeled here are not vegetated, so 

transpiration does not occur within an SCM patch.  Therefore, it is likely increased 

infiltration and subsequent storage in soil or transpiration by plants that accounts for the 

decreased runoff ratios at low levels of UI.  This is supported by monitoring results from 

Endreny and Collins (2009) who demonstrated the potential for groundwater mounding 

around SCMs from infiltration. 

In addition to the overall water balance, the extent to which mitigation would change the 

distribution of discharge was analyzed.  Figure 5-10 shows that increased UI leads to 

increased discharge across the entire flow regime.  However, at lower exceedance 

probabilities, the flow duration curves for the three select connectivity scenarios began to 

merge, as the flow duration curves intersected more frequently.  This suggests that the 

SCMs have a lesser effect on hydrology during dry periods compared to wet periods.  

This aligns with the design objective of many SCMs which are targeted at reducing peak 

discharges during large rain events, rather than fully restoring natural hydrologic regimes 

(Burns et al., 2012).  
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The effect that connecting urban impervious surfaces to SCMs on mass loads of NOX, 

NH4 and TN was also analyzed.  NOx and TN loads increased linearly with UI, indicating 

that increased mitigation results in proportional load reductions.  The reduction in annual 

load is inextricably tied to the reduction in runoff volumes, so part of the reductions could 

be simply due to the hydrologic benefits of SCMs.  These flow-driven load reductions 

have been observed in other studies (Gagrani et al., 2014; Hale et al., 2015).  

However, NH4 loads decreased with UI, despite these volume reductions.  That implies 

that connecting impervious surfaces to SCMs causes concentrations to increase enough to 

cause greater N loads even when there is less water runoff.  One possible explanation for 

this behavior is that algae growth and respiration is more active in watersheds with 

greater SCM connectivity because the SCMs receive more water and N from the 

landscape.  The algae growth model in RHESSys is designed so that algae uptake N in 

both inorganic forms of NOx and NH4.  Algae release a fraction of this assimilated N 

back to the water column as NH4 during respiration (Bell et al., In review-b).  Therefore, 

greater connectivity could stimulate this process, and lead to greater NH4 export.  Despite 

the increased load of NH4, the cumulative load of all N species is reduced as UI 

decreases. 

While most of the relationships observed in this study were all linear, it is like that the 

nature of the relationship may change at different levels of TI, and subsequently UI.  

Increased abundance of impervious surfaces may demonstrate a saturation relationship in 
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runoff and load reductions, as was observed for annual evaporation.  Future work should 

address how these relationships change at different levels of TI and subsequent mitigation. 

5.6 Conclusions 

This study used a spatially-distributed, process-based watershed model to simulate runoff 

and nitrogen loads under different scenarios of urban surface connectivity in a residential 

watershed in Charlotte, NC.  Model simulations were used to systematically vary the 

fraction of impervious surfaces within the watershed that were connected either to the 

stream directly or first to an SCM.  The purpose was to develop simple relationship 

between hydrologic and water quality variables relative to the watershed metric UI, 

which quantifies the extent of unmitigated impervious surfaces. 

Results showed that linear decreases in UI of the range observed here (i.e., increased 

mitigation by SCMs) caused linear decreases in runoff ratios as well as NOx and TN 

loads. Increased surface evaporation from SCMs accounted for part of the load reductions, 

particularly at higher levels of UI.  However, at low levels of UI, soil storage and 

transpiration may be more important.  No matter the processes, the linear shape of the 

relationship at this UI range implies that at the level of development considered in this 

study, any additional mitigation of impervious surfaces by SCMs will result in additional 

benefits to hydrology and N load.  However, results showed that NH4 load decreased with 

increases in UI.  Therefore, additional mitigation of urban impervious surfaces by SCMs 

will produce increased NH4 export.  This increase can be attributed to algae communities 

within the SCMs converting NOx to NH4.  However, loads of NH4 are so low relative to 
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NOx, that despite slight increases in NH4 with more SCM mitigation, TN loads are still 

reduced. 
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CHAPTER 6. CONCLUSIONS AND IMPLICATIONS 

