Preserving Data Integrity in HDDBSs Using Quasi Serializable Executions

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Weimin Du

Report Number:
90-970
Preserving Data Integrity in HDDBSs
Using Quasi Serializable Executions1

Ahmed Elmagarmid and Weimin Du
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907
\{ake,du\}@cs.purdue.edu

1This work is supported by a PYI Award from NSF under grant IRI-8857952 and grants from AT&T Foundation, Tektronix, SERC and Mobil Oil.
1 Introduction

Data integrity is one aspect of database consistency concerned with the validity of databases. Integrity requirements are expressed by means of a set of integrity constraints. A database state is consistent (with respect to a set of constraints) if all these constraints are evaluated to be true in it. An execution preserves integrity if it transfers a database from an consistent state to another consistent state and each transaction sees an consistent state in the execution.

Database integrity is usually enforced through integrity enforcement mechanisms [BM88] or correct scheduling of transactions. The latter approach, however, works only for those constraints that one can determine statically (i.e., independently of database state) whether they are preserved by a single transaction. In this paper, we are interested in the second approach and assume that each transaction, when executed alone, preserves all constraints.

Serializability is the conventional correctness criterion for scheduling transactions. The problem with serializability approach in heterogeneous distributed database systems (HDDBSs), however, is that it is very difficult to maintain, due to both heterogeneity and autonomy of local databases [DELO89] [DEK90].

Another approach in HDDBSs is quasi serializability [DE89]. Quasi serializability is attractive because it can be effectively maintained at global level without violating local autonomy [ED90] [DE90a]. We showed in [DE90b] that quasi serializable executions also maintain transaction consistency of HDDBSs. In this paper, we study the strength and weakness of quasi serializability with respect to HDDBS integrity.

2 Background

An HDDBS consists of a set D of data items and a set T of transactions. The data item set D consists of n subsets, D_1, D_2, \ldots, D_n, called local databases2. The transaction set T consists of $n+1$ subsets, G, L_1, L_2, \ldots, L_n, where L_i is a set of local transactions that access D_i only, while G is a set of global transactions that access more than one local database. A global transaction G_i consists of a set of subtransactions $\{G_{i,1}, G_{i,2}, \ldots, G_{i,n}\}$, where the subtransaction $G_{i,j}$ accesses D_j only. The data item set D_i, together with the transaction set $T_i = L_i \cup G_i$ where $G_i = \{G_{j,i} \mid G_j \in G\}$, forms the local database system $LDBS_i$.

1In the paper, we use italic letters to denote instances, e.g., lower case for data items and upper case for transactions, calligraphic letters to denote sets, and roman letters to denote acronyms.

2We assume that local databases are disjoint. In other words, there is no replication at global level.
2.1 Quasi Serializable Executions

Definition 2.1 (Quasi serial executions) A global execution \(E = \{E_1, E_2, \ldots, E_n\} \) is quasi serial if

- each local execution \(E_i \) is serializable; and
- there exists a total ordering of all global transactions such that \(\forall G_i, G_j \in \mathcal{G} \) and \(G_i \) precedes \(G_j \) in the ordering, \(o_i \) precedes \(o_j \) in \(E_i \) for all \(o_i \) of \(G_i \) and all \(o_j \) of \(G_j \) (1 \(\leq i \leq n \)).

Definition 2.2 (Quasi serializable executions) An execution is quasi serializable if it is equivalent to a quasi serial execution of the same set of transactions.

The order in which global transactions are executed in the equivalent quasi serial execution is called quasi serialization order of the execution. The quasi serialization order of an execution may not be unique.

2.2 Integrity Constraints

Integrity constraints are means to enforce integrity of databases. Generally, integrity constraints are formulas in predicate calculus that express relationships of data that a database must satisfy. For example, the balance of an account in a bank should be greater than or equal to zero.

Definition 2.3 (Simple predicate) A simple predicate on \(D \) is any predicate having the form \(P = x \triangleright y \), where

- \(x \) has the form \(f(x_1, x_2, \ldots, x_p) \), where \(f \) is a function, \(x_1, x_2, \ldots, x_p \in D \) and \(p \geq 1 \);
- \(\triangleright \) is one of the following operators: \(>, \geq, =, \neq, < \) and \(\leq \);
- \(y \) has the form \(f'(y_1, y_2, \ldots, y_q) \), where \(f' \) is a function, \(y_1, y_2, \ldots, y_q \in D \) and \(q \geq 0 \).

