Purdue University

Purdue e-Pubs

Open Access Theses Theses and Dissertations

4-2016

Extracting CNG TLS/SSL artifacts from LSASS

memory

Jacob M. Kambic
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open access theses

b Part of the Computer Sciences Commons

Recommended Citation

Kambic, Jacob M., "Extracting CNG TLS/SSL artifacts from LSASS memory" (2016). Open Access Theses. 782.
https://docs.lib.purdue.edu/open_access_theses/782

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/782?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL
Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By Jacob Kambic

Entitled
Extracting CNG TLS/SSL Artifacts from LSASS Memory

For the degree of Master of Science

Is approved by the final examining committee:

Dr. Marcus K. Rogers
Chair

Anthony H. Smith

Philip T. Rawles

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): Dr. Marcus K. Rogers

Approved by: Jeffery L. Whitten 4/22/2016

Head of the Departmental Graduate Program Date

EXTRACTING CNG TLS/SSL ARTIFACTS FROM LSASS MEMORY

A Thesis
Submitted to the Faculty
of
Purdue University
by

Jacob M. Kambic

In Partial Fulfillment of the
Requirements for the Degree
of

Master of Science

May 2016
Purdue University

West Lafayette, Indiana

To the shoulders of giants upon which I humbly stand. To my mother, my father,

and my sister. To Aine, chun iarraidh i gconai ‘cad atd micheart mo ghra?’.

i

il

ACKNOWLEDGMENTS

I wish to gratefully acknowledge my thesis chair for his guidance and
patience, and the other members of my committee, who inspired me to pursue a
Master’s Degree in the first place. 1 also wish to thank my family, co-workers, and
friends for their steadfast support. Finally, and perhaps most directly, I wish to
recognize Hernan Ochoa and Benjamin Delpy for their superior work and
contributions to the community, without which I would not have been stirred to
research this topic. Their dedication and inquisitions could easily have been
secreted away and used to make what would likely have amounted to a small
fortune, but honorably they decided to share with the open source community their
findings and work, keeping the spirit of the information security community and

setting a high standard for other researchers entering the field.

v

TABLE OF CONTENTS

Page

LIST OF TABLES s vi
LIST OF FIGURES e vii
LIST OF ACRONYMS & ABBREVIATIONS ix
LIST OF TERMS e xi
ABSTRACT XV
CHAPTER 1. INTRODUCTION 1
1.1 Statement of Problem, 2
1.2 Significance 3
1.3 Research Question 4
1.4 Hypothesis. 4
1.5 Assumptions. 4
1.6 Limitations 5
1.7 Delimitations 5
CHAPTER 2. RELEVANT LITERATURE 7
2.1 Volatile Memory Analysis Frameworks 8
2.2 Secure Socket Layer (SSL) & Transport Layer Security (TLS) . . . 10
2.2.1 Handshake & Key Exchange 11

2.2.2 Perfect Forward Secrecy 14

2.2.3 Key Calculation 16

2.2.4 Session Resumption 17

2.3 Windows Internals 21
2.3.1 Memory Management 21

2.3.1.1 Virtual Address Space 22

2.3.1.2 Virtual Memory Allocation 24

2.3.2 TLS Implementation 24

2321 DPAPT 25

2.3.2.2 Keylsolation 26

2.3.2.3 Schannelo 27

24 Prior Worko 30
2.4.1 Key Identification 30

2.4.2 SSL/TLS Decryption 33

24.3 Key Extractiono oo 34

3.1

2.4.4 Perfect Forward Secrecy

CHAPTER 3. RESEARCH METHODOLOGY
3.0.1 Design Decisions
3.0.2 Overview
3.0.3 Discussion of Methods

3.0.3.1
3.0.3.2
3.0.3.3
3.0.3.4
3.0.3.5
3.0.3.6
3.0.3.7
3.0.3.8

Searching for session keys
Identifying known values
Intercepting master key generation
Leveraging unique structure identifiers
Walking pointers
Comparing related structs to unique public values .
Debugging Local Security Authority Sub-System .
Scanning Physical Memory

3.0.4 Infrastructure
3.0.5 Measure of Success

Summary . .

CHAPTER 4. RESULTS & DISCUSSION
Staging and Execution 0oL
Heuristic Scanning for Advanced Encryption Standard (AES) keys .
Public Connection Values
Identified SSL Structures
Confirming the master key
Mapping master keys to session IDs
SSL Session Cache Items
Schannel Classes
Schannel Parameters
4.10 Scanning Physical Memory
4.11 Automating Extraction
4.12 Decrypting a TLS session

CHAPTER 5. CONCLUSIONS o o oo

Summary of Outcomes

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

0.1
5.2
2.3
5.4

Contributions

Anecdotes . .
Future Work .

LIST OF REFERENCES

LIST OF TABLES

Table

3.1 Analysis infrastructure

4.1 Neryptsslp magic values to function mapping

4.2 Client and server SSL cache time

vi

Page
52
66
86

Vil

LIST OF FIGURES

Figure Page
2.1 Volatility plug-in interface and address space abstraction (Ligh, Case,
Levy, & Walters, 2014) 10
2.2 SSL/TLS Handshake (Dierks & Allen, 1999; Freier, Karlton, & Kocher,
2011; Microsoft, 2003a) 13
2.3 TLS master secret generation pseudo-code (Dierks & Allen, 1999; Dierks
& Rescorla, 2008) L 16
2.4 TLS session resumption abridged Handshake 18
2.5 Session Ticket per REC 5077 19
2.6 Microsoft Key Isolation paradigm (Microsoft, 2014b) 27
2.7 Schannel SSP architecture (Microsoft, 2015d) 28
3.1 TLS artifact identification methodology 43
3.2 Analysis infrastructure logical diagram 51
4.1 Example connection parameters in Wireshark 56
4.2 ssl3 tag to AES artifact adjacency oL 58
4.3 Disassembled validateMSCryptSymmKey function (annotated) 59
4.4 ssl3 resolved symbols 60
4.5 Client/Server random values in memory 63
4.6 Ncryptsslp “Validate” function symbols 65
4.7 Disassembled ValidateMasterKey function (x64) 65
4.8 SSL master key instance in memory (x64) 67
4.9 SSL master key (ssl5) C data structure 68
4.10 Dereference of CipherSuitelist entry fromsslb 69
4.11 Local Security Authority Sub-System (LSASS) SSL session key (ssl3) data
structureo Lo 70

4.12 Non-LSASS SSL session key (ssl3) data structure 72

Figure Page
4.13 Non-LSASS SSL session key (ssl3) V-Type data structure (x64) 73
4.14 SSL ephemeral key (ssl6) and key pair (ssl4) C data structures 74
4.15 SSL key pair (ssl4) provider Dereference 75
4.16 Dereferenced KSPK private key DPAPI Blob. 76
4.17 NeryptSslKey instances Dereferenced (x64) 78
4.18 Master key to session ID mapping 79
4.19 Schannel CSslCacheltem parsing (x64) 81
4.20 Schannel CSslCacheltem V-Types (x64) 83
4.21 Volatility LSASSLKey plug-in output 90

4.22 Decrypted Remote Desktop Protocol (RDP) session 91

X

LIST OF ACRONYMS & ABBREVIATIONS

AES Advanced Encryption Standard
APL Application Programming Interface
ASN.T ..o Abstract Syntax Notation One
CNG CryptoAPI Next Generation

DER Distinguished Encoding Rules

DLL Dynamic Link Library

DPAPT Data Protection API

DITB Directory Table Base

DWORD Double Word

P Internet Protocol

LSASS Local Security Authority Sub-System
OS . .. Operating System

PDB Program Database

PEB Process Execution Block

PEM Privacy-enhanced Electronic Mail
PFS Perfect Forward Secrecy

PKCS Public Key Cryptography Standards
PKI Public Key Infrastructure

PMK 0 0. Pre-Master Key

PMS Pre-Master Secret

PoC Proof-of-Concept

PRF Pseudo-Random Function

PRNG Pseudo-Random Number Generator

PSK o Pre-Shared Key

QWORD Quad Word

RDP Remote Desktop Protocol
RFC o Request for Comment
SNI Server Name Indicator
SSL . . . Secure Socket Layer

SSP ... Security Support Provider
TCP .. Transmission Control Protocol
TLS Transport Layer Security
TLV .. Type-Length-Value

UbP ... User Datagram Protocol

VAD Virtual Address Descriptor

Bit

Bitstream

Byte

Cipher

Ciphertext

LIST OF TERMS

“A contraction of the term ‘binary digit’; the
smallest unit of information storage, which has
two possible states or values. The values usu-
ally are represented by the symbols ‘0’ (zero)
and ‘1’ (one).” (Shirey, 2007, p. 36).

A contiguous linear serialization of bits.

“A fundamental unit of computer storage; the
smallest addressable unit in a computer’s ar-
chitecture. Usually holds one character of
information and, today, usually means eight
bits. (Compare: octet.)” (Shirey, 2007, p.
43).

“A cryptographic algorithm for encryption
and decryption” (Shirey, 2007, p. 61).

“Data that has been transformed by encryp-
tion so that its semantic information content
(i.e., its meaning) is no longer intelligible or

directly available.” (Shirey, 2007, p. 62).

X1

Common Criteria

Double Word

Encode

Encryption

An international “standard for evaluating in-
formation technology (IT) products and sys-
tems. It states requirements for security func-
tions and for assurance measures. ” (Shirey,

2007, p. 69).

“A DWORD is a 32-bit unsigned integer
(range: 0 through 4294967295 decimal). Be-
cause a DWORD is unsigned, its first bit
(Most Significant Bit (MSB)) is not reserved

for signing.” (Microsoft, n.d.-c, s. 2.2.9).

“Use a system of symbols to represent in-
formation, which might originally have some
other representation. Example: Morse code.”

(Shirey, 2007, p. 119).

“Cryptographic transformation of data (called
"plain text”) into a different form (called ”ci-
pher text”) that conceals the data’s original
meaning and prevents the original form from
being used. The corresponding reverse process
is ”decryption”, a transformation that restores
encrypted data to its original form.” (Shirey,

2007, p. 119).

xii

xiii

Ephemeral “Refers to a cryptographic key or other cryp-
tographic parameter or data object that is
short-lived, temporary, or used one time.”

(Shirey, 2007, p. 122).

Hash Value “The output of a hash function.” (Shirey,
2007, p. 141).
Hash Function “A (mathematical) function which maps val-

ues from a large (possibly very large) domain
into a smaller range. A ‘good’ hash function
is such that the results of applying the func-
tion to a (large) set of values in the domain
will be evenly distributed (and apparently at
random) over the range.!” (Shirey, 2007, p.
140).

Plaintext “Data that is input to an encryption process.”

(Shirey, 2007, p. 225).

Pseudorandom “A sequence of values that appears to be ran-
dom (i.e., unpredictable) but is actually gen-
erated by a deterministic algorithm.” (Shirey,

2007, p. 240).

In the context of security, hash functions accept variable-length input and produce fixed-length

output

Pseudorandom Function A function that “uses a deterministic com-

Quad Word

Request For Comment

putational process (usually implemented by
software) that has one or more inputs called
‘seeds’, and it outputs a sequence of values
that appears to be random according to spec-

ified statistical tests.” (Shirey, 2007, p. 244).

“A QWORD is a 64-bit unsigned integer.”
(Microsoft, n.d.-c, s. 2.2.40).

“One of the documents in the archival se-
ries that is the official channel for IDOCs and
other publications of the Internet Engineer-
ing Steering Group, the Internet Architecture
Board, and the Internet community in gen-

eral.” (Shirey, 2007, p. 250).

Xiv

XV

ABSTRACT

Kambic, Jacob M. M.S., Purdue University, May 2016. Extracting CNG TLS/SSL
Artifacts from LSASS Memory. Major Professor: Marcus K. Rogers.

Currently, there is no publicly accessible, reliable, automated way to
forensically decrypt Secure Socket Layer (SSL)/Transport Layer Security (TLS)
connections that leverage ephemeral key negotiations as implemented by the
modern Windows operating system. This thesis explores the Local Security
Authority Sub-System (LSASS) process used for Key Isolation within the Windows
10 operating system in pursuit of identifying artifacts that would allow a solution to
that problem, along with any other connection artifacts that could provide forensic
value. The end result was the identification of TLS/SSL secrets from the key
exchange and contextual artifacts that provide identification of the other party to a
connection and negotiated parameters. This led to an automated method for
extraction through implementation of a plugin for the Volatility framework, a

widely used and accepted memory forensics framework.

CHAPTER 1. INTRODUCTION

The forensic analysis of digital media has rapidly advanced over the course of
the last decade, vaulting from the fringes of forensic science to prominence and
acceptance within both the forensic community and the public eye. This explosion
has been in part fueled by the rapid expansion of technology into nearly every facet
of daily life. These digital systems, from traditional personal computers, to smart
phones, vehicles, and intelligent appliances, are increasingly storing, processing, and
transmitting data that is providing critical context in cases and investigations
around the world.

More recently emerging as a sub-discipline of digital forensics is volatile
memory forensics, focused on the incredible wealth of information that can be
gleaned from capturing this ephemeral storage media. As the size of persistence
storage both increases and becomes ever more economical, the smaller volatile
memory that holds the salient points of recent activity is being turned to as a great
triage mechanism. It stands on its own merits, however, providing exclusive access
to items of evidentiary value that are simply unobtainable from any other source.

Driving the expansion of interest in volatile memory forensics has been the
enumeration of artifacts belonging to the prolific Windows family of operating
systems, and the development of tools that have abstracted the complexities of
understanding Windows memory management, making the volatile medium far more
accessible. It is upon this driver for development that the author builds, seeking to

explore the extraction of Windows SSL/TLS secrets from within volatile memory.

1.1 Statement of Problem

Currently, there exists no reliable or automated way to forensically decrypt
SSL/TLS connections that leverage ephemeral key negotiations as implemented by
the modern Windows operating system. Since Secure Socket Layer was first put
forth by Netscape and later galvanized in an RFC, the concept of Public Key
Infrastructure (PKI) and the key exchange has been central to its security. The
private key has historically been the penultimate secret, stored persistently with the
server and used across all key exchanges to decrypt the pre-master secret. This has
proved to be its Achilles’ heel from a security standpoint, as the private key can be
leveraged to retroactively decrypt the handshake of any session between the server
and clients for which the key was used indefinitely. It has also been suggested that
the key itself may often outlive a certificate renewal, being used across regenerated
certificates (Taubert, 2014).

The advent of Perfect Forward Secrecy (PFS), a property that means past
connections are secure from future decryption (accomplished in SSL and Transport
Layer Security (TLS) through use of “throw-away” ephemeral keys), has proved a
double-edged sword for network defenders, law enforcement activity, and attackers
alike. On the one hand, it helps ensure the confidentiality of mission critical
information against future theft; however, it similarly imposes a barrier to access
when used nefariously to exfiltrate information from a network or shroud illicit
activities.

Still, the implementations of PFS for TLS in practice have been mired by
conflicting objectives. The desire for quick reconnection through the use of “Session
Resumption” has meant caching of SSL/TLS secrets in main memory, or even to
disk. This has been well-documented in instances of Web servers, like Apache or
NGINX (Dreijer & Rijs, 2013) on Linux and Unix systems, but has not seen the
same level of scrutiny in Windows, possibly owing to the closed-source nature of the

material.

Beyond simply decryption of connections, the attribution or trace evidence of
connections, while perhaps less interesting to an attacker, would still provide
potentially invaluable context to an Incident Responder investigating a suspect
system, or a forensic analyst working a case. Artifacts like public certificates or
negotiated connection parameters could furnish clues about attack vectors or the
intent of a given connection, but currently are not well documented artifacts on

Windows-based systems.