6.1 Study overview 

This work tested the hypothesis that “hydrologic and water quality indicators of urban 

stream behavior will become more damaging as the extent of urban impervious surfaces 

within watershed increases, but increasing connectivity of these surfaces to SCMs will 

ameliorate this intensity of this relationship.”  Characterizing the form and directionality 

of this relationship will help inform managers seeking to limit the damage that urban 

runoff inflicts on stream ecosystems.  First, variables that characterize hydrology at 

sixteen urban watersheds in Charlotte, NC, USA were statistically related to a series of 

numerical metrics that quantify the extent of urban development, extent of SCM 

mitigation, and the connectivity of urban impervious surfaces to the stream directly.  

Next, water quality data at the confluence of a stream and SCM outflow channel were 

compared to determine the effect of SCMs on stream nutrient and carbon concentrations, 

and how the type and distribution of land use in the watershed modulates the effect of 

SCM mitigation. Additionally, a computer modeling approach was developed to capture 

variability in hydrologic and water quality response along a continuum of development 

and mitigation by SCMs.  This was achieved through the development, calibration, 

validation and assessment of uncertainty of a new SCM model routine that simulates 

hydrologic and ecological processes within an individual SCMs.  Finally, the SCM 
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routines were incorporated into an existing fully-distributed, process-based model to 

determine how connecting impervious surfaces to SCMs changes stream hydrology and 

water quality at the watershed scale. 

6.2 Major Findings and Management Implications 

Documented below are the major findings of this research effort, and the implications 

that these findings have for stormwater management. 

6.2.1 Watershed metric total impervious (TI) controls event scale hydrologic response 

The empirical analysis of hydrologic variables revealed that, at the event scale, the 

watershed metric TI was the best predictor of all hydrologic variables tested including 

rainfall runoff ratios, peak discharge, watershed capacity to store small rain events, and 

the response rate of discharge to additional precipitation once the storage had been 

exceeded.  The strength of TI, which does not contain any information about mitigation 

with SCM, to predict hydrologic behavior indicates that SCMs implemented at the levels 

observed may not be influencing hydrologic behavior.  Therefore, TI is the watershed 

characteristic that policy makers should use to manage watersheds to mitigate impacts to 

streams. 

6.2.2 SCMs and tree canopy coverage are strongest controls on annual scale hydrology 

Hydrologic variables at annual time scales, including total water yield and record 

flashiness, were best predicted by watershed metrics other than TI.  The fraction of tree 

coverage in the watersheds was best correlated to total water yield, which was attributed 
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to transpiration of soil water between rain events by deep rooted plants.  Therefore, 

management strategies that include planting trees could reduce total stormwater and 

pollutant loads.  Hydrologic record flashiness, measured as the time the discharge spent 

above the annual mean, was best related to impervious area unmitigated by SCMs.  This 

implies that SCMs, while not able to mitigate the peak discharge during rain events, may 

be able to elevate and extend hydrograph recession. This has ecosystem impacts as 

mitigating urban impervious surfaces with SCMs can change the disturbance regimes to 

support stream invertebrate habitat. 

6.2.3 Type of urban land use control stream nutrient and carbon concentrations 

Concentrations of two nitrogen species, TDN and NOx-N, were significantly lower at 

sites with greater forested coverage compared to those with less forest coverage. 

Therefore, as with the result of total water yield, planting trees may be a way to reduce N 

loading to the streams.  PO4-P concentrations were higher at recently developed 

residential watersheds compared to those with older development.  Evidence suggests 

that fertilizer applied to the residential lawns in the newly developed watersheds may be 

the cause for the increased PO4-P concentrations. Using P-free fertilizers or campaigns to 

education the resident on good fertilization practices may be effective ways to reduce 

sources of PO4-P to these watersheds, and ultimately the amount of PO4-P in the streams. 

