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ABSTRACT 

Borela Valente, Rodrigo. M.S.C.E., Purdue University, August 2016. Stochastic 

Modeling and DEM Simulation of Granular Media Subsidence Due To Underground 

Activity. Major Professor: Philippe Bourdeau. 

 

 

 

Many communities around the world have been established in areas of ongoing, as well as 

ceased, underground mining activity. Ground movements induced by ore extraction 

methods and the collapse of abandoned cavities have long been recognized as a hazard to 

surface structures. A number of approaches have been proposed for the prediction of 

subsidence in underground mining regions, and their integration to Geographic 

Information Systems (GIS) can produce a powerful risk management tool. Nevertheless, 

this application is often limited by either a lack of generality or excessive computational 

cost of the methods available. 

In this work, the stochastic subsidence model proposed by Litwiniszyn (1964) was 

investigated. Conceptually, the model assumes the ground mass as a discontinuous medium, 

in which particle displacement towards a collapsing cavity is treated as a Markovian 

process. The accumulation of the discrete movements amounts to the Komolgorov 

diffusion equation which is then employed to compute surface displacements. 
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In order to gain better understanding of the mechanism at granular scale and test the 

stochastic diffusion model in controlled conditions, subsidence in a granular medium was 

simulated via the Discrete Element Method (DEM). Using a frictional-elastic constitutive 

law for inter-particle contact, large three-dimensional assemblies of gravel-size grains were 

generated with a range of microstructural and bulk properties, these were then subjected to 

trapdoor experiments. In each simulation, particle displacements, ground surface 

deflections, as well as stresses and changes in the granular matrix structure were monitored 

and provided detailed information about the phenomenon. 

The behavior of the granular matrix undergoing subsidence was shown to be highly 

dependent on both its microstructural and bulk properties. A thorough evaluation of the 

impact of porosity, particle size dispersion, inter-particle friction and contact stiffness on 

behavior of the material is presented. The parameters for the stochastic model were 

calculated based on the displacements obtained from DEM. The stochastic diffusion model 

and the DEM experiments were found in very good agreement for medium-dense simulated 

deposits, while in more contrasted types of either loose or dense materials, discrepancies 

were observed. 
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CHAPTER 1. INTRODUCTION 

This chapter covers the motivation for the present study, providing background information 

on its relevance and the state of the art of mining subsidence prediction methods. It 

introduces the goal and the general approach and outlines its contributions. 

 

1.1 Motivation 

Extensive research has been done on the topic of subsidence due to underground mining, 

since its recognition as a source of structural damage in the early 19th century. The 

involved mechanisms have been thoroughly investigated via physical and numerical 

models and a reasonable degree of understanding as how the phenomenon develops has 

been achieved. Numerous subsidence prediction methods have been proposed from all over 

the world, with different levels of complexity. On the lower end of the spectrum, empirical 

relations enjoy popularity, in spite of their limited validity, because these are easy to apply 

and require little information about the site. On the other end, numerical methods 

incorporate more advanced knowledge and require detailed data on the site’s geology. 

Predicting accurately the subsidence patterns would allow for a better assessment of the 

potential damage to infrastructure and superstructure. 
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When integrated to Geographic Information Systems (GIS), a reliable prediction method 

becomes a powerful risk management tool. It particularly benefits environmental 

protection agencies, enabling well informed budgetary decisions through strategic 

reclamation and zoning plans. 

While empirical relationships permit a straightforward implementation in GIS, they lack 

generality and produce poor estimates when applied to areas geologically and 

geotechnically different of those which the relationships originated. Numerical methods 

promise much more flexibility, nonetheless, substantial input data is required and the 

computational cost involved in analyzing large areas can make the methods unpractical. 

Therefore, the ideal method for this application should be able to capture the influence of 

the most relevant site characteristics without forsaking simplicity. In the next section, the 

mining subsidence phenomenon is discussed in further detail. 

 

1.2 Subsidence mechanisms 

Shadbolt (1977) defines surface subsidence as a boundary problem in geomechanics. When 

a subsurface void is created, the ground originally in a state of equilibrium of forces and 

stresses, undergoes deformations and significant changes in the state of stress. The ground 

adjusts to the new state, with a range of responses dependent on its geology. This dictates 

the amount of underground movement that reaches the surface and the shape of the 

subsidence trough. 

Early experiments carried out by Fayol (1885) indicated that when the ground above the 

excavated cavity is constituted of strong rock, the roof of the cavity might undergo bending 

without reaching failure, and vertical displacements dwindle through the overlying strata. 
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This was later revisited by Halbaum (1903; 1905), who proposed that the different layers 

of rock worked as cantilever beams. 