1.2 Significance

As ephemeral cipher suites become increasingly popular and are embraced by
the Windows operating system, it will become more important to identify a reliable
and forensically sound mechanism to decrypt them. Windows components like Edge
(and Internet Explorer), RDP, Outlook, Skype, Windows Update, SQL Server, IIS,
Microsoft Exchange, and LDAPS (Active Directory mechanism) all leverage the
Windows SSL/TLS implementation and will likely embrace PFS as a desired or
default property in the future (Microsoft, 2015d). Anecdotal testing on Windows
10, suggests that it already does prefer ephemeral cipher suites. Other third-party
applications (like the popular Citrix client) that leverage Windows libraries for
SSL/TLS negotiation will also likely follow the system preference. This gives rise to
several use cases for a legitimate capability to retroactively decrypt connections that
were not otherwise captured through a pre-arranged mechanism (such as SSL

Inspection), for example:

e Decryption of logged malicious RDP sessions after a breach for incident
response purposes

e Decryption of illicit HT'TPS traffic captured prior to the serving of a search
warrant

e Automated, transparent decryption of malware connections (especially salient

for instances where Powershell or other native elements are used).

e Decryption of Windows Update traffic

1.3 Research Question

Given the problem of decrypting connections made with the Windows

implementation of ephemeral key exchanges, the research question stands thusly:

Do the requisite connection parameters exist in the memory of modern
Windows systems to retroactively decrypt sessions? If so, how long do

these artifacts persist?

Complimenting this question is the ancillary pursuit of any other connection

artifacts that may help provide context to the nature of the connection.

1.4 Hypothesis

It is posited that, to maintain the connection, at the very least the session
keys must exist for the duration of the connection. It is further supposed that,
outliving the connection itself, other secrets may exist to support the ability to

perform session resumption or other implementation specific functionality.

1.5 Assumptions

The research question and subsequent hypothesis are predicated on several

assumptions, which are as follows:

e The term modern with respect to operating systems refers to those currently
actively supported by Microsoft at the time of writing

e It is assumed that the operating systems to be examined are standard in so
much as the kernel and physical memory addressing schemes have not been

altered by any party other than Microsoft and are in general distribution

e [t is assumed that any operating system being examined may be either
installed on physical or virtual hardware without consequence; that is to say
that the use of virtualization will have no impact on the subject matter of the
study

e [t is assumed that any underlying analysis platform chosen is sound in its

implementation and can be relied upon to perform its purported function

1.6 Limitations

In addition to the assumptions, it was important to define the scope of the
research. The methodology appearing in Chapter Three of this thesis will discuss
the instrumentation that inherently produces constraints, but the scope will be
discussed here explicitly in terms of limitations and delimitations. Limitations refer
specifically to those things that the research defines as within bounds of the scope.
The delimitations, conversely, will seek to delineate those things which are
reasonably outside the bounds of the research and were not explored at any depth.

The limitations for this study included:

e Windows 10 operating systems were considered on Intel x86 and x64
architectures

e All versions of SSL and TLS supported by Windows 10 were considered

e Either the Volatility or Rekall frameworks were used to demonstrate the

findings of the thesis, or both as necessary

1.7 Delimitations

The delimitations for this study included:

e Linux, Unix, or other systems which have implementations or emulation of
Microsoft cryptographic packages were not examined, unless explicitly

identified in the limitations

Third party cryptographic protocols or packages for the operating systems
being considered were not examined

This thesis did not examine methods of volatile memory acquisition outside of
a cursory glance during the literature review, and the necessary semantic
elements that may define the proprietary bitstream structures of different
acquisition methods

Paging constraints and operations were not considered as part of this work,
though they may be in future work

CPU cache size and levels were not controlled for due to the difficulty of

manipulation in virtual environment that was used during testing

CHAPTER 2. RELEVANT LITERATURE

This section will highlight literature considered salient to the problem
identified in Chapter One and the development of a solution. While this chapter will
provide background information, it is assumed that the reader has an understanding
of Transmission Control Protocol (TCP)/Internet Protocol (IP) networking,
computer architectures, and digital forensics. Part of this literature review will not
involve academic works, but also material from industry conferences, code from
well-established open-source projects, and even blog posts from prominent members

within the community. The review will progress through four larger stages:

A brief discussion of modern memory analysis frameworks

A cursory overview of SSL/TLS to provide framing for methods and results

A review of Windows internal memory management and TLS implementation,
the subject of the thesis

A review of prior works as grounds for due diligence, in pursuit of showing

good faith regarding the novelty and significance of the research

The most salient insights from the literature review across all of these

sub-divisions are provided here for convenience:

e Volatility and Rekall are the memory analysis platforms that will be
considered

e SSL/TLS require caching of secrets to support session resumption, even in
cases where PFS is attempted

e LSASS is the Key Isolation component of the Microsoft’s SSL/TLS
implementation

e There is prior work on extracting persistent RSA private keys from Windows

systems

e There is prior work on extracting OpenSSL secrets from UNIX-like systems
e There does not appear to be prior work on extracting ephemeral SSL/TLS

secrets from the Windows SSL implementation

2.1 Volatile Memory Analysis Frameworks

Although many methods exist for memory collection, there are currently two
primary frameworks that exist for analysis: the Volatility and Rekall Memory
Forensics Frameworks. Both are considered here, as either one or both will be used
to demonstrate findings of the thesis.

Perhaps the gold standard for volatile memory analysis has been the
Volatility Framework originally developed by Alex Walters and Nick Petroni in the
form of “FATKit” and “Volatools” (Petroni, Walters, Fraser, & Arbaugh, 2006;
Walters & Petroni, 2007). Core developers of Volatility, led by Michael Hale Ligh,
went on to develop the most extensive source material to date on memory analysis
for forensics, entitled “The Art of Memory Forensics: Detecting Malware and
Threats in Windows, Linux, and Mac memory.”

Volatility is extensible via plug-ins and has the capability to interpret the
architecture and OS dependent address spaces, making it an ideal platform on
which to develop a Proof-of-Concept (PoC) solution. It makes use of a structure
referred to as a “V-Type” that allows objects to be created and extended based on a
C-like strucure, without knowing all fields in the structure (Ligh et al., 2014). This
is a powerful abstraction for reverse engineering and forensic artifact extraction.

Rekall originated as a branch of Volatility maintained by Micheal Cohen
(also known by the alias “Scudette”) and was called the “scudette” or “Technology
Preview” branch. It seems that differences in philosophy and changes to the main
code base meant that the scudette branch was never destined to be merged with the
master branch of Volatility (Cohen, 2015a). The differences in approach are outlined
principally in the Rekall blog and on the Rekall website (Cohen, 2015b). Succinctly,

they are the way in which profiles for various operating systems are handled, the
way operating systems are identified, and the preference in Rekall for the interactive
command-line, as well as redesign of the plug-in structure. Rekall also (by extension
of the way it manages profiles) has incorporated a dynamic symbol loading and
parsing system that it can leverage automatically (when allowed Internet access).

Both Volatility and Rekall support much of the same functionality through
plug-ins. Plug-ins implement an interface, and can be developed and incorporated
by anyone, making both tools modular, hence they are described as a framework.
The logical view of this architecture is depicted in Figure 2.1 The philosophy taken
by Rekall, particularly the dynamic ability to look up symbols and localization of
profiles, even within Windows versions, seems to be a desirable trait going forward.
At the same time, many environments leveraged by the target audience require
analysis systems that are completely disconnected from the Internet, meaning that
any methods developed cannot solely rely on the capability to dynamically fetch
symbols, if at all possible.

10

User Developed
{} Plug-in
1. calculate() . def caculate(self):
<.>

read(addr, aspace, len)
2. read()

N . def render(self, data, outfd):
[3. render()

Volatility
Framework

AMD64PagedMemory
WindowsCrashDumpSpace
File Address Space

)
Bitstream Copy of Main Memory
TargetMemCapture.DMP
7

Figure 2.1. Volatility plug-in interface and address space abstraction (Ligh et al.,
2014)

2.2 SSL & TLS

Understanding SSL/TLS internals is central to the thesis. The core purpose
of SSL, and its successor TLS, is to provide a mechanism to securely establish
communications between two parties by defining how both parties will decide upon
and exchange the necessary information to authenticate each other and encrypt
their communications. This section will overview the poignant components, namely:
the handshake, key exchange, session resumption, session ticket extension, and the
extended master secret extension. These topics will be reviewed per the Request for
Comment (RFC) specifications here, and then particulars of the Windows

implementation will appear in a later section.

11

A distinction that should be clarified is that, while it seems generally
accepted that SSLv3 is equivalent to TLSv1, the two should not be conflated and

are not interoperable. This information is relayed explicitly in the TLSv1 RFC:

The differences between this protocol and SSL 3.0 are not dramatic, but
they are significant enough that TLS 1.0 and SSL 3.0 do not interoperate
(although TLS 1.0 does incorporate a mechanism by which a TLS
implementation can downgrade to SSL 3.0).(Dierks & Allen, 1999, p.5)

The two are decidedly related though, closely enough in fact that the protocol
identifier for TLSv1 is 0x0301, a reference to “SSLv3.1.” Still, a few points worth
noting (Freier et al., 2011; Goh & Boneh, 2001) are:

e TLS Extensions are not strictly supported by SSLv3
The HMAC function differs between the two
The Pseudo-Random Functions (PRFs) differ

Total allowed padding lengths differ

The last message of the handshake differs

These differences are touched upon because they could alter the artifacts seen in
memory between the two (though in part this is implementation specific). There
remains enough similarities that the overview will discuss them simultaneously,
pointing out any differences as necessary. For readability and brevity, only TLS will

be used for the remainder of the thesis.

2.2.1 Handshake & Key Exchange
The TLS key exchange is central to the security of the protocol. The purpose
is to exchange enough information that both parties can derive the same
(symmetric) secret key! to encrypt and decrypt messages. There are several

standardized ways to achieve this objective, and so both client and server need to

Tkeys plural, actually, as will be discussed later

12

agree on which way the exchange will occur. There is also the question of what
algorithm (cipher) will be used for encryption once a shared secret is known by both
parties (the symmetric key size will be dependent upon this choice). A final concern
is how to protect the integrity of the connection by verifying the parties are who
they claim to be, and verifying that messages passed between them have not been
surreptitiously altered. TLS addresses these problems by bundling the key
exchange, symmetric cipher, and integrity components into a single parameter
called the “Cipher Suite.” An example of a cipher suite is
“TLS_RSA_WITH_AES_128 CBC_SHA.”

The cipher suite is negotiated through an TLS “handshake,” in which these
and other parameters for the connection are established. This process, as described
in the SSLv3 and TLSv1 RFCs, is depicted in Figure 2.2, consisting of at minimum
a “Client Hello” and “Server Hello” in which a cipher suite is determined, a client

key exchange, and a change cipher spec message.

13

Client Server
-

(Q

| pm=——

14

Figure 2.2. SSL/TLS Handshake (Dierks & Allen, 1999; Freier et al., 2011; Microsoft,
2003a)

A few key parameters set in this exchange are:

e The TLS version: The client and server agree on a TLS version for the
connection, which is represented as a unique identifier (e.g. 0x0302 for TLS
vl.1).

e The random values: The client and server random values are used to seed the
PRF, and consist of a four byte timestamp followed by 28 bytes of random
data.

e The session ID: Before TLS 1.2 (and in current practical implementation) the

session ID is a 16 byte value often represented by 32 hexadecimal characters,

14

which is used to uniquely identify the session. The client should send a null
session 1D if it wants to start a new connection (or if tickets are being used to
resume the session, discussed later).

e The cipher suite: A unique value used to represent the ciphers that will be
used in the connection (e.g. 0xc028 for

TLS_ECDHE_RSA WITH_AES 256 CBC_SHA384).

The key exchange itself is the first cipher component dictated in the “Cipher
Suite” chosen by the server, and is commonly one of several options specified in

RFCs:

e Rivest-Shamir-Adelman (RSA)
Diffie-Helman Ephmeral (DHE)
Elliptic Curve DHE (ECDHE)
Secure Remote Password (SRP)
Pre-Shared Key (PSK)

The choice of cipher suite will also determine what messages follow. An RSA
key exchange does not contain a “ServerKeyExchange” message, whereas DHE and
ECDHE do. This is important, because the ServerKeyExchange is what allows the
Pre-Master Secret (PMS) to be derived by both parties without the client sending it
over the network, and as a result part of what enables the property of Perfect

Forward Secrecy.

2.2.2 Perfect Forward Secrecy
Perfect Forward Secrecy (PFS) is a property of secure communications that
employ key exchanges (which, by their nature, may be observable by third parties).
Whitfield Diffie described PFS in his paper “Authentication and Authenticated Key
Exchanges,” noting that “An authenticated key exchange protocol provides perfect
forward secrecy if disclosure of long-term secret keying material does not

compromise the secrecy of the exchanged keys from earlier runs” (Diffie,

15

Van Oorschot, & Wiener, 1992, p. 7). In the context of TLS, this refers to the
compromise of the private key.

The issue with non-PFS key exchanges, like RSA, is that a private key can
be used to retroactively decrypt previously captured connections indefinitely. This
is because the public key encrypts the Pre-Master Key (PMK) and sends it to the
Server. The Pre-Master Key (PMK) is used to derive the master key, which in turn
is used with public parameters to derive the session keys.

Ephemeral key exchanges address this in part by creating and rotating
short-lived keys that are not persisted to disk (and, in theory, should not be
persisted between connections). They also do not exchange a secret encrypted with
this key over the network. Instead, Diffie-Helman relies on the communicative
property of exponents to exchange a public value (g) raised to the power of a secret
modulo a large prime number. If the client and server are Alice and Bob?, then
Alice would send ¢g* mod p to bob, where g is a public base number, a is Alice’s
secret and p is a large prime number. Bob would do the same with his secret, and
send it to Alice. Bob would then take the value that Alice sent and raise it to his
secret value mod p. Alice does the same and the result is that both Alice and Bob
have arrived at the same secret.

This helps achieve the property of PFS by ensuring that the values
exchanged are not reliant on a persistently stored secret, and that a secret relying
on that key is not exchanged across the network. For the sake of the thesis, any
suite that is ephemeral will be said to be a TLS implementation of PFS. However,
as will be discussed, another aspect of TLS negates some of the benefit provided by
storing secrets in main memory for what might be termed an extended period of
time with respect to the life of the connection. Another key consideration to
remember is that the client may send support for an ephemeral cipher suite in its

hello, but the suite chosen comes down to the Server’s preference.

2A common method of representing a party “A” and “B”

16

2.2.3 Key Calculation
Having successfully exchanged or derived a secret, known as the “Pre-Master
Secret (PMS)” both parties now generate the master secret or “master key.”
Whereas the PMK may vary in size, the master secret is always 48 bytes. The
method used to generate the master secret for TLS is shown in Figure 2.3, as it

appears in the RFCs.

master_secret = PRF(pre_master_secret, "master secret",
ClientHello.random + ServerHello.random)

[0..47];

Figure 2.3. TLS master secret generation pseudo-code (Dierks & Allen, 1999; Dierks
& Rescorla, 2008)

The master secret is then, in turn, used to generate a series of session keys
and unique values. This occurs by expanding the master secret (much like a key
schedule), and then passing the master secret, the “key expansion,” and the client
and server random value into a PRF, yielding a “key block.” The key block is then
partitioned into keys in the following order?® (Dierks & Rescorla, 2008):

e Client MAC key
Server MAC key

Client write key

Server write key
Client (write) IV
Server (write) IV

The implications of this for the thesis are that there will be multiple
matching symmetric keys on either side of the connection (at least for the duration

of the connection), in addition to a fixed-length master key that may exist.

3Not all cipher suites will use the IVs, which is noted in the RFC

17

2.2.4 Session Resumption

TLS session resumption is a feature designed to enhance performance by
enabling an abridged negotiation on subsequent reconnects between the same client
and server. This is useful in situations when multiple connections may be made
between the same hosts over a period of time (or even between a given client and
cluster of servers). The general premise is that after an initial full key negotiation,
some portion of the “state” of the connection, including at minimum a unique
session identifier and the master key, is cached. When the client wishes to reconnect
to the same server (or cluster of servers), it sends the unique identifier from its
cache with the client hello message. If both parties have access to the master key
tied uniquely to the session identified provided by the client, a willing server would
send a “change cipher spec” message indicating that the symmetric cipher will be
now be used, and the session resumes without another key exchange (Dierks &
Allen, 1999; Freier et al., 2011; Salowey, Zhou, Eronen, & Tschofenig, 2008). The
abridged handshake can be seen in Figure 2.4.