6.2.4 SCM outflow changes stream concentrations 

SCMs changed stream water quality throughout storms, although the direction of this 

transformation depended on the spatial distribution of urban surfaces throughout the 
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watershed.  In two watersheds with older, more uniform urban land cover, SCMs reduced 

in-stream nutrient and carbon concentrations immediately downstream of a stream-SCM 

confluence.  However, in the two developing suburban watersheds where the addition of 

SCMs coincided with the addition of new urban surfaces, SCMs outflow increased 

stream concentrations. This implies that, even if individual SCMs decrease watershed-

derived nutrients, SCMs are not returning streams to their predevelopment conditions in 

terms of water quality. 

6.2.5 SCM processes adequately simulated retention and removal of inorganic N 

New model routines that simulate hydrological and ecological processes in SCMs were 

developed.  The hydrologic processes were able to replicate the distribution of observed 

water outflow volume and event outflow duration in a monitored SCM in Charlotte, NC 

without calibration.  Through calibration of parameters that control simulation of algae 

growth, the water quality routines were able to match the distributions of observed event 

mean concentrations of NO3 and NH4 in outflow.  This model is of great value because it 

has been installed into a widely applied, watershed-scale hydro ecological model called 

RHESSys and can be used to test the effect of different spatially-explicit SCM 

implementation scenarios on hydrology and water quality.  Additionally, the model is 

process-based which allows users to test how SCM performance changes under varying 

environmental conditions and individual SCM designs. 
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6.2.6 Variability of N removal in SCMs due to environmental and design factors 

When simulating the behavior of a single SCM, the newly-developed routines were able 

to account for some of the variability of N retention and removal performance reported in 

the literature.  First, removal of both NO3 and NH4 increased with increasing temperature, 

which has implications for the success of SCMs in different regions and under climate 

change scenarios.  Second, increased N loading did not affect NH4 removal.  However, it 

did lead to a decline in the removal efficiency of NO3, which is likely due to the 

preference that algae communities in SCMs have for assimilating NH4 instead of NO3.  

The implications are that SCM may be more effective at removing NH4 than NO3 in N-

replete watersheds.  Additionally, increased inflow volumes lead to a decrease in mass 

removal efficiency of both NO3 and NH4 suggesting that SCM performance may be 

limited during wetter years or if further development causes increased runoff.  The depth 

of permanently pooled water in SCMs also controlled inorganic N removal efficiency 

with deeper pools removing a greater fraction of inorganic N.  When possible, SCMs 

should be designed with greater volumes, as higher volumes SCMs are more capable of 

capturing more stormwater runoff from the watershed, storing more water between events 

and diluting N-rich inflow.  

6.2.7 Mitigation of impervious surfaces leads to linear reductions in runoff and nitrogen 

Simulating changes to a watershed metric that quantifies the percent of area covered by 

an impervious surface unmitigated by SCMs (named unmitigated impervious, or UI) 

resulted in changes to hydrology and water quality.  As UI increased from 3% to 15%, 
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which indicates less influence of SCMs, runoff ratios and annual loads of NO3 and total 

dissolved nitrogen (TN) increased by 26% (21-32%), 14% (3-26%) and 13% (2-25%), 

respectively. The shape of the relationships between these three response variables and 

UI was linear at this range of UI, which may indicate that mitigating additional 

impervious surfaces with SCMs will lead to proportional reductions in runoff and loads 

of these two water quality parameters.  However, annual NH4 increased with more SCM 

mitigation but the relative magnitude of NH4 loads compared to the other two N species 

was very small such that total N loads still decreased. 