Definition 2.4 (Integrity constraint) An integrity constraint on \(D \), \(IC \), is any predicate having the form \(IC = \bigwedge_{i=1}^{p} \bigvee_{j=1}^{q} R_{i,j} \), where \(R_{i,j} \) is a simple predicate on \(D \) (called base predicates of \(IC \)), \(p \geq 1 \) and \(q \geq 1 \).

Given an integrity constraint \(IC \), its data set, denoted \(DS(IC) \), is a set of data on which \(IC \) is defined. Let \(C \) be the set of all integrity constraints in an HDDBS. An integrity constraint in \(C \) can be classified into one of the following three categories, according to the composition of its data set.

\(^{3}\) If \(q = 0 \) then \(y \) is a constant.
A local constraint involves data at a single site only.
\[
\mathcal{LC} = \{ IC \in \mathcal{C} \mid \exists i \text{ such that } DS(IC) \subseteq \mathcal{D}_i \}
\]

A global constraint involves data that are updatable by global transactions only. Let \(\mathcal{D}_i^g \) be the subset of \(\mathcal{D}_i \) that consists only of data that are updatable by global transactions only.
\[
\mathcal{GC} = \{ IC \in \mathcal{C} \mid DS(IC) \subseteq \bigcup_{i=1}^{m} \mathcal{D}_i^g \}
\]

A distributed constraint involves data at more than one site and at least one data item is updatable by local transactions.
\[
\mathcal{DC} = \{ IC \in \mathcal{C} \mid \exists i \text{ such that } DS(IC) \subseteq \mathcal{D}_i \text{ and } DS(IC) \not\subseteq \bigcup_{i=1}^{m} \mathcal{D}_i^g \}
\]

Clearly, \(\mathcal{C} = \mathcal{LC} \cup \mathcal{GC} \cup \mathcal{DC} \).

Local constraints represent old ones that existed before integration, while global and distributed constraints represent new ones introduced in/or after integration.

3 \((G + L)\)-Integrity

In this section, we show that quasi serializable executions preserve all local and global constraints.

Given an HDDBS \(H \) with the data set \(D = \{ d_1, d_2, \ldots, d_m \} \), a state of \(H \) is defined as an instantiation of \(D \).
\[
S = \{ s_i \mid s_i \text{ is an instantiation of } d_i, \ i = 1, 2, \ldots, m \}
\]

Let \(C \) be a set of integrity constraints of \(H \), we say that \(S \) is \(C \)-consistent if it is consistent with respect to \(C \).

Definition 3.1 ((G + L)-integrity of HDDBSs) An HDDBS state is \((G + L)\)-consistent if it is both \(\mathcal{GC} \)-consistent and \(\mathcal{LC} \)-consistent, where \(\mathcal{GC} \) and \(\mathcal{LC} \) are the sets of all global and local constraints of the HDDBS, respectively.

Given an execution \(E \) of transactions \(T \) in \(H \) and \(T \in T \), we define the view seen by \(T \) in \(E \), denoted \(V(E, T) \), to be the set of all values read by \(T \). For each \(T \), let \(R(T) \) be the set of all data read by \(T \). Then, there exists an HDDBS state \(S \), such that \(V(E, T) = \Pi_{R(T)} S \), the projection of \(R(T) \) on \(S \).

A view is \((G + L)\)-consistent if it is the projection on a \((G + L)\)-consistent state of \(H \).

\[\text{Data may not be updatable by local transactions for reasons of database consistency and transaction recovery [DEK90] [WV90].}\]
Theorem 3.1 ((G + L)-integrity theorem) A quasi serializable execution preserves the (G + L)-integrity of an HDDBS and each transaction sees a (G + L)-consistent view of the HDDBS in the execution.

Proof: Let $E = \{E_1, E_2, ..., E_n\}$ be a quasi serializable execution of transactions $T = G \cup L$. We prove by induction on k, the number of global transactions in E.