18

E iewer

” | ===

14

Figure 2.4. TLS session resumption abridged Handshake

There are two widely supported forms of unique identifier — the session ID,
which is a component of the standard TLS implementations, and the session ticket,
which is currently a TLS extension (Freier et al., 2011; Salowey et al., 2008). The
session ID was described while discussing the TLS handshake, and is a fixed-length
identifier of 32 bytes first introduced in SSI.. The session ticket, conversely, is
variable length because it is actually an encrypted composite structure of values
representing the state.

The premise behind session tickets per RFC 5077, is that a server can create
a “ticket” out of the state information typically saved in the cache, encrypt this
state, and send it to the client for keeping. The advantage to the server is several
fold: it no longer has to maintain the state in its cache, freeing up resources, and
technically it does not have to be the server that the client resumes the connection

with. Consider that a cluster of servers can share the key used to encrypt tickets,

19

and thereby all resume sessions created by any of the servers, allowing for more
effective load balancing.

session tickets are “opaque” to the client, meaning that the client does not
know the contents of the tickets (nor does it need to know that information to
resume the session). The client therefore caches the ticket with the master secret, as
it would when using a session ID as a unique identifier. The exact elements that
make up the ticket and “state” of which the opaque ticket is composed are not
mandated by the RFC. A ticket construction put forward in the RFC is detailed in
Figure 2.5.

struct {
opaque key_name[16];
opaque iv[16];
opaque encrypted_state<0..2716-1>;
opaque mac[32];

} ticket;

Figure 2.5. Session Ticket per RFC 5077

It’s important to bear in mind that session tickets remain an extension of
TLS, meaning that clients that are TLS compliant may elect not to use this
extension and should still be able to inter-operate with Servers playing by the
RFCs. It is at the client’s option to initiate the use of session tickets by passing the
extension in the client hello message. RFC 5077 also alters the standard handshake
by introducing a “NewSessionTicket” message that the server sends after the
ClientKeyExchange is finished.

Session tickets are intended to be mutually exclusive of a session ID. If the
server intends to use session tickets, then, importantly, it should include an empty
session ID in the server hello message. The client, likewise, should discard any
session ID passed to it if the client receives a session ticket from the server (Salowey

et al., 2008). Curiously, the RFC states that if a client sends a session ID during a

20

session resumption, the server is supposed to respond with that same ID
(presumably for consistent behaviour). This is purported to aide the client in
differentiating when a server is resuming the session or performing a full handshake.

Wireshark currently supports decryption of sessions that employ session
tickets based on the client random. That is to say that Wireshark requires the
initial handshake and associated client random value to pair the master secret to a
session using tickets. Wireshark is a well-known network analysis tool that will be
leveraged in the thesis for PoC decryption of sessions. The implication of this is
that the client random will need to be explicitly linked to the master secret in cases
where the session ID is not present for ease of decryption (or, alternatively, the
ticket will need to be decrypted).

Another point of interest is the Extended Master Secret SSL/TLS extension.
This extension is proposed in RFC 7627 as a result of a weakness in the way session
resumption works. The weakness is called a “triple handshake attack,” essentially
amounting to a man-in-the-middle attack that allows decryption of the PMK or
session keys in a specific scenario (Bhargavan, Delignat-Lavaud, Pironti, Langley, &
Ray, 2015). The fix, according to the RFC is to “contextually [bind] the master
secret to a log of the full handshake that computes it, thus preventing such attacks”
(Bhargavan et al., 2015, p. 1). Importantly for the thesis, this is implemented by
changing the values seeded to the pseudo-random function to be more connection
parameter specific; it does nothing to effect how the master key, once computed, is
stored. The RFC does mention “shredding” of the PMK in memory as soon as
possible.

Incidentally, RFC 7627 also mentions RFC 5077 (session tickets), indicating
that the extended master secret does not necessarily cover session tickets.
Specifically, “[...] if the client and server support the session ticket extension
[RFC5077], the session hash does not cover the new session ticket sent by the server.
Hence, a man-in-the-middle may be able to cause a client to store a session ticket

that was not meant for the current session” (Bhargavan et al., 2015, p. 12).

21

As mentioned, Wireshark is a well-known and industry standard tool for
network protocol analysis. It performs semi-automated analysis and protocol
parsing through the use of “dissectors.” This information is relevant because public
and static values implemented in the RFCs can be seen in the source code of the
SSL protocol dissector (Wireshark, 2015). These values, along with others discussed
in the ensuing section on Windows implementation, will provide important context

during searches for connection specific values and secrets.

2.3 Windows Internals

This section will review the components of the Windows operating system
that may have a bearing on the thesis. Memory management is reviewed briefly to
point out mechanisms that may effect design decisions that are incorporated into
the methodology. The TLS implementation is also reviewed, looking at potential
artifacts that should exist within the implementation, and where those artifacts may

be found.

2.3.1 Memory Management

One of the most important aspects of memory management is how to
efficiently virtualize the relatively constrained resource that is physical main
memory and present the illusion to each process that it has it’s own full, contiguous
address space. This is generally accomplished through two mechanisms: Paging and
Segmentation. These concepts are implemented through a combined effort of the
hardware and operating system working in tandem.

The Windows operating systems expressly forgo segmentation per the
Microsoft documentation. It is not actually possible to disable segmentation on
32-bit Intel hardware without disabling “protected-mode,” the mode required to
enable paging. Windows therefore takes advantage of the “flat model” of

segmentation, in which a single contiguous segment is presented to the operating

22

system and applications (in reality, there are at least two overlaid contiguous
segments for code and data) (Intel Corporation, 2015). In contrast, Intel 64
architecture (ostensibly IA-32e) does not implement segmentation (Intel
Corporation, 2015, p. 5-5).

Paging is supported from the Windows perspective through the storage of
the Directory Table Base (DTB) and associated physical pages. This is a value
stored within the 'EPROCESS structure of each process and is the physical address
of the process’s page directory table. This value is what gets loaded into the CR3
hardware register during a context switch, and is an essential component of
rebuilding a process’s virtual address space forensically.

Windows extends paging further thorough a mechanism dubbed Virtual
Address Descriptors (VADs). A VAD represents a given contiguous allocation of
virtual memory pages (Ligh et al., 2014). This contiguous allocation can provide
interesting insight, as it represents another layer of abstraction beyond the page
table, functionally grouping address ranges into items like files and heaps.

The relevance of VADs to the thesis specifically is that they also provide
access control information as to whether the VAD is readable, writable, and
executable (amongst other states). When scanning for artifacts in a process address
space, one could possibly narrow the scan to all read-writable pages. This would
significantly improve performance by passing over regions that are not writable and

would not contain a committed ephemeral structure.

2.3.1.1. Virtual Address Space

An important concept to grasp when considering any operating system
forensics is the relationship between the underlying executive processes of the OS
and the guest process that they service and supervise. The two roles of supervisor

and guest are separated by privileges and typically denoted as “Kernel-mode” and

23

“User-mode” processes respectively. When a user-mode process wishes to perform a
privileged action, such as accessing the hardware for 1/O, it “traps” into the
“Kernel-mode” OS process, which performs this action on its behalf.

In order to accomplish the task above, Windows splits the virtual address
space of each process into two parts. The first part of the virtual address space is
for the process itself as a user-mode address space, unique to each process and
isolated. On 32-bit systems this is a value of 2GB by default, extensible to 3GB,
and on 64-bit systems the user-mode space can be 8TB by default (Microsoft,
n.d.-e). The second part, however, is the kernel address space, which contains both
process specific structures and components that are mapped across all processes®.
This is actually a relic of the design from VAX/VMS, which shared one of the main
developers of Windows NT (one David N. Cutler) (Russinovich, Solomon, &
Allchin, 2005).

The relevance this bears to the thesis is several fold. The first reason is that
pointers are address, so scanning physical memory will only be so helpful before it
becomes important to identify the virtual address space of the process. A physical
page can also be mapped into multiple virtual address spaces, meaning that a single
physical match could actually be relevant to multiple user-mode processes. The
second is that processes share a writable portion of the kernel-mode address space
in the form of “pools” which are essentially system heaps. The third is that
user-mode process dumps do not include the kernel-mode portion of the virtual
address space, so scanning the kernel-address space may become an important

separate component of the methodology.

4there is also the concept of session space, which is mapped across all processes within the same
session, but is functionally similar to “system space” and contained within the kernel-mode part of

the virtual address space (Russinovich, Solomon, & Ionescu, 2012)

24

2.3.1.2. Virtual Memory Allocation

Data of arbitrary size is often allocated on the “heap” (or heaps), an area
explicitly designated for such operations. In the Windows implementation, the
kernel mode “_ EPROCESS” structure contains a sub-component known as the
Process Execution Block (PEB). The PEB contains two members of interest: a
pointer “ProcessHeaps” and a numeric field “NumberOfHeaps.” The ProcessHeaps
pointer references an array of pointers to the heaps (the number of which is kept in
the NumberOfHeaps member) (Microsoft, n.d.-h).

It may at first seem as though this would be the only information required,
and knowledge of the pages or VADs would be superfluous to the task of scanning
the address space efficiently. This assumption, however, is flawed because the heap
is not the only place an application can store or load writable data. A specific
example is that any memory allocated with “VirtualAlloc()”

heap (Ligh et al., 2014, p. 192).

will not be part of the

Windows also contains the concept of “Pools,” which can essentially be
thought of as Kernel-mode heaps. There are two types of pools: Paged and
Non-Paged. As the name states, the paged pool contains elements that can be
paged to the page file, whereas the non-paged pool contains elements which should
and will not be paged (Microsoft, n.d.-f). Each pool contains sections identified by a
“pool tag,” which is composed of four characters. If the keys generated by the cache
are in someway shared between processes, then they may exist in one of the pools,

and may further be marked by a unique pool tag.

2.3.2 TLS Implementation
Microsoft implements TLS through the aptly named “Secure Channel”
(Schannel) Security Support Provider (SSP). According to Microsoft:

25

“The TLS protocols, SSL protocols, DTLS protocol, and the Private
Communications Transport (PCT) protocol are based on public key
cryptography. The Schannel authentication protocol suite provides these

protocols.” (Microsoft, 2015d)

Schannel then relies on several underlying cryptographic providers to handle key
generation and management. The entire suite of cryptographic providers is part of
the CryptoAPI Next Generation (CNG).

CNG provides a host of features, including Pseudo-Random Number
Generators (PRNGs), NSA Suite B support, process isolation for “long-term keys”
and kernel-mode cryptography that extend services like S/MIME, Key Storage, the
Data Protection API (DPAPI) used for secure secret storage like Certificates, and of
course the cipher suites leveraged by TLS. CNG was introduced in Windows Vista
and will eventually completely replace the CryptoAPI which has provided such
services previously, though the documentation claims that CNG will continue to

provide legacy support (Microsoft, 2014a).

2.3.2.1. DPAPI

The DPAPI is a central component to the cryptographic services provided by
Windows to developers, allowing encryption of arbitrary secrets as “blobs” through
a very simple interface. The entire scheme leveraged by DPAPI is outside of the
scope of this literature review, but it bears relevance in that Private Certificates that
are stored persistently on disk are protected via this mechanism (Microsoft, 2014b).

Private Keys are stored embedded within the certificate in a DPAPI blob,
though the rest of the certificate (including the public key) remains unencrypted
(Picod, 2016). A lot of great work has been done on reversing DPAPI, which is

discussed in the “prior work” section of this literature review.

26

2.3.2.2. Key Isolation

The CNG documentation explicitly devotes a section to key isolation,
perhaps the most important detail of the implementation. Microsoft explicitly
states the following requirement: “To comply with common criteria (CC)
requirements, the long-lived keys must be isolated so that they are never present in
the application process” (Microsoft, 2014b). To meet this criteria, keys are isolated
into a single process; fittingly, the LSASS process was chosen.

Furthermore, the documentation states that access to all private keys is
handled by the “key storage router,” the functionality of which is placed exclusively
within Nerypt.dll (Microsoft, 2014b). This revelation is critical as it suggests that
any key negotiations for SSL/TLS will route through Nerypt. Key isolation is
enabled by default beginning with Windows Vista/Server 2008. The model for this

isolation from Microsoft can be seen in Figure 2.6

27

Host (Client or Server)
1 |
L |

Key Storage Router (Ncrypt.dlil)

Key Isolation Service

Microsoft Key Storage Provider (KSP)

Figure 2.6. Microsoft Key Isolation paradigm (Microsoft, 2014b)

2.3.2.3. Schannel

Schannel is loaded into LSASS, along with the process that is leveraging TLS
to encrypt and decrypt data. The request for key material is passed to the LSASS

28

process through another user-mode DLL within the requesting process. This flow is

depicted in figure 2.7 from Microsoft.

Client Application (e.g. MSTSC [RDP Client]))\ TLsissL
Handshake
@ Protocol @
EncryptMessage() TLS/SSL EncryptMessage() >
s | =5)

Secur32.dll dil Record Decr) dil Securd2.dll
SSPI TLS/SSL SSP a Protocol TLS/SSL SSP SSPI

Server Application (e.g. RDP Services)

LSASS Process

Key Generation
& Isolation

Lsasrv.dil Schannel.dll
LSA Server Service TLS/SSL SSP

LSASS Process

Lsasrv.dll
Net Logon Service TLS/SSL SSP LSA Server Service

Key Generation
& Isolation

Check Certificiate Mapping

1

Y

1 IF Domain Joined:

; 1 @ Remote Procedure Call (RPC):
1

! 1

1

LSASS Process

Lsasrv.dll di
LSA Server Service TLS/SSL SSP

Net Logon Service

Figure 2.7. Schannel SSP architecture (Microsoft, 2015d)

A few points of interest pertaining to the Schannel implementation were
scattered throughout the documentation. The pertinent questions about capability

of Schannel for the thesis surrounds three main topics:

1. Support for session resumption
2. Order of preference for cipher suites

3. Schannel-specific constants

Microsoft, states that they added support for RFC 5077 session resumption in
Windows 8 and Server 2012 R2. This extends to clients like Windows phone and

29

Windows RT. The article also makes an interesting statement that RFC 5077
support would allow a cluster of servers to resume each others tickets (Microsoft,
2014d), indicating that somehow the key to decrypt these session tickets must be
shared between servers.

The order for preference of cipher suites is listed in a section of the Schannel
SSP documentation, and is shown as consistent from Vista forward (the point at
which CNG, and thus AES cipher suites, were introduced) (Microsoft, 2014c). This
document shows a preference for RSA key exchanges. Separate documentation
indicates that the cipher suite preference can be changed through group policy or
programmatically and can be queried using “BCryptEnumContextFunctions,”
which returns them in the order of priority. Incidentally, this function denotes
berypt as a library of interest. It is described by Microsoft at the “Windows
Cryptographic Primitives Library” (Microsoft, n.d.-d). The author noted a
discrepancy with the schannel SSP documentation and anecdotal observations of the
cipher suite preferences in practice. The author then compiled the Microsoft
provided “BCryptEnumContextFunctions” sample code on the same documentation
page (Microsoft, 2014c, p. 1) to list cipher suites in order of preference. Running
this code across several test systems revealed a different order than was listed in the
Schannel documentation, notably with Ephemeral suites preferred.

The CNG function and structure documentation contain some constants that
may appear in Schannel, but surprisingly fewer than was hoped. Because of this,
the available header files were examined. Relevant header files were identified
through the CNG documentation, and were noted to be “berypt.h,” “ncrypt.h,” and
“sslprovider.h.” Unique constants were identified that could be used to locate
structures, like keys, in memory. Examples include the magic values for RSA and

ECC private keys, cipher suite identifiers, TLS version identifiers, and flag values.

30

2.4 Prior Work

This final section of the literature review focuses on techniques that exist for

identification and extraction of keys or other SSL secrets from memory.

2.4.1 Key Identification

This paper would likely be remiss to review key identification with respect to
SSL/TLS without mentioning the paper “Playing hide and seek with stored keys”
by Shamir and van Someren (1998). The paper discusses mechanisms for identifying
RSA keys in “Gigabytes of data,” which at the time referred to secondary storage,
but holds true today, particularly “efficient algebraic attacks which can locate secret
RSA keys in long bit strings” (Shamir & van Someren, 1998, p.1).