6.3 Recommendations for future research 

6.3.1 Expand range of watershed metrics and repeat analysis 

The sites chosen for the empirical analysis have analytical limitations.  For the 

hydrological analysis, the 16 sites used covered a broad range of both urban development 

(TI from 4-54%) and SCM mitigation (mitigated area from 1-89%).  However, the 

distribution of these two watershed metrics was highly skewed towards the low end of 

mitigation, which could reduce the power of the statistical tests used.  To improve this, 

more watersheds could be added to the analysis.  Some potential limitations to this 

suggestion are that it can only be done by installing more stream gages in the analysis 

region, or by incorporating sites in other regions which would introduce variability from 

differing climates. 

Similarly, the watershed-scale model experiments systematically varied the level of 

impervious surface mitigation across a broad, and uniformly distributed range, but only 
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one level of TI was considered based on the baseline conditions of an existing watershed 

in the study area.  The experiments should be repeated so that both TI and subsequent 

mitigation vary across the entire range of expected values.  The result will be not a two 

dimensional plot of response vs. UI as in this study, but rather a three dimensional plot 

with both TI and UI/TI as the independent axis.   This will characterize how mitigation 

changes response in the stream at varying levels of urban development.  Some potential 

issues include objectively adding impervious surfaces in a way that represents typical 

urban development as well as placing and parameterizing SCMs that may be designed to 

mitigate these new impervious surfaces.  One potential solution to these issue could be to 

find a fully developed, fully mitigated watershed and gradually remove impervious 

surfaces and/or SCMs to create different combinations of TI and UI/TI. 

6.3.2 Expand duration of analysis to account for climactic variability 

In this study, all analyses were limited to one year of climatic forcing due to data 

constraints.  If the experiments were repeated across a longer time series, this could add 

depth to the analysis because the climatic controls could be identified.  Additionally, a 

longer time series is important because SCMs are designed to mitigate flows during low 

frequency events, sometimes including the 50 and 100 year floods.  A longer time series 

would likely capture some of these less frequent events.  Some potential limitations to 

expanding the duration of the empirical analysis are addressing land use change through 

time and finding longer records of data.  For the modeling, expanding the time series 
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would be simpler as land use is controlled explicitly by the model, and only climate data, 

which typically has a longer record than hydrologic data, are needed to force the model.   

6.3.3 Sample water quality a higher spatial resolution 

While the water quality sampling strategy was effective for characterizing changes 

around the confluence of aa stream and outflow from an SCM, a more spatially 

distributed sampling protocol would be better suited to quantify the effect of SCMs on 

stream water quality.  Specifically, a time series of SCM inflow and SCM outflow 

volume and concentrations would be useful for quantifying the mass of nutrient retained 

by the SCM and exported to the stream during storm events of varying frequency and 

intensity.  This dataset would also improve the calibration and validation approaches 

during model develop.  The limitations to this high spatial resolution sampling are 

logistical concerns associated with sampling SCM inlets and outlets, which are often 

poorly suited for monitoring. 

6.3.4 Empirically quantify state variables and fluxes of C, N and P within SCMs 

The approach to calibration of the SCM water quality routines here was based on 

aggregated event mean concentrations of two inorganic N species.  A more rigorous, 

empirical analysis of the processes that are occurring in the SCM are necessary for 

complete model validation.  A short list of processes that should be quantified include in-

situ nitrification, denitrification, and mass uptake of N and P by both algal and plants. A 

time series of the standing stock of chl-A in the SCM would also be extremely valuable 

for calibration and validation, as the new model routines are designed to simulate algae 
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dynamics.  Additionally, tracer tests that identify mixing behavior of SCMs could help 

determine if modeling SCMs of this size as completely mixed is appropriate, or if they 

should be spatially discretized.  In addition to validating and calibrating the model, 

quantifying these processes and their environmental controls would add a wealth of 

understanding of C, N and P cycling in SCMs that could directly inform SCM 

functioning and design. 