However, when the rock mass is not able to support the new loading conditions, it 

experiences failure and broken rock fills the cavity with a volume increase (Rziha, 1882). 

The overlying strata displace inwards and downwards until stability is reached. Conversely, 

highly fractured rock behaves as a discrete, fragmented material, similarly to granular 

media, and the characteristic dimensions of the fragments is a factor in the development of 

ground subsidence. 

In rock masses presenting directional features such as inclined bedding planes and joint 

sets, their orientation exerts control of the preferential path of ground movement. Faults 

also play an important role, concentrating displacements and yielding discontinuous, or 

step subsidence. Dickinson (1896) attempted at relating the hade of geological planes to 

the determination of support pillars, and in a related endeavor, Briggs (1926) worked on 

the relationship between ground movements and faulting. Later, Potts & Turnbull (1957) 

added to these contributions by working on the correlation of observed surface settlement, 

and the expected subsurface movements. 
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Figure 1.2.1 Ground movements in different strata. Source: Shadbolt (1977) 

 

Unconsolidated deposits present an even broader range of responses depending on the 

presence of water, geological history and nature of the material. Fine grain soils such as 

clays, peats and some silts have remarkably non-linear time-dependent behavior. When 

inundated, these materials can develop pore-pressures followed by a slow dissipation 

process that causes stress-induced instability and additional movement over time. Coarser 

material such as sand and gravel behave in function of their relative density and angularity. 

They may develop localized shear bands or exhibit failure in a more homogeneous way. 

Piggott (1977) provided a thorough account of ground movements arising from the collapse 

of shallow mines (i.e. with small overburden). His main points are summarized here and 

discussed: 
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i. Surface movements have their origin in three sources: pillar failure (rare), pillar 

punching and roof collapse. Pillar failure, is only likely to take place when 

construction on the top increases the vertical load excessively. Pillar punching 

is mainly a result of soil softening due to water infiltration and creep and 

movement can happen over extended periods of time. Roof collapse, the most 

common, often occurs due to the loss of support from auxiliary underground 

structures, such as timber bracing. 

ii. Collapse zones can assume different shapes (conical, wedge and rectangular) 

depending on the properties of the strata. The zone affected by caving is also 

largely determined by the nature of the geomaterials and can extend up to ten 

times the height of the original void. 

As a result, the subsidence trough can assume different shapes depending on the geometry 

of the cavity and the nature of the material. The area of extraction is considered subcritical 

when it is smaller than the area of influence, and the subsidence does not reach the 

maximum value, equivalent to the height of the collapsed cavity, at any point. When the 

area of influence is equal to the area of extraction, only the trough center reaches maximum 

subsidence. Finally, the area of extraction is defined as supercritical when it is larger than 

the influence area. Consequently more than one point in the trough area reaches maximum 

displacement and a somewhat uniform deflection is obtained. 
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Damage to structures can arise from both horizontal and vertical displacements alike. 

Infrastructure such as pipelines and water mains can suffer severe damage due to horizontal 

distortion and movements –the pullout effect of extension at the periphery of the 

subsidence trough. Furthermore, significant disruption can be caused by vertical 

displacement. 

In aboveground structures, while excessive extension of the base can cause significant 

damage, differential vertical movements are the biggest source of concern. Distortions 

induced by uneven movement of foundations create large additional stresses in structures 

that can lead to loss of integrity and stability. While uniform settlements do not impose 

such threat to the building, they can still cause loss of serviceability. 

Structural damage caused by ground movements is an active research topic and several 

charts linking ground movements and damage to structures have been proposed. The topic 

is out of the scope of this work, however mentions should be made to the early works of 

Peck (1969) and Leonards (1975). 

In face of the aforementioned complexities, developing a subsidence general prediction 

method that accounts for all specific features of a region, with different types of 

geomaterials present, was not, in the past, considered a realistic goal. This may explain the 

diversity and number of models that have been proposed over the years. The most 

representative are reviewed in the next section. 
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1.3 Subsidence prediction methods 

1.3.1 Early theories 

Shadbolt (1977) provides a comprehensive review of mining subsidence theories, 

discussing it from a historical perspective and identifying the turning points that shape our 

understanding of the subsidence phenomenon. Basic notions were derived from field 

observations and physical models according to the following stages: 

i. Vertical theory: assumed that fissures developed vertically, on the boundaries 

of the excavation. Based on this assumption, the area of the excavation would 

project directly to the surface and unworked coal pillars were left under 

buildings with the exact shape or little safety margin. 

ii. Normal theory: credited to Gonot (1858) the theory was originally proposed by 

Toillez in 1838. It assumes that rupture surfaces are perpendicular to the 

inclination of the bedding planes and that subsidence is delimited by the 

projection of these lines on the surface, while unconsolidated deposits were 

assumed to displace vertically. In that period, different strata failure modes 

started being recognized and it was conjectured that weak strata would undergo 

a funnel like subsidence, while strong overburden would have a bell shaped one. 