Many of the techniques described are still valid and apply to ephemeral keys
as well as persisted keys, but some are impractical considering the size of the data
set and the evolution of stored data over time. For instance, entropy based attacks
against a process that routinely generates random bits and handles encrypted blobs,
as LSASS does, will likely not yield efficient and meaningful results. Consider
32-byte P-256 private keys for instance and compare that to any other
pseudo-random value like a GUID of some kind (even within SSL to values such as
the client /server random or session ID). Additionally, the private keys may be
encrypted in memory, which would provide a match when employing such a method,
but not in a form that is directly usable. The paper addresses sound generalizable
approaches, however implementation specific details will likely prove more efficient
in the context of the thesis, as will be examined later in this section.

In addition to RSA Keys, AES keys may also exist in memory. AES is the
de-facto standard for symmetric cipher amongst the TLS cipher suites. In fact,
TLS_RSA_WITH_AES_128 GCM_SHA256 is the only cipher suite required for TLS
1.2 in the NIST TLS Implementation guidelines (Polk, McKay, & Chokhani, 2014).
It plays the role of the session key that is derived after the PMK is exchanged or

31

derived. Because the symmetric key must exist while the connection is active in
order to encrypt and decrypt data, this is an artifact that will definitely be sought in
memory. At issue, however, is that the AES key is intended to be pseudo-randomly
generated, so it should be indistinguishable unless stored in a specific context.

One paper entitled “Lest we remember: cold-boot attacks on encryption
keys” discusses such context that typically appears across implementations
(Halderman et al., 2008). Specifically, a novel technique was developed based on the
AES key schedule, which is not random. The key schedule is described described in
FIPS-197, and is a mechanism to take the relatively short key material, and
“expand” it into a number of round keys for use in different rounds of the
algorithm. The product of this operation is of a fixed size as there are a fixed
number of rounds per keys-size, and is also referred to as the key schedule.
FIPS-197 notes that “The Key Expansion generates a total of N,(N, + 1) words®”
(NIST, 2001, p. 19), where Ny is a fixed value of 4 representing the number of
columns in the state and N, is the number of rounds, which is 10 for 128-bit keys,
12 for 192-bit keys, and 14 for 256-bit keys (NIST, 2001, p. 7). The schedule is then
176 bytes for 128-bit keys, 208 bytes for 192-bit keys, and 224 bytes for 256-bit keys.
Because the schedule is deterministically based on the key and will be used every
time a specific key is used, it is seen as computationally expensive to recalculate and
destroy the schedule repeatedly, which is ostensibly why it is often stored.

Not only do the authors discuss identification of AES keys, but RSA keys as
well, going so far as to release PoC source code to detect both. Since this seminal
work, tools such as FindAES by Jesse Kornblum and the subsequent functionality
ported to the scanning tool bulk extractor, curated by Simson Garfinkel, also
implement key schedule based scanning (Garfinkel, 2013). Clearly this method relies
on the implementer storing the schedule, but this appears by the accounts of the

paper to be common practice (Halderman et al., 2008).

5A word in this context is 4 bytes

32

An even more direct revelation concerning key identification was discovered
in a paper about identifying weaknesses in Dual EC entitled “On the Practical
Exploitability of Dual EC in TLS Implementations” (Checkoway et al., 2014). The
examination of specific implementations meant that Schannel was considered, and
in the case of Schannel the authors “focus on ECDHE/ECDSA handshakes that use
P-256" (Checkoway et al., 2014, p. 8). They note that all information they acquire
and disseminate about Schannel in the paper is the fruit of their reverse engineering
efforts. The authors also note the fact that LSASS handles the TLS handshake and

key derivation. The other findings relevant to this thesis are noted here:

e beryptprimatives.dll implements the user-mode CNG API

e Requested random bytes for key material are not cached

e Schannel requests 40 bytes for an ephemeral P-256 private key (even though
only 32 are used)

e Schannel “caches ephemeral keys for two hours (this timeout is hard-coded in
the configurations we examined)” (Checkoway et al., 2014, p. 8)

e Schannel generates a session ID that is implementation unique and can be
roughly fingerprinted

e Schannel has a hard-coded cache size of 20,000 entries (per the authors’

examination) (Checkoway et al., 2014, p. 9)

These findings provide clues about key caching, hard-coded values, and
temporal context about operations occurring around key generation. The
beryptprimatives module can now be targeted as part of the analysis, adding to the
other modules identified while reviewing the Microsoft documentation. Additionally,
the fact that Schannel generates 40 random bytes means that, in the event that
these random bytes are stored together with the ephemeral key, they may help
identify it as such when looking the key on the heap. Hard-coded values like the 2
hour timeout and the 20,000 cache are also somewhat unique values that may be

used to locate and target specific functions for reverse engineering efforts.

33

The session ID generation mechanism is of particular instance, as a
non-random component to the session ID may make it more distinguishable when
searching. This is incredibly desirable as all of the public Secret values are randomly
generated or based on something mutable like time that does not make for flexible
scanning features. The session 1D, according to the paper, gets it’s fingerprint from
the “hard-coded” cache length value of 20,000. The paper states that the first four
bytes of the 32 random bytes requested from “BCryptGenRandom” are taken as an
integer and replaced with the modulus of that number against the cache length
value, producing two bytes of zeros in the third and fourth position (Checkoway et

al., 2014, p. 9).

2.4.2 SSL/TLS Decryption

Perhaps the most common and well documented example of SSL/TLS
decryption is the implementation in Wireshark. Wireshark has both a graphical
interface and scripting engine that make it a powerful analysis tool, particularly for
small data sets like the ones that will be examined in the thesis experimentation. As
far as the thesis is concerned, the actual internals of the decryption process are
irrelevant excepting that the overall process is sane and can be relied upon. More
interesting in this context are what parameters and preconditions Wireshark
requires to perform decryption of an arbitrary connection, and how parameters may
be passed.

Wireshark’s source code (Wireshark, 2015) shows that it accepts an “SSL

keylog file” as a text file with secrets in the following formats®:

e RSA Session-ID:< session_id > Master-Key:< master_secret >
e CLIENT_RANDOM < session_id > < master_secret >

e RSA < encrypted_pre_master_secret >< pre_master_secret >

6Any value in brackets denotes a value to be replaced with the hexadecimal representation of

the binary value

34

e PMS_CLIENT_RANDOM < client_random >< pre_master_secret >

The source code also shows that Wireshark accepts a Pre-Shared Key (PSK), which
is given as a hexadecimal string representing between 0 and 16 bytes (Wireshark,
2015). Finally, one can provide the provide an RSA private key in X.509,
Privacy-enhanced Electronic Mail (PEM), or Public Key Cryptography Standards
(PKCS) #12 format (Wireshark, 2015).

One of the inspirational sources for the topic of this thesis was a series of
blog posts about decrypting RDP traffic using the private key stored persistently on
Windows systems. Both posts noted that:

1. The full key exchange needed to be captured
2. Sessions which used ephemeral cipher suites (and by extension, the TLS

implementation of PFS) were incompatible with this approach

The blog post by Steve Elliot of Contexis went on to leverage FreeRDP to rebuild
video and keyboard data from the session, replaying it in real-time or at extended
speed (Elliot, 2014). Contexis, however, did not make that tool available to the
general public, and it is hoped that a method developed here could be leveraged to
do so. Further, if successful, both barriers posed would be negated within the time

frame of the session cache life.

2.4.3 Key Extraction

An encoding-specific detection mechanism for RSA keys was discussed in
2006 by Tobias Klein, in a paper entitled “All your private keys are belong to us
(Extracting RSA private keys and certificates from process memory).” The primary
premise of the paper is that all common binary Private Key formats leverage some
form of Abstract Syntax Notation One (ASN.1) encoding (The author specifically
mentions the PKCS #8 and x.509 standards). ASN.1 generally follows a
Type-Length-Value (TLV) structure, and the author correctly notes that all
certificates begin with the tag “SEQUENCE” which is represented by the ID 0x30,

35

followed by the length field, which is a single byte unless the value is greater than
127 bytes long (the highest order bit is set). If this is the case, then the length bytes
notes how many following bytes are used to express the total length. So, in the case
of certificates with RSA public keys, this value is often “0x82” or “1000 0010” in
binary, meaning that the two following bytes express the length of the certificate,
giving them a common signature of “0x3082.” The author also notes that Private
Keys are then followed by a TLV of “0x020100” representing the version (Klein,
2006, p. 2). Windows leverages these encoding schemes (Microsoft, 2015a), making
it likely that this technique could apply to the thesis when observing ephemeral
private keys.

In 2010, Jean-Michel Picod and Elie Bursztein presented work at BlackHat
about reverse engineering Windows Data Protection API (DPAPI), and provided a
PoC tool known as DPAPIck. The particular relevance that the paper has to this
thesis is that, while not explicitly discussed, the private keys are protected with
DPAPI. In 2014, Francisco Picasso updated DPAPIck (now at version 0.3), and
added support for Windows 8 and Windows 10 systems, though DPAPI-NG (the
component of CNG that replaces DPAPI) has not been “fully reversed” (Picasso,
2015).

Amongst the ensuing updates to the work was the addition of “Probes” for
parsing out specific artifacts protected by DPAPI, one of which was generically the
RSA Private Key file. The catch is that most DPAPI secrets are indirectly
protected by a user password, where as System DPAPI secrets require a system
“password” that is protect by LSA Secrets. The author of this thesis leveraged the
RSA “Probe” by writing a quick interface for it based on an example provided by
Fransico Picasso for decrypting a different system secret (Wi-Fi credentials). This
allowed the author to later decrypt the RDP private key to search for it in memory
(still used for signing, even when ephemeral cipher suites were leveraged).

Another closely related work was presented by Jason Geffner at BlackHat
2011, entitled “Exporting Non-Exportable RSA Keys.” In this work, the author

36

looks for ways to export private keys in both CryptoAPI and CNG, successfully
completing both tasks by flipping the exportable flag accordingly. Of particular
interest is his work with CNG, in which he reverse engineers some important
functions of CNG through debugging and dis-assembly (Geffner, 2011).

The venerable Mimikatz tool developed by Benjamin Delphy is also capable
of decrypting and exporting Certificates stored with CNG, as can be seen in its
source code on Github (Delphy, 2016a). Mimikatz can operate on a live machine or
against a user-mode dump file, something which Volatility and Rekall currently do
not do. Mimikatz also provides a Dynamic Link Library (DLL) which can be loaded
into WinDbg to leverage the tool in concert with Microsoft’s own debugging and
analysis platform (Delphy, 2013).

Perhaps most directly in line with the goal of the thesis are several
community plug-ins that have been developed for Volatility and target TLS related
artifacts. A brief list of those available on the Volatility Github repository, including
the community repository, appears below alongside the docstring provided by the

plug-in and the author:

e dumpcerts (vol): Dump RSA private and public SSL keys

e haystack (Loic Jaqueme): Search for a record in all the memory space.

e linux_ssh agent key (Ying Li): Get SSH keys from ssh-agent process heaps
e rsakey (Philip Huppert): Extract Base64/PPEM encoded private RSA keys

from physical memory.

Importantly, none of these plug-ins address decryption or identification of
connections using ephemeral cipher suites. The ssh agent key plug-in specifically
targets Linux systems, but was reviewed to identify any reusable logic that could
apply to finding ephemeral private keys. The “RSAKey” plug-in is particularly
simple, scanning physical memory in fixed chunk sizes for the string “—BEGIN
RSA PRIVATE KEY—" as an identifier for keys in the PEM format. The
comments in the plug-in note that, for simplicity, the plug-in does not use overlap

between chunks, meaning that cross-boundary misses may occur (Huppert, 2015).

37

While documentation suggests that Windows supports importing the PEM format
(Microsoft, n.d.-a), the storage is unified into a different format and the private keys
encrypted via DPAPI (Microsoft, 2014b). It is therefore unlikely that this would
reveal keys in LSASS memory. Finally, the dumpcerts plug-ins is an implementation
of the “trapkit” method discussed earlier, per the comments in the plug-in itself
(Volatility, 2015).

The closest functionality to the task at hand and most versatile of these
plug-ins is “haystack,” which is not SSL specific. It is designed to identify heaps
within processes not necessarily listed in the PEB, and identify the specific
allocations on the heap. In the README documentation, an example is given
whereby the author notes that one can extract the OpenSSL session records to

obtain the session keys using this plug-in (and the provided structure) (Jaqueme,

2015).

2.4.4 Perfect Forward Secrecy

Up until this point in the research, all efforts have been focused on obtaining
the persistent private key for decryption. None have focus on cipher suites
embracing PFS, which render the persistent key useless for decryption (though not
impersonation, as it is still leveraged for identity). This section reviews research
which instead focuses on ephemeral cipher suites and methods for subverting them.

One of the most informative and thorough sources on subverting PF'S,
though it provides no implementation, is a blog post by Tim Taubert from
November of 2014. The post explains how TLS session tickets, as implemented,
break the property of Perfect Forward Secrecy, by allowing the state (including the
master key) to be transmitted, and thus captured by an adversary, which could be
potentially decrypted at any point in the future, leading to decryption of the
connection (Taubert, 2014). Tim goes on to give examples of configuring the cache

settings in different Web Server implementations to mitigate this as best as possible.

38

The post itself cites several other works about issues with the TLS handling of PFS,
including the work described below.

The most recent and directly relative work was presented at BlackHat USA
in 2013, entitled “TLS ‘Secrets.”” This presentation discusses implementing a
mechanism for extracting OpenSSL cache entries, specifically looking at Unix-like
systems. The focus of the presentation was actually heavily oriented around RFC
5077 as implemented by OpenSSL. A major finding was the fact that the
Specification, in an attempt to remain implementation agnostic, does not provide
any particulars or guidance on key usage or storage. OpenSSL was found to use 128
bit AES keys to encrypt tickets, which did not get rotated according to the author.
The author sums up the impact of this finding by stating that “128 bit of security is
all you get (at best), regardless of the cipher which has been negociated [sic]”
(Daigniere, 2013, p. 8). This work cannot directly translate to the Windows
implementation, sadly, but shows that the concept upon which the thesis is based is
sound.

Finally, a paper entitled “Perfect forward not so secrecy” seemingly
completed in December 2013 also looks at associating session keys with captures
TLS sessions and, interestingly, how to further limit access to these keys (Dreijer &
Rijs, 2013). The paper focuses on OpenSSL server-side implementations and, like
the BlackHat USA presentation, on RFC 5077. The authors develop a python PoC
to extract the master key with session ID from OpenSSL implementations (Dreijer

& Rijs, 2013, p. 8).

39

CHAPTER 3. RESEARCH METHODOLOGY

This chapter focuses on developing a logical, methodical, and practical way
to go about identifying whether secrets and other TLS artifacts exist in LSASS
memory, and, if so, whether they maintain a discernible relationship in memory.
The exploratory nature of the research means that such artifacts or relationships
may not exist; however, like other examples where encryption is employed, a key
generated and used ephemerally may reside in volatile memory for some duration.
Other artifacts from the transaction should also exist, particularly because
connections are stateful and the operating system manages the creation,
maintenance, and termination of these connections. There are also reasons why
artifacts may necessarily outlive the connection itself for some time (consider the

session resumption feature of TLS).

3.0.1 Design Decisions

The foremost design goal was accessibility and reproducibility by the
community. This goal translated to the selection of tools and techniques that were
exclusively either free and publicly available or open source. A clear exception to
the rule was the use of Windows operating systems as these are the subject of the
research; even in this case, freely available development virtual machines from
Microsoft were used as much as possible towards the ease of reproducibility. A final
nuance of the stated goal is that preference was given to public tools released by
Microsoft specifically, in an effort to remain as “native” as possible.

Another contributor to the decision to remain native as often as possible was
the second design goal: rapidity and effectiveness of analysis. By leveraging

Microsoft tools, such as WinDbg, and built-in capabilities, like on-demand

40

user-mode process dump creation, a variety of inherent benefits became available to

speed up analysis. For instance:

e User-mode process dumps can be created without additional tools beginning
with Windows Vista (Microsoft, 2010).

e Native creation of these dumps does not require or induce any special state for
the operating system (no need to pause or restart the system), allowing rapid
sampling repetition during any variable manipulation.

e The dumps are “sparse” by default, meaning that unused ranges in the virtual
address space are not included. This creates a more efficient search scope that
avoids unnecessarily parsing empty ranges of memory.

e The user-mode dumps can be read natively by WinDbg, which in turn can
automatically leverage Microsoft’s public symbols (Program Databases or
PDBs) to make sense of structures and memory pointers therein. Although
public, the information provided by Program Databases (PDBs) is not
necessarily documented via any other source, and they have historically played

an integral role in Windows memory forensics (Dolan-Gavitt, 2007).