6.3.5 Add vegetation to SCM model routines 

For wet pond SCMs, vegetation only occupies a small band around the perimeter of the 

pond.  However, some SCMs, like wetlands, are vegetated throughout the entire SCM 

area.  Vegetation in SCMs may increase ET rates, lower rates of algae growth by 

reducing light and nutrient availability, immobilize carbon and nitrogen for longer time 

periods, and dramatically change seasonal nutrient and carbon dynamics associated with 

litterfall.  Modeling the effects of this vegetation on the water balance, nutrient cycling, 

and light availability would be extremely useful for comparing SCM designs and the 

response of the entire watershed to SCM mitigation. 
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Appendix A SCM Hydrologic model 

The SCM water mass balance is shown in (Eq. 4.1). The water balance has losses due to 

evaporation, surface outflow, and infiltration. Sources of water to the pond are surface 

inflow and precipitation.  Evaporation, surface inflow from the watershed, and 

precipitation interception iare modeled by existing routines in RHESSys.  Outflow (Qout) 

from the SCM to the downslope patches is the sum of outflow through each of the outlet 

structures weirs and orifices: 

A.1 Qout 

6
789

= 6
9,;
	         (Eq. A.1)  

Where: Qout = outflow through the outlet structure [m hr-1]  
 t = outlet type [m/d]; o = orifice, r = riser, s= spillway 
 n = number of each type of outlet 
 
 
A.1.1 Orifice Outflow (Qo,n) 

Orifices are assumed to be circular, and are therefore parameterized with a diameter.  If 

the pond level is below the bottom of the orifice, there is no discharge.  Discharge from a 

partially submerged orifice is “proportional to the three halves power of depth, and fitting 

the expression to the office result at full depth” (Malcom, 1989). Discharge caused by a 

retained pool of water that submerges the orifice entire is modeled by the orifice equation.   
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Where: H = height of water in SCM [m] 
 Ho,n = height of orifice n [m]  
 Do,n = diameter of orifice n [m] 
 Co,n = coefficient of discharge for orifice n [unitless] 
 g = gravitational acceleration [m2 s-1] 
 ts = time step unit converter [converts m3 s-1 to m min-1] 
 
 
A.1.2 Riser Outflow (Qr,n) 

Riser discharge is modeled as both sharp-crested weir and a submerged orifice, 

proportional to the depth to the three-halves and one-half power, respectively.  The 

minimum discharge from these two hydraulic alternatives is chosen.  The weir is assumed 

to have a length equal to the perimeter of the inlet structure, either the circumference of a 

circular weir or perimeter of a rectangle.  In either case, the orifice discharge is assumed 

to be a rectangle. 
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Where: Cr,w = coefficient of discharge for riser n as a weir [3.0 for sharp-crested, unitless]  
 Lr,n = perimeter of riser n [m] 
 Hr,n = height of riser n [m]  
 Cr,o = coefficient of discharge for riser n as a orifice [unitless] 
 
 
A.1.4 Spillway Outflow (Qs) 
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Discharge over the spillway is modeled as a broad-crested weir.    The equation has the 

same form of that a sharp crested, with a different coefficient of discharge.   
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Where: Cs = coefficient of discharge spillway [3.33 for broad-crested, unitless]  
 Ls = length of spillway [m] 
 Hs = height of spillway [m]  
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Appendix B SCM water temperature model 

To simulate SCM water temperature, we use the empirical model of Stefan and 

Preud'homme (1993) that relates stream temperature to air temperature. 

\ = ]
^,9_`a

+ ]
b,9_`a

∗
cdef(cd'g

K

      (Eq. B.1) 
 
Where:  T  = average daily water temperature [°C] 
 β0,temp = zero-order coefficient of linear model [5.08 °C of water] 
 β1,temp = first-order coefficient of linear model [0.752 °C of water / °C of air] 
 Tmax = maximum daily air temperature [°C] 
 Tmin = minimum daily air temperature [°C] 
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Appendix C Algae growth model 

The governing mass balance of algal chlorophyll a is given above in Equation 4.2, and 

the primary fluxes are growth, death, respiration, settling and advection into the SCM, 

advection out of the SCM.  Suggested parameter ranges for the algae growth model are 

either given in Table 4-3 or where the variable is defined in the test below. 

