Purdue University Purdue e-Pubs

Purdue Undergraduate Research Conference

2019 Purdue Undergraduate Research Conference

Thermodynamics of Coherent Structures near Phase Transitions

Julia M. Meyer *Purdue University,* meyer222@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/purc

Recommended Citation

Meyer, Julia M., "Thermodynamics of Coherent Structures near Phase Transitions" (2019). *Purdue Undergraduate Research Conference*. 23. https://docs.lib.purdue.edu/purc/2019/Posters/23

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

PURDUE E R S I T Y _®

Thermodynamics of Coherent Structures near Phase Transitions

Julia Meyer and Ivan Christov OUR Scholarship 2018-2019, TMNT Laboratory Mechanical Engineering, Purdue University

Introduction

- Phase transitions within large-scale dynamical systems may be modeled by using stochastic partial differential equations
- System dynamics are captured by an appropriate potential equation $V(\phi)$
- Likelihood of phases being present within the system is reflected in probability density function (PDF) of ϕ values across system
- Realization of this equation is a configuration of <u>coherent structures</u>, distributed along a lattice:

Fig. 1: Coherent structures along the lattice form and stabilize as the system evolves through time.

Objectives

- Determine detail of simulation necessary for accurate results
- <u>Derive and verify theoretical solutions</u> of two higher-order potentials (ϕ^6 , ϕ^{10})
- Investigate effect of system temperature on system behavior

Methods

Simulation Details

- Utilized first-order Euler discretization methods in large-scale MATLAB simulations
- Time evolution of field modeled with the Langevin equation [4]:

$$\phi_{tt} = \phi_{xx} - \eta \phi_t - V'(\phi) + \hat{F}(x,t)$$

V: system potential

- η : system viscosity (set to equal 1 during all simulations)
- \widehat{F} : Gaussian white noise (temperature dependent)

Applications

- Order of potential (4th, 6th, 10th, etc) determines type of phase transition: first-order, second-order, or multiple [1]
- Applications include modeling:
- Crystallographic phase transformations
- Traffic congestion [2]
- Coherent movement of granular materials [3]

Fig. 2, above: Length between cars in traffic may be modeled by lattice similar to Fig. 1. Below: Nematic and isotropic phases of liquid crystals differ by particle orientation. [4]

Probability Density Functions

- Probability Density Function (PDF) of ϕ values across lattice computed from simulation
- Results of 100 runs were averaged to obtain final PDF
- PDF equivalent to the square of the system ground-state wave function (Ψ)
 - Obtained from an eigenvalue problem for the Schrödinger equation with the given system potential V [5]:

$$-\frac{1}{2\beta^2}\frac{d^2}{d\phi^2}\Psi + V(\phi)\Psi = E\Psi$$

- β : a constant related to external driving force (set to equal 1 during all simulations)
- *E*: corresponding system energy level (constant)

Benchmark Comparison

- Lattice spacing and time interval for accurate results determined by comparing MATLAB simulations to theoretical prediction
- $\Delta x = 0.01, \Delta t = 0.001, T_{final} = 2000, N_{runs} = 100$
- These values have significant effect on simulation accuracy:

Potential equation: $V = \lambda^2 \phi^2 (\phi^4 - 6\phi^2 + \alpha_2)$

Phase Transition Behavior

- Sample, verifiable system was investigated
- Temperature of system varied by changing α_2
 - As α_2 increases, temperature (and thus system noise) decreases
 - As temperature decreases, PDF transitions from 1 to 3 to 2 peaks (one excited state to two distinguishable states)

Results: ϕ^{10} Potential		Discussion
 Phase Transition Behavior System observed to exhibit two successive phase 	$\frac{\text{Potential equation:}}{V = \lambda^2 (\phi^{10} - \alpha_8 \phi^8 + \alpha_6 \phi^6 - \alpha_4 \phi^4 + \alpha_2 \phi^2)}$	 Conclusions Current MATLAB simulations, with detailed lattice/time spacing, are sufficiently accurate
 First: Transitions from 1-3-2 peaks Second: Transitions from 2-4-2 peaks 	Exact PDF solution [1]:	 Equation for ϕ^6 potential roots found and verified First-order transition behavior of sixth-order potentials verified

 $\Psi^2 = \exp\left[-\frac{\sqrt{2}\lambda\phi^6}{3} + \frac{B\phi^4}{2} - C\phi^2\right]$ **Benchmark Comparison** Possible for certain potential equations, but none which show a four-peak distribution $- \Psi^2$ (theoretical) 0.6 0.2 --1.5 0.5 -0.5 (a) +- Eq. 52 [1] $- \Psi^2$ (theoretical)

-1.5

-0.5

large values of ϕ (b).

Successive first-order transition behavior of tenth-order potentials observed

Future Work

- Determine ϕ^{10} potential which exhibits successive phase transitions and can be verified using simulations
- Analyze autocorrelation function trends to provide details about average coherent structure length and density

References

[1] A. Khare et al., "Successive phase transitions and kink solutions in φ^8 , φ^{10} , and φ^{12} field theories", Physical Review E, vol. 90, no. 2, pp. 023208.1-023208.23, Aug. 2014. [2] T. S. Komatsu and S. Sasa, "A Kink Soliton Characterizing Traffic Congestion", Physical Review E, vol. 52, no. 5, pp. 1-30, Feb. 2008.

[3] J. E. Macías et al., "Spatially modulated kinks in shallow granular layers", Physical Review E, vol. 88, no. 2, pp. 1-4, Aug. 2013.

[4] Ehrentraut, H. (1997, March 6). Overview of the mesoscopic theory of liquid crystals. In *Institute* of Theoretical Physics.

[5] A. Khare et al., "Exact Thermodynamics of the Double sinh-Gordon Theory in 1 + 1 dimensions", *Physics Review Letters*, vol. 79, no. 20, pp. 3797-3801, Nov. 1997.

Acknowledgements

OUR 2018-2019, SURF 2017