In order to generate TLS sessions in a way that is native, RDP was used.
The RDP client and server functionality is built-in to all modern releases of
Windows Microsoft (2015¢), and so requires very little alteration to enable testing of
a given operating system. The use of RDP simultaneously minimizes external
variables that would be introduced by third-party software and has the ancillary
benefit of exploring one of the use-cases presented previously (Incident Response).

Finally, the desire for flexibility influenced the experimental design towards
virtualization. The use of virtual machine abstraction allows for portability and
repeatability (through snapshots for example). Particularly though, it enabled
inspection of RAM without reading through the target operating system, thus
leaving it mostly insulated to analysis. Using abstract virtualization mechanisms
like pausing and snapshots, the guest physical memory could be saved to a file

(VMEM) on the host, which could then be analyzed and manipulated as needed.

41

The VMEM format is supported by powerful open source analysis tools (e.g.,
Volatility and Rekall), which are able to trivially convert it to other formats. These
tools were leveraged to convert the VMEM to a raw copy, in which physical offsets
into the file were synonymous with offsets into physical memory. Physical offsets
produced by scanning tools like bulk_extractor could then be compared with the
physical offsets rendered by virtual to physical memory translations of analysis tools

like Rekall and Volatility.

3.0.2 Overview

The methodology that emerged from the interaction of these design goals
and the technology available to meet them is briefly highlighted in Figure 3.1 and
then expanded upon in Section 3.0.3. Philosophically, there were at least two
approaches to the problem of identifying the key — observing the process (live
debugging and static analysis) or observing the data (post-mortem analysis). While
both are valid and they are not mutually exclusive (in fact, they are combined in
the articulated methodology), post-mortem analysis was given precedence for three
reasons. Nominally, these are scope, simplicity, and fidelity to the problem.

The exact scope of debugging wasn’'t quite known the executable(s) and
functions that interact with the master key were unknown, though presumed to
originate with, or orientate around, Schannel and the cryptographic libraries. While
parsing PDBs ahead of time would have provided insight to develop scope, in
isolation it could have introduced biases and pivoted the focus of analysis with
misleading or enticing symbol names. It could have also falsely restricted the scope
through exclusion of symbols (and many sensitive symbols are excluded in the
public PDBs (Microsoft, 2015b)) for functions that are highly relevant. It would be
possible to simply trace through a TLS transaction to generate scope, but this still
requires enabling kernel debugging if attaching to the LSASS process. Manually

tracing would also likely run into issues due to timing requirements when dealing

42

with live network connections. This too is solvable through adjustments, but each
adjustment to the base system moves the environment further and further from the
actual parameters being emulated, thus allowing lurking variables to creep in. Any
adjustment would also need to be made against every test system.

The problem itself is one that would be post-mortem — whether or not the
artifacts exists after a connection has been established, possibly terminated. If the
key exists temporarily during execution and is freed or destroyed very quickly, this
is still interesting, but less so in the forensic context of the problem. Analyzing in a
post-mortem way allowed for closer alignment with the use cases and minimized
temporally-based variables to some degree. It also provided information that could
be used to make more informed debugging and tracing decisions, enhancing the

potency of the debugging effort.

43

?

{Search heuristically for session keys}

l

{Identify known public values used to derive the master key}

MK identified

MK not identified

[Intercept master key (MK) generation on client to server}

l

{Search for MK to identify context in server Inemory}

l

{Leverage unique context features to identify other MK instances}

l

{Walk pointers to identify related structs}

l

[Compare related context to unique public Values}

l

{Debug live connections and secret generation}

l

[Scan physical memory for identified secret structs}

®

Figure 3.1. TLS artifact identification methodology

This implementation, when distilled, resembles the Inman-Rudin paradigm
(Identification — Classification — Individualization — Association —

Reconstruction (Inman & Rudin, 2002)):

e The first several steps are used to “identify” structures that could be relevant

to the event of interest (a TLS connection)

44

e The master key structs are “classified” and enumerated (by virtue of being
pseudo-random, they are inherently “individualized”)

o After identifying and classifying master keys and other structures, a given MK
is then “associated” with a given event via unique features of the connection

e Finally, the associated MK and connection parameters are used to decrypt the

TLS session and reconstruct the event of interest

3.0.3 Discussion of Methods
This section augments the overview of the methodology by activity depicted

in Figure 3.1.

3.0.3.1. Searching for session keys

During previous research and analysis of LSASS, the author used AES key
schedule heuristic scanning (via the “FindAES” tool produced by Jesse Kornblum
(2011) to identify the AES keys used to encrypt user secrets in LSASS. This same
technique was applied to session keys when AES was used in the cipher suite of a
TLS connection. The theory was that, as symmetric keys, the AES keys used for
encryption of the session would exist in both the client and the server memory for
the duration of the connection (generated in the LSASS process of both if they are
Windows machines). Scanning both hosts for AES key schedules may then yield two
or more pairs of matching keys (the client and server write keys), which would be

those used for the connection (Dierks & Allen, 1999; Freier et al., 2011).

3.0.3.2. Identifying known values

One method used to identify possible structures that could either contain or
lead to secrets of a connection was to start with known-knowns. In the context of a

TLS connection, that term applies to public values either those unique to the

45

connection, such as the client/server random values, or constant values like those
defined in the RFCs (Dierks & Rescorla, 2008, p. 68). Unique values present the
opportunity to enumerate and dissect artifacts of a specific connection. Conversely,
constants as defined in the RFCs, or perhaps particular to the implementation, act
as generic identifiers that can be used to laterally identify similar artifacts across
arbitrary connections. This was useful when no particular connection was targeted
or known, and instead the desire was to exhaust all connection artifacts in memory.
The reasoning behind searching specifically for public values was several-fold.
The first reason was that, while secret values (e.g., keys) may be sequestered in an
encrypted “vault” in memory, public values likely remain unencrypted in memory,
as they are unprotected in other contexts. The second was that, intuitively, secrets
are often compartmentalized, and so unique to a specific connection '. Further, key
material is often pseudo-randomly generated in such a way that detection is
theoretically impossible or impractically costly. This makes secrets less flexible as
search features than looking for public values. Finally, the public values were readily
accessible from a network capture, which matched a use-case identified and aided in

the ease of testing.

3.0.3.3. Intercepting master key generation

The pre-master key (and subsequently master key) are the two most useful
secrets in decrypting a given connection. This is because, as discussed in Chapter
Two, the master key is used to derive the sessions keys, and always exists, regardless
of cipher suite chosen. This very fact is the reason Perfect Forward Secrecy (PFS) is
important the private key in non-ephemeral key exchanges is used to decrypt the
pre-master secret that is shared during an RSA TLS handshake. So the usefulness
of the persistent private key in “ex post facto” decryption is predicated on the

usefulness of the pre-master key.

LAn exception to this in TLS is the persistent private key

46

Knowing the pre-master key or master key would allow for scanning of
memory to identify the location and number of instances of the key in memory for a
given connection, which could then be compared over several connections to identify
consistent structures (particularly if combined with input fuzzing like altering the
TLS version or cipher suite used in some connections).

Several popular modern browsers (e.g., Firefox and Chrome) allow for
logging of master keys to a file Mozilla (2015). However, these browsers leverage a
different cryptographic library, and, even so, the goal is to minimize external
variables on the target host, making RDP or Internet Explorer (IE) preferred
options regardless. Fortunately, several open source RDP clients exist, which rely on
OpenSSL, a well documented open source SSL library. A small “shim” library can
be preloaded to intercept the master key generation calls to OpenSSL and
transparently dump the returned key to a file. This key can then be compared with

what is resident in memory on the target (Windows) host acting as the RDP server.

3.0.3.4. Leveraging unique structure identifiers

The master key itself is pseudo-random. It is therefore desirable to locate
some contextual feature that could be used as a “class” marker for identifying
unknown master keys. Specifically, there likely exists some structure around, or
reference to, the master key if it is both managed and memory resident. This could
be co-located known values, some form of “magic number,” or even pointers to the
master key from other structures if it has no direct context in memory. Identifying
these features will form the link between master keys and unique connection
identifiers that is required for decryption. Any master key “class” markers could be
portable or reusable across other instances of the same implementation (i.e, other
hosts that implement the same Schannel paradigm).

Furthermore, unique “magic” values can provide especially valuable insights.

Values that are magic are hard-coded or the generation thereof is hard-coded. This

47

means that identified magic values (or the way they are generated) must exist in the
functions of one or more modules loaded into memory. This fact links an artifact
containing the magic value to the modules and functions that created it or use it,
which is useful intelligence for live debugging.

Symbols can be leveraged to extrapolate from magic values. If the memory
address of the magic value (or generator for the magic value) resolves symbolically
to a function named, for example, “GenerateSessionKeys” or
“CreateSSLSessionStruct,” then there is intuitive meaning and informed
speculations can be made at the purpose of the structure.

A caveat hinted at earlier is that the public Windows symbol files contain
only the symbols that Microsoft deems necessary for reasonable levels of debugging,
so not all functions or global variables are exposed. This has a potentially insidious
side-effect when performing analysis, as the “In” function of WinDbg that performs
symbol resolution lists the nearest symbols before and after a given address
appended with an offset to the provided address. The implication of this is that if
an address exists within a function for which symbols are not present, it may appear
that the address is inside of the next-nearest symbol. For this reason, any time that
function symbols are used for analysis, the function will be disassembled to ensure

that the value of interest is actually contained within.

3.0.3.5. Walking pointers

Related structures are often chained together by pointers in memory.
Starting with a public value, identifying its structure and pointers, and then
dereferencing (or “walking”) the pointers inside of that structure will provide a
series of chained structures. One issue with this approach is that it can quickly
become overwhelming. Pointers can lead to exponential branching (or infinite
looping in the case of lists), so it can be important to have some semblance of the

purpose for the structure being observed before (potentially) needlessly walking a

48

pointer to a value of little or no use. Pointers also exist to functions or static
variables embedded in binary files, which, if these have symbols, is helpful in
identifying the structure as well.

Another important aspect is walking pointers in reverse to identify what is
pointing to a structure. There are many situations where the artifact of interest
does not point back to structures referencing it. In this case, the simplest solution is
to scan for the memory address of the structure, to see if a pointer to that memory

address exists anywhere else in memory.

3.0.3.6. Comparing related structs to unique public values

This is nearly the inverse of the initial step. Once a series of structures
related to the master key are identified in memory, they need to be linked to a given
connection to be valuable.

Two examples of ostensibly unique public values are the session ID and the
client /server random values. The random values are particularly interesting, as the
first four bytes of the random are very often a timestamp (Freier et al., 2011, p. 25),
which has forensic value. The client random is also the value that is included in the
NSS log format used by browsers and Wireshark (although Wireshark also accepts
the session ID, as mentioned in Chapter Two). As was also mentioned in the
literature review, the session ID can have an interesting quality in the case of
Schannel, because a hard-coded value in the session ID generation process causes
them to typically have zeros in the third and fourth byte positions, acting as a
rough fingerprint (Checkoway et al., 2014). This means that, to some extent, the
server that was connected to can be identified as a Windows server in the case of a

client. It also provides a visually recognizable pattern when performing analysis.

49

3.0.3.7. Debugging Local Security Authority Sub-System

Up until this stage, every part has been piecing together the reconstruction
of an event (the TLS connection) and the context around that event. Debugging
will then play events forward, and possibly fill in missing information within the
scope of the artifacts identified, or lead to new artifacts. It also has the potential to
validate or challenges assumptions made about what was seen in memory. An
example is that something which is seen as managed and permanent may be less so
than initially anticipated, or contrastingly, something seen as ephemeral or
non-existent may actually be transitioned to a different, more permanent (even
encrypted) structure. Static analysis will also likely be performed in advance of this
task where applicable, based upon the complexity of the functions that are

identified and examined, as that will also narrow the scope for debugging.

3.0.3.8. Scanning Physical Memory

The focal point has been LSASS memory space based largely on
documentation provided by Microsoft; however, artifacts that are generated within
that process do not necessarily remain within its user-mode virtual address space.
This is especially salient when considering how Windows handles kernel memory
(i.e., mapping it into the latter end of the process address space). Scanning physical
memory may help illuminate relationships or external artifacts that were not scoped
into the preceeding methodology (user-mode dumps for example do not include the

kernel address space).

3.0.4 Infrastructure
This section discusses the technical instrumentation of the methodology
(including tools, tool versions, and setup of the live debugging environment), so that

the methods are faithfully reproducible.

50

The design guidelines highlighted previously are manifest in the tool
selection in several demonstrable ways. At a high level, reproducibility and
simplicity led to an attempt to minimize the breadth of tool use and narrow to a
core of analysis suites. The linchpin of these tools is WinDbg for user-mode process
dump analysis and kernel debugging. The choice to use WinDbg also meant that
Windows was the choice for analysis platform. Of the versions available, Windows
10 was used as it is the latest available version from Microsoft at the time of
writing. Microsoft also released a tool for basic tasks related to PDB files and
executables called “cvdump” that could be leveraged for symbol inspection outside
of WinDbg. To augment WinDbg as a hex viewer, a Windows-based hex editor was
required, and HxD by Maél Horz was selected. At the time of writing, HxD is freely
available, comes as a single executable, and supports large file sizes with quick
searching capability, a key requirement.

What HxD lacks, however, is a tunable scanning engine that can output
matches quickly and easily. The “lightgrep” scanner from the bulk extractor utility
will be leveraged to this end. Bulk_extractor also supports an implementation of the
“FindAES” tool mentioned previously in the form of an “aes” scanner, and was
used for session key scanning?.

Windows 10 was also selected as the initial target system, in part for the
same reason that it was selected as the analysis platform. In addition to being the
latest release, and Microsoft intends for it to be a “universal” operating system
across devices (Warren, 2015). This is evident not only from statements by the
company, but actions like offering free upgrades from previous versions of Windows
(Microsoft, 2015f) and announcing plans to upgrade one billion devices to Windows
10 (Myerson, 2015). In brief testing, Windows 10 also prefers ephemeral cipher

suites when using RDP. The free upgrades, universal deployment strategy, and

2although Volatility may also be used for AES key scanning, employing the same technique as
bulk_extractor, bulk_extractor was selected as it does not require interpretation and loading of any

address space, but treats all inputs as bitstreams

o1

preference for PF'S connections make it an ideal candidate system to maximize the
impact of the research going forward.

The systems were virtualized atop the open-source VirtualBox platform.
VirtualBox supports the required capabilities for testing, namely snapshots and the
use of pipes which can be connected between hosts to simulate a serial connection.
This support will significantly ease the burden of Kernel debugging in Windows,
which requires an external OS attached to the debuggee through a serial connection.

A logical diagram of the analysis infrastructure and list of exact tools with

versions can be found in Figure 3.2 and Table 3.1 respectively.

Internet

am5"C"

Debuggee T Analysis
IP: 10.17.3.104 IP: 10.17.3.102

0S: Windows 10 (x64) 0S: Windows 10 (x64)

A
)

VirtualBox

J

/var/tmp/com1 OS X El Capitan

Figure 3.2. Analysis infrastructure logical diagram

Table 3.1. Analysis infrastructure

Tool Version Author

VirtualBox 5.0.14 Oracle

Windows 10 10.0.10586 Microsoft

Python 2.7 Python Software Foundation
WinDbg 10.0.10586.567 Microsoft

radare2 w32-0.10.1 pancake@nopcode.org
Volatility 2.5 Volatility Foundation
Rekall 1.4.1 Google

HxD 1.7.7.0 Maél Horz

cvdump 14.00.23611 Microsoft
bulk_extractor 1.5.2 Simon Garfunkel

Kali Linux 2016.1 Offensive Security
Wireshark 2.0.2 Wireshark Foundation
FreeRDP 2.0.0-dev (git 2a3¢999) The FreeRDP Team
sslkeylog N/A Peter Wu

The defining criterion for success was the implementation of a repeatable,

3.0.5 Measure of Success

reliable, and possibly automated method for identification and extraction of

artifacts that enabled the decryption of arbitrary connections. For connections

52

53

employing PFS, this would involve extraction of either the pre-master key, master
key, or ephemeral private key and association with a unique identifier for a given
connection. Even if this goal is not achieved, there are still valuable forensic
artifacts that may be extracted, which could constitute contribution to the
community. Extraction of public keys, timestamps, and connection identifiers that
may outlive or compliment other sources used for enumerating prior connections

from memory could be forensically significant.