C.1 Growth Rate: 

h
i

j
= h

i
∗ klmn

9_`a
∗ klmn

o"ip9
∗ klmn

;89
   (Eq. C.1) 

Where:  kg’ = effective first order growth rate [d-1] 
 kg = base first order growth rate [d-1] 
 GROWtemp = scalar based on temperature [unitless] 
 GROWlight = scalar based on light availability [unitless] 
 GROWnut = scalar based on nutrient [unitless] 
 
C.1.1 GROWTEMP: Arrhenius Equation 

To simulate the dependence of growth rate on temperature, we use an Arrhenius “Theta” 

model.  This is chosen because we are modeling all algae species as one unit, and we 

assume that the aggregate population will not be limited at high temperatures found in 

algae biomass harvesting facilities (Chapra, 2008). 

klmn
9_`a

= q
i

c(rsM_ct       (Eq. C.2) 

Where: baseTg = temperature used as base condition [20 °C]  
 Θg = Arrhenius constant at specified baseTg 
 T = water temperature [°C] 
C.1.2 GROWlight: Depth and Time integrated, optimum light condition 
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The form of the effect of light on growth at any given light intensity symbolized as F(I), 

is inhibited at light levels and symbolized as (Steele, 1962): 

u(v) =
4

4w

x
(
y

yw

zb        (Eq. C.3) 

Where: F(I) = fraction of base growth rate due to light effects [unitless]   
 I = instantaneous incoming radiation [kJ m-2 d-1]  
 Is = ecologically optimum radiation level [kJ m-2 d-1] 
 
Since the SCM biogeochemistry operators at a daily time step, the diurnal pattern of 

incoming radiation is modeled in RHESSys as just an average of a half-sinusoid, 

represented here as Ia.  This incident light level (Ia) degrades with depth (z) through the 

pond’s water column following the Beer-Lambert law: 

v({) = v
s
x
(|}~        (Eq. C.4) 

Where: Ia = incoming average daily radiation at the surface of the pond [kJ m-2 d-1] 
 ke = decay rate of light in algae-free water column [m-1] 
 z = depth from pond surface [m] 
 
The decay rate represents an algae-free condition.  However, as the concentration of a 

increases, so does the decay rate following the empirical equation of Riley (1956): 

h
_
= h

_

j
+ ]

^,o"ip9
∗ � + ]

b,o"ip9
∗ �

K

I      (Eq. C.5) 

Where: k’e  = decay rate of light in algae-free water column [0.2 m-1] 
 β0,light = first-order coefficient of linear model [0.0088 m  mg-chlA-1 m-3] 
 β1,light= two-thrids-order coefficient of linear model [0.054 m  (mg-chlA/m3)-2/3] 
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Applying this decay (Eq. C.4) to the Steele model (Eq. C.5) and integrating over the 

pond’s depth, from depth 0 to depth H, and the course of a day produces the GROWlight 

scalar.  This equation looks like: 

klmn
o"ip9

=
K.ÄbÅÇ

|}É

e
(
ye

y
Ö

_
Üá}∗à

− e
(
ye

y
Ö

_
Üá}∗àâ

    (Eq. C.6) 

Where: ƒ = photo period, or fraction of the day where the pond is sun-lit [hr/hr] 
 H0 = depth of incident radiation [m] 

1.718 = numeric value of e  
 
 
C.1.3 GROWnut: Michaeles-Menten saturation of both nitrogen and phosphorous 

Growth rate inhibition due to nutrient limitation is governed by both the concentration of 

total inorganic P and inorganic N (NO3 + NH4).  Both nutrients are governed by a 

Michaeles-Menten saturation function, and whichever nutrient exercises a stronger 

growth rate limitation will be used to retard growth rate.  Since RHESSys does not 

simulate P dynamics, the concentration of inorganic P in the pond is fed into the model 

either as a single parameter value or as a time series input. 