Additionally, it was observed that geological faults would have a significant 

influence the subsidence surface. 

iii. Dome theories: proposed by Rziha (1882), it postulated that the zone of 

fracturing and collapse was delineated by a paraboloid, and that dome shaped 

zones of subsidence would extend laterally and vertically. The theory ignored 

sagging and bending, however it noted the volume increase of fragmented rock 
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and proposed equations to calculate the dilation coefficient. Jicinsky (1884) 

suggested that in inclined coal seams the fracture line would bisect the normal 

and vertical lines of the excavation and postulated that the area of subsidence is 

proportional to the area worked. Through an extensive laboratory program and 

field surveys, Fayol (1885) corroborated the dome theory with information on 

rock fracturing angles and layered overburden behavior. Dickinson (1896) 

coined the term “draw” defining it as the distance from the vertical projection 

of excavation to the border of the subsidence zone. 

 

1.3.2 Physical models 

Physical models are reduced scale reproductions of the site geology and geometry. The 

first experiments of this kind were carried out by Fayol (1885), using a range of materials 

such as iron, sand, clay and plaster. 

Scale effects, geometric and material similitude are critical issues with physical models. 

Representativity, the paramount technique for overcoming these difficulties, is currently 

handled with the use of centrifuge. This topic is not discussed herein. The challenges 

encountered with physical modeling, the logistical and operational cost, and the advent of 

computational methods have made this approach less popular in recent times. These have 

mostly been repurposed to serve as a tool to gain insight into specific mechanisms such as 

in the recent work by Ju & Xu (2015). 
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1.3.3 Empirical solutions 

The most noteworthy endeavors in the prediction of surface movements via empirical 

relationships are the studies that led to the publication of the National Coal Board (1965; 

1975) handbook. The manual is founded on the vast database on mining subsidence 

available in England, where information spans a very long period of coal mining 

monitoring. 

Relationships for different mining techniques, cavity geometry and excavation depth 

developed by Orchard (1954; 1957; 1964), Wardell (1953) and Wardell & Webster (1957) 

from field observations were published in the form of curves and charts 

When used appropriately, the charts in the National Coal Board handbook are claimed by 

their authors to predict subsidence with an accuracy of ± 10% (Shadbolt, 1977). 

However, as the method relies heavily on field observations in England, where the rock 

strata above the coal seam is strong, its validity is limited to regions with similar geology. 

This limitation characterizes a disadvantage common to all empirical methods. Another 

major drawback to these methods is gathering reliable and extensive field data. Scant 

record keeping of early mining operations, can misguide the data analysis and yield false 

relationships. In addition, as mining companies are often reluctant to sharing information, 

it is difficult to compile a large enough in order to develop new regional empirical models. 

 

1.3.4 Influence functions 

Influence functions express the effect an elementary source of subsidence would have on 

the ground surface deflection. Initially proposed by Bals (1931-32), the theory postulates 

that extraction from the ground of an infinite number of particles exerts, at the surface, an 
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influence that is inversely proportional to the distance. It hinges on the principle of 

superposition, assuming that the resulting movement at ground surface is the cumulative 

effect of elementary sources. A number of such methods were later developed and a 

complete account is offered by Brauner (1973). Weight functions can be introduced to 

account for different geomaterial properties, multiple cavities and variations in the 

thickness of extraction. 

Given a points such as P(ξ,η) at the center of elementary extraction areas dA, the effect of 

the total extraction area A at a ground surface point P’(x,y) is expressed as a function of 

the projected horizontal distances to the source points (Berry, Progress in the analysis of 

ground movements due to mining, 1977): 

 
𝑆(𝑥, 𝑦) = ∬ 𝑤(𝜉, 𝜂)f [√(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2]

𝐴

𝑑𝜉𝑑𝜂 
(1.1) 

where S is the subsidence on the coordinates (x,y), w(ξ,η) is the weight function and f is 

the influence function. 

This set of methods has the great advantage of being applicable to various cavity 

geometries and extraction inclinations. For practical purposes, analytical solutions can be 

easily derived along with formulas for the angle of influence. 