3.1 Summary
This chapter provided the methodology and technical implementation that

will be employed in the research. It discussed the design decisions that led to the
choice of methodology and instrumentation, and infused the information gleaned in
the literature review to do so. Chapter Four will describe the results achieved
through application of this methodology, and any anecdotal findings or deviations

from what has been described.

o4

CHAPTER 4. RESULTS & DISCUSSION

A variety of outcomes were obtained through application of the steps
discussed in Chapter Three and through adaptations that deviated from the
anticipated methodology. This section discusses those outcomes, roughly segmented
in alignment with the steps that appeared in the methodology. A brief summary of

the most salient findings is as follows:

e Master key structures were identified and mapped to the session ID (but not
the client /server random), allowing successful decryption of glstls connections

e Other opaquely documented glstls structures were identified and documented

e Time constants alluded to in the Checkoway paper were identified and
explained

e Methodical evolutions that are applicable to future endeavors were developed

and employed

For clarity, the remainder of the results will be explained and illustrated in
the context of a single client/server memory pair and complimentary packet
capture. This facilitates understanding the chain of discovery events and flows more
naturally. Similarly, most examples/figures, when applicable, are related through

the lens of WinDbg, allowing more consistent and lucid explanations.

4.1 Staging and Execution

The testing environment was established as shown in Figure 3.2 from
Chapter Three. Various RDP connections were made between hosts during the
analysis, and the hosts were rebooted periodically. The hosts were allowed access to

the Internet, for the sake of broadening the number of possible artifacts that could

95

be found. These additional artifacts result from connections instigated by
autonomous tasks Windows engages in like checking for updates.

The focus of the research was on the exploration and development of a
technique to extract the artifacts. Future work will focus on rigorous scientific
testing of the methods to further validate the provenance and accuracy of the
findings. Even so, as will be illustrated, most conclusions are derived not only from
direct observation, but from the mechanics that are used to implement glstls in
Windows (the DLLs, Functions, and default variables) and the Microsoft’s
documentation thereof, adding weight beyond simply experimental observation.

Below are a list of sources and connection parameters from one experimental
run that will be used to frame the discussion of the rest of the results. These typify
the evidentiary items and artifacts used for other experimental runs. The hope is
that discussion of these parameters will portray the relationships of artifacts and
logic employed to arrive at conclusions more clearly. The data sources analyzed in a
given run include those below, and the public values of a single RDP connection

established appear in Figure 4.1

e Network capture from client of bidirectional RDP session
e LSASS user-mode process dump of the server

e LLSASS user-mode process dump of the client

VMEM of server directly after LSASS dump creation
VMEM of client directly after LSASS dump creation

56

M s2pcapng = 8] X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
L TRE QesSFLr S aaQql
* e stream eq 1P 853 -] Expression... +
| No. Time Source Destination Protocal Length Info -
| 21 46.198020 10.17.3.102 1e.17.3.104 TLSv1.2 220 Client Hello
| 2246.199722 10.17.3.104 10.17.3.1082 TLSv1.2 1229 Server Hello, Certificate, Server K.
2346.21593@ 10.17.3.102 10.17.3.104 TLSv1.2 228 Client Key Exchange, Change Cipher ..
24 46.216826 10.17.3.104 10.17.3.182 TLSv1.2 145 Change Cipher Spec, Encrypted Hands..
2546.217438 10.17.3.102 10.17.3.184 TLSv1.2 171 Application Data
2646.217812 10.17.3.104 10.17.3.102 TLSv1.2 379 Application Data G
L AT AR IIRTTI 14 .17 2 142 14 .17 3 104 TiCu1 2 010 Annliratinan Nata
|>Frame 22: 1229 bytes on wire (9832 bits), 1229 bytes captured (9832 bits) on interface @ ~

|> Ethernet II, Src: Apple_9d:85:16 (60:03:08:9d:85:16), Dst: Vmware_62:85:b4 (80:0c:29:62:85:b4)
|» Internet Protocol Version 4, Src: 10.17.3.184, Dst: 10.17.3.102
|» Transmission Control Protocol, Src Port: 3389 (3389), Dst Port: 49234 (49234), Seq: 20, Ack: 211, Len: 1175
wSecure Sockets Layer
~TLSv1.2 Record Layer: Handshake Protocol: Multiple Handshake Messages
Content Type: Handshake (22)
Version: TLS 1.2 (@xe3e3)
Length: 117@
vHandshake Protocol: Server Hello
Handshake Type: Server Hello (2)

Length: 77
Version: TLS 1.2 (@x@3@3)
» Random

Session ID Length: 32

Session ID: d4170000da@9f8596739215e216c496568fabbed2ac32b97. ..

Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (@xc@27)

Compression Method: null (@)

Extensions Length: 5

»Extension: renegotiation_info
vHandshake Protocol: Certificate

Handshake Type: Certificate (11)

Length: 748

Certificates Length: 745

»Certificates (745 bytes)
wHandshake Protocol: Server Key Exchange v

CEIR TP ld4 17 @0 @@ da @9 8 59 67 39 21 Se 21 6|

[-F-B49 65 68 fa 66 ed 2a c3 2b 97 4d 44 09 49 df f

eese ELRERlY c@ 27 00 ee o5 ff €1 ee 01 ee eb 60 e2 ec
7 90 22 e9 9@ 82 e6 30 82 ©2 e2 3@ 82 @1 ca a@ @3 PR - O - IR

92 1 @2 02 10 41 b7 d4e 6d 57 70 22 8a 49 2a dc cese AN mWP".I*,

f5 7d ff @a 1f 3@ ed @6 @9 2a 86 48 86 f7 @d o1 K JHL IRt | (e v

Irwalid filter: "1P" is not & valid number. Packets: 2116 - Displayed: 2101 (99.3%) * Load time: 0:0.324 Profile: Default

Figure 4.1. Example connection parameters in Wireshark

4.2 Heuristic Scanning for AES keys

Bulk_extractor scans yielded AES keys on both client and server, but not
common keys between the two. It was expected that AES keys would be returned
due to the aforementioned role that LSASS plays in encrypting secrets for locally
authenticated users. Despite no cross-system matches, there were keys on each

individual host that appeared multiple times.

o7

The lack of an overt match does not preclude the possibility that the
matching AES session keys do reside in memory. It simply means that a valid key
schedule was not identified between the two using the algorithm employed by
bulk_extractor. It is conceivable that the session key was transferred to the
requesting process and then destroyed within the LSASS process. Considering the
presence of other key schedules, the lack of a valid schedule for a session keys that
does exist seems somewhat unlikely as it would point to an inconsistent
implementation. The absence of a match led to the identified keys schedules being
inspected manually.

Manual inspection involved viewing context surrounding the keys in a hex
editor for possible clues as to whether or not they may relate to an glstls connection.
If the keys were allocated in close temporal proximity to other connection
parameters, there may be adjacency to those parameters on the heap for instance.

The keys were examined sequentially from the lowest match address to the
highest. In the sample above, both AES-128 and AES-256 keys were returned. The
scope of the search could have been restricted to only AES-128 keys (based on the
cipher suite) for efficiency; however, the limited number of keys meant that
examining the additional keys was not burdensome and actually provided a valuable
anti-pattern (e.g. what values exist around all AES keys found and are therefore
dis-interesting in the context of a search for TLS-specific artifacts).

The examination led to several relevant discoveries. The majority of the first
keys were prefixed with the magic dword values “RUUU” and “KSSM” if rendered
in ASCII. These numeric values are stored Little Endian, and so when considered as
strings they would be “UUUR” and “MSSK” respectively. The two strings appear
in the source code for credential extraction tools like Mimikatz in relation to
Microsoft’s berypt module (Delphy, 2016b).

The interesting point, however, was when keys appeared that did not have
“RUUU” prefixing them, but maintained a similar structure (including “MSSK”).

These keys appeared to have a magic dword with the value of “3lss” or “ssl3” in Big

Endian. This was an immediate indicator that they could be related to SSL. As
anticipated earlier, the first key preceded by the “ssl3” tag was located near
connection artifacts such as the unicode text “Microsoft SSL. Protocol Provider,”
what appears to be a session ID, connection parameters, and URLs. Some of this

context can be viewed in Figure 4.2.

48 80 31 e7 5e 00 00 00-98 5b 24 e7 5e 00 00 00 H.1.~....[$."...
04 00 00 00 00 c2 02 0c-00 08 00 00 28 cO 00 00
18 00 00 00 80 01 00 00-10 00 00 00 10 00 00 00
00 00 00 00 00 00 00 00-01 00 00 00 00 00 00 00ivvvviununn
01 00 00 00 00 00 00 00-00 OO 00 00 00 00 00 00unnn.
00 00 00 00 00 00 00 00-bO e5 2d e7 5e 00 00 00 -7
20 00 00 00 6f 23 00 00-a0 21 aa c4 8d 15 54 45 ...o#.. TE
24 cl1 45 4e 4e cO 1d 5a-db 30 5d 8d 9d 57 ab 2b $.ENN..Z.0]..W.+
99 1d d5 97 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 05 00 00 00
00 00 00 00 00 00 00 00-00 OO 00 00 00 00 00 00nnn.
£ff £f £f £ff 00 00 00 00-00 00 00 00 00 00 00 00
09 00 00 00 40 00 00 00-40 00 00 00 00 00 00 OO0@...Q@.......
4d 00 69 00 63 00 72 00-6f 00 73 00 6f 00 66 00 M.i.c.r.o.s.o.f.
74 00 20 00 53 00 53 00-4c 00 20 00 50 00 72 00 t. .S.S.L. .P.r.
6f 00 74 00 6f 00 63 00-6f 00 6c 00 20 00 50 00 o.t.o.c.o.l. .P.
72 00 6f 00 76 00 69 00-64 00 65 00 72 00 00 00 r.o.v.i.d.e.r...
02 00 00 00 80 02 00 00-7c 02 00 00 00 00 00 OO0 I

7c 02 00 00 33 6¢ 73 73-03 03 00 00 28 cO 00 00 |...3lss....(...
01 00 00 00 30 02 00 00-30 00 00 00 31 de 5f 960...0...1._
80 e3 a4 10 fc 78 f1 cf-c5 de e6 dd 7d 63 7b ab b SN Ycq.
cO 68 cb b3 cf 1d c4 7b-17 1b 01 ad 60 00 c8 f2 .h..... {.......
8c d5 3b be 6a 42 49 d0-a7 9f 2c¢ bc 30 02 00 00 ..;.jBI...,.O...

4b 53 53 4d 02 00 01 00-01 00 00 00 10 00 00 00 KSSM............
00 01 00 00 20 00 00 00-4c 2a 57 5a 12 c3 f4 e2L*WZ....
15 31 48 4d ff 9f ab 34-aa 54 91 28 cc 9e 6f 5f .1HM...4.T.(..o
4e a9 b3 d1 f9 29 8c 8d-00 00 00 00 4c 2a 57 5a N....)...... L*WZ
12 c3 f4 e2 15 31 48 44-ff 9f ab 34 aa 54 91 28 1HM. ..4.T.(
cc 9e 6f 5f 4e a9 b3 d1-f9 29 8c 8d e8 4e O0a c3 ..o_N....)...N..
fa 8d fe 21 ef bc b6 6¢c-10 23 1d 58 60 72 35 42 ...!...1.#.X‘r5B
ac ec 5a 1d e2 45 e9 cc-1b 6¢c 65 41 ba 03 89 6¢c ..Z..E...leA...1

Figure 4.2. ssl3 tag to AES artifact adjacency

59

Searching for the dword “MSSK” with WinDbg led to hits both in writable
space and in a loaded module (as expected for a static magic value). Resolving the
nearest symbols to the magic values within the module led to both insight into the
meaning of MSSK and a tactic that will be employed repeatedly later. All of the
symbols were found in the “beryptprimitives” module and were related to
“MSCrypt” keys. The most interesting symbol name resolved was
“beryptprimitives!validateMSCryptSymmKey.” This was a pivotal revelation for the
analysis: assumption about a structure can be verified to some degree by looking for
a “validate” functions related to that structure. The validate functions encountered
were fairly simple, as can be seen by the disassembly of the

“beryptprimitives!validateMSCryptSymmKey” in Figure 4.3.

0:000> uf Dbcryptprimitives!validateMSCryptSymmKey

beryptprimitives!validateMSCryptSymmKey:

00007ffa‘436a79ac 33c0 xor eax,eax
00007ffa‘436a79ae 4885c9 test rcx,rcx
00007ffa‘436a79b1 740b je beryptprimitives!validateMSCryptSymmKey+0x12 (00007ffa‘“436

a79be) Branch

beryptprimitives!validateMSCryptSymmKey+0x7:
00007ffa‘436a79b3 8179044b53534d cmp dword ptr [rcx+4],4D53534Bh // ascii ’MSSK’
00007ffa‘436a79ba 480f45c8 cmovne rcx,rax

beryptprimitives!validateMSCryptSymmKey+0x12:
00007ffa‘436a79be 488bcl mov rax,rcx
00007ffa‘436a79cl c3 ret

Figure 4.3. Disassembled validateMSCryptSymmKey function (annotated)

It was inferred from this and other symbol names that MSSK likely stands
for “MicroSoft Symmetric Key” or “Microsoft Software Symmetric Key.” This
finding is in-line with discovery of the AES keys within the MSSK structure. The
AES key is actually repeated twice in close proximity, but bulk_extractor (and, by
proxy, findaes) only identified one of the two keys. The reason is that the first value

60

is the actual key, whereas the second “key” exists as part of the (much larger)
identified schedule. As mentioned, the “cold-boot attacks” paper discussed the
observation that schedule pre-calculation produces a large deterministic block as a
time-memory trade-off which, while efficient, also constitutes a security risk by
enabling the type of scanning employed here (Halderman et al., 2008).

Performing the same analysis on the ssl3 tag resolved the symbols listed in
Figure 4.4, all of which were inside of the “ncryptsslp” (Nerypt SSL Provider)
module. There was no “validate” function for ssl3, but the combination of the
symbol names and close proxity to the AES keys provide corroborating
circumstantial evidence that 3lss could be a session key structure, or at the very
least another structure that requires a key (for instance the HMAC or the key used
for session ticket encryption / decryption). Note that the trailing symbols from the
“In” command and miscellaneous hyperlinks have been removed from Figure 4.4 for

brevity.

0:000> .foreach(match {s -[1]a 00007ffa‘00000000 L?800000000000 31ss}){ln match}

(00007£fa‘3£172400) ncryptsslp!TlsGenerateSessionKeys+0x251

(00007ffa‘3£172400)
(00007ffa‘3£173000)
(00007£fa‘3£1735c0)
(00007£fa‘3£173£20)
(00007ffa‘3£173£20)
(00007£fa‘3f1743b0)
(00007£fa‘3£1743b0)
(00007ffa‘3£175440)
(00007ffa‘3£f176b20)
(00007£fa‘3£17c8d4)
(00007ffa‘3f17c8d4)

ncryptsslp!TlsGenerateSessionKeys+0x2aa
ncryptsslp!SPSslDecryptPacket+0x43
ncryptsslp!SPSslEncryptPacket+0x43
ncryptsslp!SPSslImportKey+0x19a
ncryptsslp!SPSslImportKey+0x22b
ncryptsslp!SPSs1ExportKey+0x76
ncryptsslp!SPSslExportKey+0x103
ncryptsslp!SPSslFreeObject+0x1b
ncryptsslp!guard_dispatch_icall_nop+0x1e07*x*
ncryptsslp!Ssl2GenerateSessionKeys+0x22c

ncryptsslp!Ssl2GenerateSessionKeys+0x294

**Missing Symbols for function, nop was closest symbol

The composition of the ssl3 structure and other SSL structures will be

discussed in Section 4.4 of this chapter. Briefly, notice from Figure 4.2 that directly

Figure 4.4. ssl3 resolved symbols

61

after the ssl3 structure, the values “0x0303” and “0x0c28” appear, which match the
public connection parameters listed earlier. The value directly preceding the “ssl3”
magic is a dword indicating the size of the structure, which encompasses the MSSK
structure and adds weight to the supposition that the keys may in fact be session
keys when combined with the symbols, despite the lack of cross-host matches.
Returning to the literature review, it was conceived that, as Schannel is also
loaded into the process requesting the SSL/TLS connection, the 3lss structure may
still be the session key structure, and may be passed to the application after the key
exchange, even though LSASS performs the key isolation for longer-term keys. For
this reason, dumps were made of the RDP processes on either side of the
connection!. This yielded matching 3lss structures, solidifying the circumstantial
evidence that 3lss is the session key structure. The actual structure with the ’3lss’
tag was different in these processes than in LSASS, however. As anticipated, more
than one matching key was found between hosts, presumably for a client write and
server write key. Supporting this is a value which appears to be a flag for read or

write that is set oppositely for matching keys on each side of the connection.