 GROW
;89

= 	min	
;

|wgz;

,
a

|wéza

      (Eq. C.7) 

Where: n = total inorganic N concentration (NO3 + NH4) [k m-3] 
 p = total inorganic P concentration [kg m-3] 
 ksn = half-saturation constant for nitrogen [kg m-3] 
 ksp = half-saturation constant for nitrogen [kg m-3] 
 
C.2 Respiration and Death 

Algal respiration and depth is model as a simple function of temperature, following the 

same model form at the Arrhenius growth model in for GROWtemp (Eq. C.2).  Algal 
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respiration releases inorganic carbon to the atmosphere and NH4 to the water column, and 

death release DOC and DON to the water column, 

h
R

j
= h

R
q
R

c(rsM_cY        (Eq. C.8) 

Where: kr’ = effective first order respiration rate [d-1] 
 kr = first order respiration rate at base temperature [d-1] 
 baseTr = temperature used as base condition [20 °C]  
 Θr = Arrhenius constant at specified baseTr 
 T = water temperature [°C] 
 
h
è

j
= h

è
q
è

c(rsM_cê        (Eq. C.9) 

Where: kd’ = effective first order death rate [d-1] 
 kd = first order death rate at base temperature [d-1] 
 baseTd  = temperature used as base condition [20 °C]  
 Θd = Arrhenius constant at specified baseTd 
 T = water temperature [°C] 
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Appendix D Elemental mass balances in water column 

The growth, death, and respiration of algae effect the mass of balance of DOC, DON, 

NO3 and NH4 in the pond. 

 
D.1 NH4: 

Ammonium is lost from the water column through algal uptake.  Respiration releases 

ammonium from organic nitrogen N stores in proportion to the chl-a lost to respiration. 

Advection into the and out of the pond also affects the mass balance. 
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";

 (Eq. D.1) 

 
Where: NH4 = pond mass of ammonium [kg] 
 Pap = fractional preference of NH4 uptake from total inorganic N [%] 
 NH4in= inflow of NH4 into the pond [kg hr-1] 
 
The preferential uptake of ammonium vs. nitrate is governed by the equation: 

í
sa
=

$ÉZ∗$ôI

|égz$ÉZ |égz$ôI

+
$ÉZ∗|ég

$ÉZz$ôI |égz$ôI

    (Eq. D.2) 

Where: kpn = half-saturation preference concentration for ammonium [kg-N m-3]  
 
 
D.2 NO3: 

Nitrate is taken up by algae during growth and is advected into and out of the SCM with 

water. 
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  (Eq. D.3) 
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Where: NO3 = pond mass of nitrate [kg] 
 NO3in = inflow of nitrate into the pond [kg hr-1] 
 
D.3 DOC: 

DOC is released to the pond upon algae death, parameterized by a fixed ratio.  DOC is 

also be advected into and out of the pond.  

èõôú
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ó

∗ BmG + BmG
";

    (Eq. D.4) 

Where:  DOC = mass of DOC in pond [kg-N] 
 rac = algal ratio of chl-a to carbon [0.01 kg chl-A kg-C-1] 
 DONin = inflow of DON from the watershed model into the SCM [kg-C hr-1] 
 
D.2 DON: 

As with DOC, DON is released to the SCM upon algae death, and can enter and exit with 

water advection.  

èõô$
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    (Eq. D.5) 

Where:  DON = mass of DON in pond [kg-N] 
 ran = algal ratio of chl-a to nitrogen [0.2 kg-chl-A kg-N-1] 
 DOCin = inflow of DOC from the watershed model into the SCM [kg-N hr-1] 
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