Garcia & Mere (1997) introduced the use of genetic algorithms to optimize the input 

parameters in influence functions based on field data. Sheorey et al. (2000) proposed 

modifications to common influence functions obtaining reasonably good fitting between 

predicted and measured subsidence. Evaluating data from several field observations in 

India, a line separating continuous and discontinuous patterns as a function of the depth of 

cover against the extraction height was proposed. Huayand, et al. (2002) presented a model 
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that allows the calculation of subsidence for large dip angles and obtained good agreement 

with field observations. 

One of the disadvantages of influence functions, common to empirical methods, is that they 

often require previous subsidence measurements in order to fit the parameters to the 

equations. Nonetheless, more recent studies demonstrate that difficulty can also be 

overcome. 

An interesting application of influence functions was carried out by Cui et al. (2001). 

Implementing the Mitscherlich’s growth law (Mitscherlich, 1909), which allows the 

calculation of subsidence in a point in time, subsidence was accurately predicted without 

previous measurements in the region. This was possible by obtaining input parameters 

purely via mathematical relationships. 

 

1.3.5 Numerical modelling 

1.3.5.1 Continuum mechanics approaches 

Following the initial methods involving influence functions and empirical solutions, (Berry, 

1960; 1963) proposed the elastic modeling approach to mining subsidence. The theory was 

developed over a number of ensuing publications, by himself and others, to account for 

anisotropy, different material properties and constitutive modelling. It was shown that for 

isotropic ground conditions, use of fitting coefficients that have no physical meaning would 

be necessary in order to achieve agreement with field measurements (Berry, 1977). 
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Earning popularity, continuum models started being applied to ground movements due to 

mining using the Finite Element Method (FEM), including the early works of Zienkiewicz 

Cheung, & Stagg (1966), Shippam (1970).and Stacey (1972). 

FEM has been shown to perform badly in the prediction of subsidence. This is largely due 

to the severe fracturing and plastic deformations experienced by the collapsing ground. In 

order to account for this significant loss of strength, after reaching plastic strain the 

elements are assigned negligible stiffness (O'Connor & Dowding, 1992; Yang et al., 1993). 

Since in the vast majority of cases, the displacements within the ground mass are not of 

interest, boundary element methods (BEM) are a valuable continuum based alternative. 

BEM use an integral mathematical formulation to fit the boundary conditions, and allows 

for the implementation of nonlinearities. Yang, et al. (1993) employed this approach to 

predict field measurements with much success. The model consisted of a laminated 

medium with different properties for the beds of coal and rock. Since sliding between beds 

was allowed, the stiffness of the layers was assigned higher values than those measure in 

laboratory. All the other properties were derived from geotechnical tests. 

1.3.5.2 Mechanics of discontinua 

Observing that continuum models did not perform well in simulating the mechanisms of 

fractured rock, Trollope (1968) established a new modeling approach which he named 

“mechanics of discontinua”. The rock mass was assumed as an assembly of blocks allowed 

to move relative to one another, and block fissuring was also incorporated in the analysis. 

This work set the cornerstone for the development of the discrete block analysis (DBA) 

that would later evolve into the discrete element method (DEM). 
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Pioneering the DEM in geomechanics, Cundall (1971; 1974) devised a computational 

model in which deformation took place only on the contacts between blocks –which were 

not allowed to deform internally. The interactions between the intact rock blocks were 

modeled through a force-displacement relationship on both normal and shear directions. 

Hence, the approach amounted to a system of forces rather than a strain-stress analysis as 

in FEM. 

O'Connor & Dowding, (1992) carried out simulations using the DBA to calculate the 

subsidence on a stratified-discontinuous rock. In their study, a set of models were used for 

the simulation of varying contact stiffness, friction and vertical joint spacing. Additionally, 

different material properties were attributed to represent the layers of sandstone, shale and 

coal. While the approach was not very successful because it underestimated the maximum 

settlement, important insight was obtained from the simulations: 

i. Decreasing the contact stiffness and friction between blocks reduced the overall 

system stiffness; 

ii. Horizontal joints, which were not introduced in the model, are consequential to 

the overall stiffness and its absence causes the system to become excessively 

rigid; 

iii. The block caving zone is estimated to reach up to 30 times the thickness 

excavated. 

With the development of commercial software such as UDEC (Itasca Consulting Group 

Inc., 2016), the DBA method has become increasingly accesible to researchers as well as 

practitioners. 
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The DEM has also seen new applications: using a two dimensional formulation, Vairaktaris 

& Stavropoulou (2013) attempted to simulate subsidence in sand during a trapdoor test. 