4.3 Public Connection Values

Scanning with the unique public connection values did return hits, but did
not immediately lead to a direct correlation with a key. The session ID and the
client /server random values both appeared in multiple locations in memory across
samples, but did not appear reliably linked to a key in the immediate context. As
will be discussed later, the session ID was eventually linked to the master key.

The client and server random values were seen to be stored concatenated
together, with the client random preceding the server random value. A loose

context for the random values was developed based on the hash suite list, possibly

Imstsc.exe on the client-side and the svchost process that contains the RDP Services on the

server-side of the connection

62

stored in the same structure or allocated at the same time. An example of this
relationship can be seen in Figure 4.5.

The hash suite list appears to be stored in multiple structures, so use of this
list to find the random automatically would be more complex. Misses can be seen in
the output depicted in the figure. In x64 Windows 10 systems, the random values
appear to begin approximately 0xD2 bytes above the first entry in some of the hash
suite lists.

There were also non-aligned instances of individual random values, where it
was stored in close proximity to the hash suite list, appearing alongside what could
be buffered application data. No references to or from either nebulous hash suite list
“structures” were identified, which meant that this was a dead end for further

analysis during the time-frame available.

63

0:000> .foreach(hashSuite {s -[1w]b 0x0 L7800000000000 04 01 05 01 02 01 04 03 05 03 02 03 02 02}){db
${hashSuite}-D2 L40;.echo *x}

0000005e“e67623cO0 56 ba 52 74 9b 13 80 53-02 dc f5 71 ca ab 0d 64 V.Rt...S...q...d

0000005e “e67623d0 6a de dl e5 d4 c7 30 46-98 88 83 90 b9 1b 50 b3 j..... OF...... P.

0000005e¢e67623e0 56 ba 7c a4 b9 e0 c4 87-76 10 ee 27 be b3 33 11 V.|..... v..’..3.

0000005e ‘e67623f0 cd 78 23 0d 4a 84 f8 51-d4 a8 28 le 69 07 32 a6 .x#.J..Q..(.i.2.

*k

0000005e ‘e6767790 56 ba 52 74 41 ca a9 aa-d0 11 e0 7e e0 b7 67 02 V.RtA...... ~..g-

0000005 “e67677a0 81 24 26 cO c9 db 2d 2b-9d Ob 0d 34 04 bd ea 92 .$&...—+...4....

0000005 ¢e67677b0 56 ba 7c a4 83 81 cO 60-a3 5f 3a 6d b3 4d c8 c8 V.|.... ._:m.M..

0000005e¢e67677cO 10 07 41 ff e5 ce ce 17-a0 25 76 4f 9f 20 el 20 ..A...... %v0.

*k

0000005e “e678a248 56 ba 7d Oc 3b 9a 75 54-02 e7 cl1 6a c7 d6 d5 59 V.}.;.uT...Z...Y

0000005e “e678a258 72 5d f4 12 98 b5 c5 5f-8c el 6b 74 ab 6a 25 44 r]..... _..kt.j%D
0000005e ‘e678a268 56 ba 52 dc ce 0f fb 20-61 5d 40 cc 27 2d 33 8e V.R.... al@.’-3.
0000005e “e678a278 1d c3 63 4d b7 ba 60 3b-89 ba 69 d3 2f d8 89 52 ..cM..‘;..i./..R

*%

0000005e ‘e678aed8 56 ba 7c a7 f0 84 1d 9f-49 51 4a 61 41 58 97 bc V.|..... IQJaAX.
0000005e ‘e678ace8 40 a3 53 79 91 4d 8a cb-dl c7 00 8a 77 f6 f5 c6 @.Sy.M...... W...
0000005¢ ‘e678aef8 56 ba 52 77 81 5f df 8d-95 4c 9f 6a dO 47 62 £7 V.Rw .L.j.Gb
0000005e ‘e678af08 b5a 2e 91 4f 5a 87 04 a0-6a 55 0a 01 20 a3 ba 11 Z..0Z...jU

*k
0000005e ‘e7245ca8 56 ba 7c ad 4b fb £3 07-29 00 30 b4 da 42 37 c5 V.|.XK...).0..B7.
0000005e e7245cb8 ba 8b 58 40 e0 9b d9 e7-93 ae 92 2c b2 49 04 8d ..XQ@....... ,-I..
0000005e “e7245cc8 56 ba 52 7d d6 76 9f 9b-d2 52 ce 18 64 el 47 be V.R}.v...R..d.G.
0000005e “e7245cd8 9a 85 c4 cf 38 35 06 68-8f fb 89 58 f6 e6 ce 3585.h...X...5
*ok

0000005€ ¢e72483f0 eb 00 00 00 02 00 00 00-00 00 02 00 00 00 00 00
0000005e “e7248400 eb 00 00 00 00 00 00 00-16 03 03 00 e6 01 00 00

0000005e“e7248410 e2 03 03 56 ba 7d Oc 3b-9a 75 54 02 e7 cl 5a c7 ...V.}.;.uT...Z.
0000005e “e7248420 d6 d5 59 72 5d f4 12 98-b5 cb 5f 8c el 6b 74 a6 ..Yrl..... _..kt.
*%

0000005e “e7258838 00 00 00 00 00 00 08 00-00 00 63 e6 5e 00 00 00 c.”...

0000005e¢e7258848 66 77 04 80 al ff ff ff-16 03 03 00 e6 01 00 00 fw..............
0000005e“e7258858 e2 03 03 56 ba 7d Oc 3b-9a 75 54 02 e7 cl 5a c7 ...V.}.;.uT...Z.
0000005e “e7258868 d6 d5 59 72 5d f4 12 98-b5 cb 5f 8c el 6b 74 a6 ..¥rl..... ..kt

Figure 4.5. Client/Server random values in memory

Scanning with the common public values like glstls version and cipher suite

identifier led to the discovery of another structure, which was later confirmed to be

64

the master key structure. When the ssl3 tag was initially recognized, it seemed as
though it might be a reference to SSL v3, which is sometimes conflated with glstls.
This theory, however, changed rapidly upon scanning for other instances of the
glstls version number, which led to the discovery of the magic value “ssl5” (the

master key).

4.4 Tdentified SSLL Structures

After discovery of the ssl3 and ssl5 tags, all loaded modules were scanned for
other appearances of the ASCII “ssI” appended with a number. This led to the
identification of “ssl1” through “ssl7” inclusive, all of which were found in the
neryptsslp module. These values were then used to scan writable memory for
instantiations, which yielded results for the majority of the magic values. Before
going on to explore those instances, the magic values in the module were
symbolically resolved to gain better insight into the meaning and utility of the
identified instances.

It was at this point that the “validate” functions came back into play; the
neryptsslp symbols were filtered to display those symbols that contain the phrase
“validate” and the results can be seen in Figure 4.6. All of these functions shared a

common flow when disassembled:

1. accept a handle (always a pointer in this case)
2. check that the first dword is a particular size value

3. check that the second dword is a specific magic value

This explicitly ties a given magic to a particular purpose/concept in the TLS
paradigm; further, it dictates the exact size of each structure and that the first two
fields of each are a size followed by a magic. The disassembled
“neryptsslp!SslpValidateMasterKeyHandle” function that illustrates this flow can be
seen in Figure 4.7 and the magic values are mapped to the Validate function in

Table 4.1.

65

0:000> x /2 ncryptsslp!*validate*

00007ffa‘3f17b558 ncryptsslp!SslpValidateEphemeralHandle
00007ffa‘3f17b5b8 ncryptsslp!SslpValidateMasterKeyHandle
00007ffa‘3f1717ec ncryptsslp!SslpValidateProvHandle
00007ffa‘3f17b578 ncryptsslp!SslpValidateHashHandle
00007ffa‘3f17b598 ncryptsslp!SslpValidateKeyPairHandle

Figure 4.6. Neryptsslp “Validate” function symbols

0:000> uf ncryptsslp!SslpValidateMasterKeyHandle

ncryptsslp!SslpValidateMasterKeyHandle:

00007ffa‘3f17b5b8 4885c9 test rcx,rcx

00007ffa‘3f17b5bb 7412 je ncryptsslp!SslpValidateMasterKeyHandle+0x17 (00007ffa‘3
£17bbcf) Branch

ncryptsslp!SslpValidateMasterKeyHandle+0x5:

00007ffa‘3f17b5bd 833950 cmp dword ptr [rcx],50h

00007ffa‘3f17b5c0 7204 jb ncryptsslp!SslpValidateMasterKeyHandle+0x17 (00007ffa‘3
£f17b5cf) Branch

ncryptsslp!SslpValidateMasterKeyHandle+Oxa:

00007ffa‘3f17b5c2 817904356c7373 cmp dword ptr [rcx+4],73736C35h

00007ffa‘3f17b5c9 7504 jne ncryptsslp!SslpValidateMasterKeyHandle+0x17 (00007ffa‘3
f£17b5cf) Branch

ncryptsslp!SslpValidateMasterKeyHandle+0x13:
00007ffa‘3f17b5cb 488bcil mov rax,rcx
00007ffa‘3f17bbce c3 ret

ncryptsslp!SslpValidateMasterKeyHandle+0x17:
00007ffa‘3f17b5cf 33cO xor eax,eax
00007ffa‘3f17b5d1 c3 ret

Figure 4.7. Disassembled ValidateMasterKey function (x64)

The ssl3 and ssl7 magic values did not map to a “validate” function. The
supposed purpose of ssl3 was discussed previously in Section 4.2, and is likely the

session key structure. The ssl7 magic value symbolically resolved in three functions:

66

Table 4.1. Ncryptsslp magic values to function mapping

SSL Magic Size (x86) Size (x64) Function

ssll OxE4 0x130 SslpValidateProvHandle

ssl2 0x24 0x30 SslpValidateHashHandle

ssl3 ? ? < none >

ssld 0x18 0x20 SslpValidateKeyPairHandle
sslb 0x48 0x50 SslpValidateMasterKeyHandle
ssl6 0x18 0x20 SslpValidateEphemeralHandle
ssl7 ? ? < none >

” W

“neryptsslp!SPSslGeneratePreMasterKey,” “ncryptsslp!SPSslGenerateMasterKey,”
and “ncryptsslp! TlsDecryptMasterKey.” It also appeared in a fourth function for
which no symbols existed. Because it was not identified as regularly instantiated
during the various runs of the development phase, and because the master key
structure did regularly appear, this was not pursued within the scope of the analysis.

After enumerating the numbered SSL magics, scanning was performed on the
“C:\Windows\System32\” directory where the majority of operating system DLLs
reside. This was done with a rudimentary “findstr” command, simply to see if other
(non-loaded) libraries referenced these magic values. The only match returned on
the Windows 10 analysis machine was the ncryptsslp.dll file.

With the knowledge gained from the validate functions about the intended
size and purpose of the structures, the actual instantiations in memory were
analyzed to enumerate the members of those structures. The focus was on the
“keys,” beginning with the master key structure (ssl5) and including the presumed
session key structure (ssl3), the “KeyPair” structure (ssl4), and the “Ephemeral”
structure (ssl6).

The most salient, and therefore most explored, of these was the master key.

This structure was eventually leveraged to decrypt connections. Analysis performed

67

on the ssl3, ssl4, and ssl6 structures, was not as thorough or conclusive, but the
fruits of that analysis are also provided here as a basis for future work.

The master key instantiations were identified and dumped via the WinDbg
command in Figure 4.8. Using this method, every identified structure was displayed
separated by a series of asterisks, with the length determined by the size field
(allowing the same command to be portable between x86 and x64 systems). Only
one example instantiation was included for demonstration of the output. All of the

resulting instances were then compared for similarities and known values.

0:000> .foreach(sslMK {s -[1w]d 0x0 L?7800000000000 ’ssl15°}){db ${ss1MK}-4 Ldwo(${ss1MK}-4);.echo

ok Kk Kok kK kKK

0000005€ “e72d2500 50 00 00 00 35 6¢ 73 73-03 03 00 00 00 00 00 00 P...5lss........

0000005e e72d2510 10 18 18 3f fa 7f 00 00-01 00 00 00 35 41 87 dd ...7........ BA..
0000005e “e72d2520 50 81 b2 18 5d b7 ff 7e-c9 db be a8 55 15 99 24 P...]..7....U..$
0000005e ¢e72d2530 a7 cb 8a 3d bf 33 6¢ 0a-a9 57 19 bb 2b 51 3a 36 ...=.31..W..+Q:6
0000005e“e72d2540 c7 7a 3a 9e e5 04 00 39-cd 05 a0 90 00 00 00 00 .z:....9........
seokokok ok sk ok ok sk ok ok

<...>

Figure 4.8. SSL master key instance in memory (x64)

The glstls version was found stored as a dword next to the magic values.
This was verified through experimentation with the glstls version number during
connections. Specifically, by changing the supported server glstls version, one could
articulate the negotiated version for a connection. The version is changed by
modifying registry values located within “HKTL.M
SYSTEM\ CurrentControlSet\ Control\SecurityProviders\SCHANNEL” under an
eponymous subkey, which must be manually created for each SSL or TLS version
desired (Microsoft, 2015e).

If the master key structure were to be represented as a C struct using
Hungarian Notation, as is used in much of the native code accessible on MSDN;, it

would appear similar to Figure 4.9.

68

typedef struct _SSL5_Struct {

ULONG cbLength, // The count in bytes (cb), of the structure

ULONG dwMagic, // a dword (dw) of the ASCII walue ’ssl5’ [stored as ’5lss’]

ULONG dwProtocol, // One of the CNG SSL Provider Protocol Identifier values (TLS Version)
ULONG dwUnknownl, // non-ezistent in 86 -> padding?

PVOID pvCipherSuite, // a pointer to an ncryptsslp!/CipherSuiteList entry

ULONG bIsClient, // boolean wvalue - O for server, 1 for client

UCHAR[48] MasterKey, // the 48-byte master key

ULONG dwUnknown2 // always 0 -> reserved?

} SSL5_Struct, *PSSL5_Struct;

Figure 4.9. SSL master key (ssl5) C data structure

Viewable in the comments within Figure 4.9, there are two unknown

members. Speculatively, the first unknown may have any number of explainations,

including:

e This could be padding for alignment, though the structure appears to be a

packed structure.

e The protocol field may actually be a quadword (8 bytes) in x64 instead of a

dword. This seems unnecessary considering the type of value being stored

e [t could be a dword only existing in x64, but this seems to be the least likely

of the three and the value remains zero across the limited samples observed.

The second unknown appears at the very end and was always observed to be zero.

There was one pointer within the structure, which pointed to a list of cipher

suites inside of the ncryptsslp binary. This list contained entries composed of the

numeric cipher suite identifier (e.g. 0xc028) and a series of pointers to Unicode

strings the described the elements of the cipher suite. The first pointer in the

structure is to the full cipher suite name (e.g.