Basis step: ($k \leq 1$) It is true because each quasi serializable execution is also serializable.

Induction hypothesis: Assume it is true for all quasi serializable executions of less than k global transactions.

Induction step: Let $G = \{G_1, G_2, ..., G_k\}$. Without loss of generality, assume that the quasi serialization order of G is $G_1, G_2, ..., G_k$. For each E_i, there exist an equivalent serial execution E_i^s and an equivalent quasi serial execution E_i^q, respectively. They can be expressed as follows.

$E_i^s : L_{i,0}G_{i,1}L_{i,1}G_{i,2}...L_{i,j-1}G_{i,j}L_{i,j}...L_{i,k-1}G_{i,k}L_{i,k}$, where $1 \leq j \leq k$ and $L_{i,p} \in L_i, (p = 0, 1, ..., k)$.

$E_i^q : E_i^s \setminus \{G_{i,p+1}\}G_{i,p}$, where E_i^q is the subexecution consisting of operations of those local transactions that follow $G_{i,p}$ and precede $G_{i,p+1}$ in $E_i^s, (p = 0, 1, ..., k)$.

Notation: Let E_0 be an execution and T_0 a set of transactions. We use $(E_0 \setminus T_0)$ to denote the subexecution resulted by taking away from E_0 those operations that belong to transactions in T_0.

1. $V(E, G_p)$ is (G + L)-consistent, $p = 1, 2, ..., k - 1$.

Let us consider $(E \setminus G_k)$. Since G_k precedes G_k in the quasi serialization order, it does not read (neither directly nor indirectly) from G_k. Therefore, $V(E, G_p) = V((E \setminus \{G_k\}), G_p)$. Clearly, $(E \setminus \{G_k\})$ is a quasi serializable execution of $k - 1$ global transactions. By induction hypothesis, $V((E \setminus \{G_k\}), G_p)$ is (G + L)-consistent and so is $V(E, G_p)$.

2. $V(E, G_k)$ is (G + L)-consistent.

Let $E'_i = E_i^s \setminus \{L_{i,j_k}, L_{i,j_k+1}, ..., L_{i,k}\}$, where j_k is the subscript in E_i^s such that $G_{i,j_k} = G_{i,k}$. Since G_k precedes $L_{i,j_k}, ..., L_{i,k}$ in E_i^s, it does not read (neither directly nor indirectly) from any of them. Therefore, $V(E, G_k) = V(E', G_k)$, where $E' = \{E'_1, E'_2, ..., E'_n\}$. Let us consider $(E'_i \setminus \{G_k\})$. Clearly $E'_i = (E'_i \setminus \{G_{i,k}\})G_{i,k}$. Since $(E' \setminus \{G_k\}) = \{(E'_1 \setminus \{G_{1,k}\}), ..., (E'_n \setminus \{G_{n,k}\})\}$ is a quasi serializable execution of $k - 1$ global transactions, it preserves (G + L)-integrity (by induction hypothesis). Therefore, $V(E', G_k)$ is (G + L)-consistent and so is $V(E, G_k)$.

3. $\forall L \in L, V(E, L)$ is (G + L)-consistent.

4We assume that there is at most one local transaction between two consecutive global transactions. More than one local transactions can always be merged into one local transaction without changing the semantics of the execution.
Given S, a state of H, the state of $LDBS_i$, denoted S_i, is defined as ΠD_iS. S_i is $(G + L)$-consistent if S is $(G + L)$-consistent.

Consider E_i^j. Let S_i^0 be the initial state of $LDBS_i$. Assume that S_i^0 is $(G + L)$-consistent, then $\pi (E, L_i O) = \Pi R(L_i O) S_i^0$ is also $(G + L)$-consistent. Suppose that $L_i O$ and $G_i i$ transfer $LDBS_i$ from S_i^0 to S_i^1 and S_i^1 to S_i^2, respectively. Then S_i^2 is $(G + L)$-consistent. Therefore, $\pi (E, L_i 1) = \Pi R(L_i 1) S_i^1$ is $(G + L)$-consistent.

Similarly, we can prove that $\pi (E, L_i 2), \pi (E, L_i 3), ..., \pi (E, L_i k)$ are all $(G + L)$-consistent.