Woo et al. (2013) applied a coupled FEM-DEM approach to subsidence caused by block 

caving. In their model, immediately before caving the ground is represented by a 

continuum mass with distributed discrete fissures. In response to the stresses imposed by 

caving, fissures may develop into a network of discontinuities and the detached material 

behaves as an assemblage of blocks. This computer implementation is available through 

the software ELFEN (Rockfield Software Ltda., 2016). 

 

1.3.5.3 Non-mechanistic approaches 

The list of parameters that govern subsidence is extensive as discussed previously, and in 

stratified ground where the response of geomaterials may differ significantly from one 

another, applying a numerical model able to capture the response of each material might 

pose an insurmountable challenge. 

The most significant effort in this area is the use of artificial neural networks (ANN) to 

predict subsidence. ANNs are a group of methods inspired in neural biology that connects 

input to output through transfer functions that are progressively refined by running the 

software with example cases for which both input and output are known (i.e. “training” the 

software). 

Ambrozic & Turk (2003) proposed a multi-layer, feed forward, neural network architecture. 

The model is structured so that an input unit is multiplied by its corresponding weight and 

summed to the value of the signal reaching the next layer. 
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The signal is added to the next layer if not otherwise exceeding an established threshold. 

The non-linear relation between input and output is obtained by using a sigmoid function 

is used as the activation function. 

The model was trained with extraction data on the mined area and the corresponding 

subsidence surface. This step yielded the weights and thresholds that were implemented in 

the model for the validation step. In this step the model trained with data from one site is 

used to predict the surface movements in a nearby site that has already experienced 

subsidence. After having verified that the trained ANN model offered close agreement with 

field measurements at the validation site, it was then possible to use it for predicting the 

surface subsidence related to other mines in the area. 

Yang & Xia (2013) followed a similar approach and obtained exceptional agreement 

between model predictions and field observations. 

 

1.3.6 GIS integration 

In recent years, the field of mining subsidence has extraordinarily benefited from the rapid 

advancements of Geographical Information Systems (GIS). In allying prediction methods 

to GIS, researchers have been able to generate sophisticated hazard maps and refined 

predictions of the subsidence surface. 

Oh & Lee (2010; 2011) demonstrated the efficiency of such combination by creating maps 

of subsidence occurrence. The input consisted of GIS models of (a) intact rock strength; 

(b) stress field; (c) geological structure; (d) depth of mining horizon; (e) extent of the mined 

area and (f) volume of extraction. A range of statistical and probabilistic methods was used 

to calculate the likelihood of a subsidence. 
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The methods which included multi-criteria decision trees, weights-of-evidence, ANN, 

frequency ratio and logistic regression were separately used and demonstrated close 

agreement with field observations. 

Song et al. (2012) integrated influence functions to GIS, using parameters obtained from 

survey data. In their application the subsidence trough was calculated and its environmental 

impact determined based on a value analysis. Maps with the predicted damage were 

elaborated. 

An advanced prediction method has been put forward by (Unlu, Akcin, & Yilmaz, 2013), 

named ISP-Tech. It combines two-dimensional finite element models, mining information 

system (MIS), geographic information systems (GIS) and differential interferometry 

synthetic aperture radar (DIn-SAR). MIS and GIS are used to generate cross-sections 

necessary for the numerical models. Using elasto-plastic constitutive models, with Hoek-

Brown failure criterion, the subsidence trough on these cross-sections was calculated. They 

are later interpolated to generate a three-dimensional surface. The results are compared to 

GPS and DIn-SAR measurements of a validation field. When the agreement between the 

predictions and field observations is not good, the FEM models are optimized until the 

overall solution in the field becomes satisfactory. The method performed exceptionally 

well in reproducing field measurements and stands as a powerful tool for future 

applications. 
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Figure F.12 Average stress (left) and average normal force (right). Monosized packing, Dr = 30%, ϕi =20°, k = 4.5E6 N/m 
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Figure F.13 Average stress (left) and average normal force (right). Monosized packing, Dr = 23%, ϕi =45°, k = 4.5E6 N/m 
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Figure F.14 Average stress (left) and average normal force (right). Monosized packing, Dr = 37%, ϕi =30°, k = 4.5E4 N/m 
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Figure F.15 Average stress (left) and average normal force (right). Monosized packing, Dr = 30%, ϕi =30°, k = 4.5E5 N/m 
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Figure F.16 Average stress (left) and average normal force (right). Thick deposited, Dr = 26%, ϕi =30°, k = 4.5E6 N/m 
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Figure F.21 Average stress (left) and average normal force (right). Monosized packing, Dr = 50%, ϕi =30°, k = 4.5E5 N/m 
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