(4). E preserves $(G + L)$-integrity of H.

E preserves all local constraints because each transaction sees an LC-consistent view and local executions are serializable. It also preserves global constraints because the involved data are only updatable by global transactions which see $(G + L)$-consistent views and are executed sequentially in $E_q = \{ E_q^0, E_q^1, ..., E_q^n \}$, the equivalent quasi serial execution of E. □

4 Static Integrity

Quasi serializable executions may violate distributed constraints because transactions (both local and global) that access data involved in a distributed constraint may not be executed in a serializable way. In this section, we identify those distributed constraints that are guaranteed to be preserved by quasi serializable executions. First, let us introduce the notation of static constraints.

Given a simple predicate on D, $P : f(x_1, x_2, ..., x_p) \Rightarrow f'(y_1, y_2, ..., y_q)$. We say that it is static if, for each operation o which updates a data item by a constant, there exists a constant c_o, such that $\forall S$, if $f(x_1^1, x_2^1, ..., x_p^1) \Rightarrow f'(y_1^1, y_2^1, ..., y_q^1) + c$ is true for constant c, then $f(x_1^2, x_2^2, ..., x_p^2) \Rightarrow f'(y_1^2, y_2^2, ..., y_q^2) + c + c_o$ is also true, where $x_1^1, ..., x_p^1, y_1^1, ..., y_q^1 \in S$, $x_1^2, x_2^2, ..., x_p^2, y_1^2, ..., y_q^2 \in S'$ and o transfer H from S to S'. Similarly, an integrity constraint is static if its base predicates are all static.

Definition 4.1 (Static integrity) An HDDBS state is statically consistent if it is SC-consistent, where SC is the set of all static integrity constraints of the HDDBS.

Static integrity is another aspect of HDDBS integrity that can be effectively preserved by quasi serializable executions, as the following theorem shows.

Theorem 4.1 (Static integrity theorem) A quasi serializable execution preserves static integrity of an HDDBS and each transaction sees a statically consistent view of the HDDBS in the
Proof: Similar to that of \((G + L)\)-integrity theorem except step (4).

(4). \(E\) preserves static integrity of \(H\).

Consider global transaction \(G_i = \{G_{i,1}, G_{i,2}, \ldots, G_{i,n}\}\), where \(G_{i,j} : g_{i,j}^1, g_{i,j}^2, \ldots, g_{i,j}^{p_{i,j}}\), \(\forall g_{i,j}^m, 3g_{i,j}^m\) (a constant) such that \(\forall S, f(S) \Rightarrow f'(S)' + c\) for constant \(c\) and \(g_{i,j}^m\) transfers \(H\) from \(S\) to \(S'\), then \(f(S') \Rightarrow f'(S') + c + g_{i,j}^m\) is also true. Similarly, for a local transaction \(L_{i,j} : l_{i,j}^1, l_{i,j}^2, \ldots, l_{i,j}^{q_{i,j}}\) \(\in L_i\), there exists a constant \(l_{i,j}^m\) for each \(l_{i,j}^m\). Assume \(\sum_{j=1}^{n} \sum_{m=1}^{n} g_{i,j}^m = 0\) and \(\sum_{m=1}^{n} l_{i,j}^m = 0\).

Let \(S^0\) be the initial state of \(H\). Then \(S^0\) is statically consistent: \(f(S^0) \Rightarrow f'(S^0)\) is true. Let \(S'\) be the final state of \(H\) (after executing \(E\)). Then \(f(S'^n) \Rightarrow f'(S'^n) + \sum_{j=1}^{n} \sum_{i=1}^{n} g_{i,j}^m + \sum_{m=1}^{n} l_{i,j}^m \). Therefore, \(f(S'^n) \Rightarrow f'(S'^n)\). \(\square\)

In summary, quasi serializable executions preserve all local and global constraints, as well as the distributed constraints that are static.

References

\(^6\) We use \(f(S)\) and \(f'(S)\) as shorthands for \(f(x_1, \ldots, x_p)\) and \(f'(y_1, \ldots, y_q)\), respectively, where \(x_1, \ldots, x_p, y_1, \ldots, y_q \in S\).