TLS_ECDHE_RSA_AES_256_CBC_SHA384). This can be seen in Figure 4.10

69

0:000> dc 0000005e ‘e73544d0 L2

0000005¢ ‘ e73544d0

00000050 73736c35

P...blss

0:000> dps 0000005e ‘e73544d0 Ldwo(0000005e ‘e73544d0) /8

0000005e ‘ e73544d0
0000005e ‘ e73544d8
0000005e ‘ 735440
0000005€ ‘ e73544e8
0000005¢ ¢ e73544£0
0000005¢ ¢e73544£8
0000005¢ “e7354500
0000005¢ “e7354508
0000005e “e7354510
0000005¢e “e7354518

73736c35°00000050
00000000 00000303
00007ffa‘3£181810
2993e86¢ ‘00000001
5d4a9b02¢4e8401£2
6bddd58d ‘ eb766£24
bab3633b‘d4cdb1b9
2d3b1142°¢255cd666
01a6a81c‘9af5559e
00000000 °¢73£84d9e

0:000> dpu poi(0000005e‘e73544d0+10)

00007ffa‘3£181810
00007ffa‘3f181818

0000c028¢00000c00
00007ffa‘3f181fc0

ncryptsslp!CipherSuiteList+0x1300

L2

"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384"

Figure 4.10. Dereference of CipherSuiteList entry from sslb

The ssl3 structure maintained certain similarities with the master key

structure. There are substantially more unknown variables and assumptions, but

the first three members are the same, and the fourth known member serves the

same purpose (identifying the cipher suite). Figure 4.11 provides the annotated

structure as observed, but the variables were not directly manipulated to assist in

identification, so in most cases speculations are noted.

Interestingly, only AES keys were identified in this structure when valid,

likely because it is the preferred symmetric algorithm broadly in use. If more time

was available, attempts would be made to generate ssl3 structures with 3DES or

RC4 to observe differences.

70

typedef struct _SSL3_Struct {

ULONG cbLength,
ULONG dwMagic,
ULONG dwProtocol,
ULONG dwCipherSuite,
ULONG dwUnknownl
ULONG cbSymmKey
ULONG cbHashLength,
UCHAR[48] HashData,

MSSK_Struct SymmKey

// the count in bytes

(cb), of the structure (usually 0z027C on x64)

// a dword (dw) of the ASCII walue ’ssl3’ [stored as ’3lss’]

// One of the CNG SSL

Provider Protocol Identifier wvalues (TLS Version)

// numeric cipher suite identifier

// boolean value —— read or write key?

// this value observed to match the size value for MSSK

// the size of the ensuing hash, based on MAC algo

// fized field - if preceding length is not 48 bytes, then O padded

// the associated MSSK Structure

} SSL3_Struct, *PSSL3_Struct;

typedef struct _MSSK_Struct {

ULONG cbLength,
ULONG dwKeyMagic,
ULONG dwUnknown2,
ULONG dwUnknown3,
ULONG dwKeyBitLen,
ULONG cbKeyLength,
UCHAR[32] AesKey,
ULONG dwUnknown4,
UCHAR[448] KeySchedule,
ULONG dwUnknown5,
ULONG cbSchedulelen,
UCHAR[16] Unknown6

// the count in bytes
// °KSSM’ -> MS SK ->
// usually 0202000100
// Typically observed
// the length in bits
// the count in bytes
// the AES key

(cb), of the structure (usually 0z0230 on x64)
MicroSoft Symmetric Key

-> 0z00010002 -> NCRYPT_SCHANNEL_INTERFACE?
as 1

of the AES key, usually 0z100 or 0z80

of the AES key (compliments below field)

// always 0 -> padding?

// fized length - the

AES Key Schedule or state for each round, 0 padded

// Half of the length, equivalent to N_state * N_rounds

// Overall size of KeySchedule member

// Possibly an IV? this seems likely

} MSSK_Struct, *PMSSK_Struct;

Figure 4.11. LSASS SSL session key (ssl3) data structure

As discussed in the literature review, the key schedule size is fixed for each

AES key size (176, 208, or 240 bytes). So, for an AES 256-bit key, the schedule is

240 bytes long; however, the length of the expanded key sequence that
bulk_extractor identified is seemingly 448 bytes long for AES 256 and 320 for AES

128 keys, zero padded in the case of the latter. Incidentally, this was observed to be

32 bytes multiplied by the number of rounds, which would equate to twice the size

of the state for each round. The first N,(V, 4+ 1) x4 bytes were determined to match

the key schedule by passing the identified key to an AES implementation and

printing the key schedule. This intuitively is why bulk_extractor identified the keys

71

in the first place. Still, this leaves 208 bytes remaining in the case of AES 256. Of
note is that the last 16 bytes (Nge is always 128 bits) are always the first 16 bytes
of the key (and by extension the first 16 bytes of the key schedule).

It was also observed that two dwords typically followed the key schedule,
both of which were related to size. The first dword containing the size of the
Nistate(Nroundas) and the second was double that value, coinciding with the size of the
full “KeySchedule” blob.

As noted earlier, the session key structure (3lss) was also found in the
requesting process memory, RDP in this case. This structure was similar to the one

found in LSASS, but varied in several obvious ways.

e The first is that the cipher suite ID was replaced with a pointer to the
ncryptsslp!CipherSuiteList entry that the cipher suite ID appears in.

e The second was that the structure appeared far less sparse, with pointers that
referenced addresses within its own size value.

e The third was the the “RUUU” magic value appeared inside ssl3 and pointed
to the MSSK structure directly below it, also inside ssl3

An example of the first 0x100 bytes of one of these entries can be seen in
Figure 4.12. Following that, the perceived structure, based on limited testing, is

depicted in the Volatility V-Type format in Figure 4.13.

72

0:000>
*k
000001ef ‘b9dlaled
000001ef ‘b9d1alf0
000001ef ‘b9d1a200
000001ef ‘b9d1a210
000001ef ‘b9d1a220
000001ef ‘b9d1a230
000001ef ‘b9d1a240
000001ef ‘b9d1a250
000001ef ‘b9d1a260
000001ef ‘b9d1a270
000001ef ‘b9d1a280
000001ef ‘b9d1a290
000001ef ‘b9d1a2a0
000001ef ‘b9d1a2b0
000001ef ‘b9d1a2cO
000001ef ‘b9d1a2d0
*k

<...>

.foreach(sessK {s

2e 0d 00 00 33 6¢c
90 19 57 d8 fc 7f
50 a2 d1 b9 ef 01
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

70 a2 d1 b9 ef 01
80 Oc 00 00 4b 53
10 00 00 00 01 00
30 bl e5 bb ef 01
00 00 00 00 00 00
O0a 27 33 62 0d 92
70 d4 b5 ab 08 18
b9 £0 65 ef Oa 27

0:000> dps 000001ef ‘b9dlalel L5

000001ef ‘b9dlaled
000001ef ‘b9dlale8
000001ef ‘b9d1alf0
000001ef ‘b9d1alf8
000001ef ‘b9d1a200

73736¢3300000d2e
00000000 00000303
00007ffc‘d8571990
00000000 00000001
000001ef ‘b9d1a250

73
00
00
00
00
00
00
55
00
53
00
00
00
3d
d6
33

73-03
00-01
00-00
00-ff
00-00
00-00
00-04
55-20
00-00
4d-02
00-00
00-00
00-20
2a-1e
£8-d8
62-0d

-[1wla 0 L7800000000000

31ss}){.echo **;db ${sessK}-4 L100}

00
00
00
62
00
00
00
c8
00
01
00
00
00
24
1d
3d

00
00
00
2b
00
00
00
bb
00
00
00
00
00
3b
07
2a

00
00
00
00
00
00
00
01
00
00
00
00

1d
00
ba

00
00
00
00
00
00
00
00
00
00
00
00
ef
a8
00
3b

ncryptsslp!CipherSuiteList+0x1400

Figure /.12. Non-LSASS SSL session key (ssl3) data structure

73

’_SSL_SESSION_KEY’: [0x0d2e, {
’Length’: [0x0, [’unsigned long’l],
’Magic’: [0x4, [’unsigned long’l],
’Protocol’: [0x8, [’unsigned char’]l],
’CipherSuite’: [0x10, [’pointer64’, [’_SSL_CIPHER_SUITE_LIST_ENTRY’1]],
’IsWriteKey’: [0x18, [’Enumeration’, dict(target = ’unsigned long’, choices={0: False, 1: Truel})
11,
’BeryptKey’: [0x20, [’pointer64’, [’void’11],
// RUUU Bcrypt Key struct pointed to by pointer
// MSSK struct pointed to by RUUU
}

Figure 4.13. Non-LSASS SSL session key (ssl3) V-Type data structure (x64)

The final key structures to be discussed in this section are ssl4 and ssl6.
These two structures contain identical members, which is logical when considering
that ssl6 appears to be the ephemeral version of ssl4 (the Public/Private key pair).
In the case of a cipher suite like TLS_.ECDHE_RSA_AES_256_CBC_SHA384, both
the ssl4 and ssl6 structures should exist, as an ephemeral key pair is created for the
key exchange and the persistent key is used for signing. Because the two are so
similar, they will be discussed simultaneously with deviations contrasted as

appropriate. The manifested C structures can be seen in Figure 4.14.

74

typedef struct _SSL4_Struct {

ULONG cbLength, // The count in bytes (cb), of the structure

ULONG dwMagic, // a dword (dw) of the ascit value ’ssl6’ [stored as ’6lss’]
ULONG dwUnknownl, // usually 0z01000300 -> 0x00030001

ULONG dwUnknown2, // always 0 -> padding?

PVOID pvKspProvider, V4

PVOID pvKspKey v

} SSL4_Struct, *PSSL4_Struct;

typedef struct _SSL6_Struct {

ULONG cbLength, // The count in bytes (cb), of the structure

ULONG dwMagic, // a dword (dw) of the ascii value ’ssl6’ [stored as ’6lss’]
ULONG dwUnknownl, // usually 0z0003000a or 0z00030007

ULONG dwUnknown2, // always 0 -> padding?

PVOID pvKspProvider, V4

PVOID pvKspKey v

} SSL6_Struct, *PSSL6_Struct;

Figure 4.14. SSL ephemeral key (ssl6) and key pair (ssl4) C data structures

The two pointers in the structure both reference an interstitial structure,
containing a header and series of pointers. The author named “KspProvider”
pointer eventually points to the Unicode string “ncryptsslp.dll” and the binary of
that module.

The second “KspKey” pointer is so named because the interstitial structure
it references then itself points to another data structure with the magic value
“KPSK,” or “KSPK” in Big Endian. Following the same procedures employed
previously, it was found that all KSPK references occur inside of “ncryptprov.dll,”
and a validate function exists named “KspValidateKeyHandle.” Microsoft’s CNG
documentation suggests that “KSP” refers to “Key Storage Provider” (Microsoft,
2014b), which seems to be logical in this context.

0:000> .foreach(srvK {s -[wi]la 0 L780000000000000 41ss}){.echo **ServKey**;dpp ${srvK}-4 L4}

*xServKey**

0000005¢ ‘ €725e840
0000005¢ ‘ e725e848
0000005€ ‘ €725e850
0000005¢ ‘ €725e858
xServKey

0000005¢ “e72c£9c0
0000005¢ ‘e72cf9c8
0000005¢ ‘e72¢£9d0
0000005¢e ‘e72c£9d8

73736c3400000020
00000000¢00030001
0000005e ‘e72141a0
0000005e ‘e725d710

73736c34°00000020
00000000°00030001
0000005e ‘e72141a0
0000005e ‘ e72£8e50

0:000> dpp 0000005e ‘e72f8e50 L4

0000005€ ‘e72f8e50
0000005¢ ‘e72f8e58
0000005€ ‘e72£8e60
0000005€e ‘e72f8e68

00000000 ¢ 44440002
0000005e ‘e72141a0
0000005e ‘ €720bd20
0000005e ‘e72£8e70

0:000> dc 0000005e‘e720bd20 L2

0000005e “e720bd20

00000208 4b53504b

0000000344440001
00000000 ‘44440002

0000000344440001
00000000 ‘44440002

0000000344440001
4b53504b ‘00000208
00650053°00530054

....KPSK

0:000> dpu 0000005e ‘e720bd20 Ldwo (0000005e ‘e720bd20) /$ptrsize

0000005€ ¢e720bd20
0000005€ “e720bd28
0000005€ “e720bd30
0000005€ “e720bd38
0000005e ‘e720bd40
0000005€ “e720bd48
0000005€ “e720bd50
0000005e “e720bd58
0000005¢ ¢e720bd60

<.l

4b53504b ‘00000208
0000005e ‘e72cfaal
0000005e ‘e72f4cb0
00000800°00000001
00000000°00000001
00000001 “Q0ffffff
0000005e ‘e72£b920
00007ffa‘366e6a90
0000005e ‘e72cfbcO

"TSSecKeySet1"
"f686aace6942fb7f7ceb231212eef4ad_£928a10b-2557-4456-b0e"

"Microsoft Strong Cryptographic Provider"

1 "

"C:\ProgramData"

Figure 4.15. SSL key pair (ssl4) provider Dereference

The author was able to further identify the encrypted private key blob from
this structure by taking the known key file from disk for RDP and comparing it to a
DPAPI blob that one of the pointers referenced (at offset 0xd0 on 64-bit systems
and 0x7c¢ on 32-bit systems in KPSK structures that were pointed to by ssl4
structures. This is only mentioned anecdotally, as only RDP was tested, so its
possible that other private keys may appear elsewhere in the structure. An example

of the first part of the DPAPI blob (matching what was on disk) can be seen in

76

Figure 4.16. The equivalent was not true of KPSK structures pointed to by ssl6 (the

ephemeral key pair).

0:000> .foreach(ephemK {s -[1w]a 0 L?80000000000000

$ptrsize))+(2*$ptrsize))+d0) L100}

* %

0000005e“e678ec70 01 00

0000005e“e678ec80 4f c2

0000005e‘e678ec90 83 4b

0000005e “e678ecal 43 00

0000005e“e678ecb0 49 00

0000005e‘e678eccO 65 00

0000005e“e678ecd0 00

41

01
0000005¢ “e678ecel

0000005e‘e678ecf0 38 78

0000005e “e678ed00 00 02

0000005e‘e678ed10 d8 aa

0000005e‘e678ed20 20 11

0000005e“e678ed30 9d 28

0000005e“e678ed40 cl bb

0000005e‘e678ed50 48 54

0000005e“e678ed60 88 7b
*ok
0000005e‘e678e600 01

4f

00

0000005e“e678e610 c2

0000005e‘e678e620 83 4b

0000005e“e678e630 43 00

0000005e‘e678e640 49 00

0000005e‘e678e650 65 00

0000005e¢e678e660 00 01

0000005e¢e678e670 41 fd

0000005e“e678e680 38 78

0000005e“e678e690 00 02

0000005e‘e678e6a0 d8 aa

00
eb
20
00
00
00
00
4a
c3
00
b9
98
31
ca
67
de

00
eb
20
00
00
00
00
4a
c3
00
b9

do
01
12

50
4b
20
1d
ds
20

9d
ee
dsg
fc

9d
00
67
70
72
65
00
61
Te
00
e8
68

39
11
32

9d
00
67
70
72
65
00
61
Te
00
e8

df-01
00-81
94-04
00-74
00-69
00-79
00-ac
77-64
2a-00
00-b3
c1-19
67-50
eb-d4
35-4c
66-c5
36-78

df-01
00-81
94-04
00-74
00-69
00-79
00-ac
77-64
2a-00
00-b3
cl-19

d1
1f
00
6f
76
00
d9
51
00
99
ab
00
0
od
5
e4

d1
1f
00
6f
76
00
49
51
00
99
ab

41ss}){.echo **;db poi(poi(poi(${ephemK}-4+8+ (2%

11
3d
00
00
00
00
c9

00
58
f4
00
04
20
96
29

11
3d
00
00
00
00
c9
10
00
58
f4

Ta
c8
00
00
00
66
ce
el
80
4c
49
daf
ed
d3
c3
43

Ta
c8
00
00
00
66
ce
el
80
4c
49

46
00
00
00
00
ds8
fe
00
55
69
93
ch5
a0
Oa
de

c0
46
00
00
00
00
d8

00
55
69

C.r.y.p.t.o.A.P.
I. .P.r.i.v.a.t.

e. .K.e.y....f..

8x0...7%........

C.r.y.p.t.o.A.P.
I. .P.r.i.v.a.t.

e. .K.e.y....f..

8x0...7%........

Figure 4.16. Dereferenced KSPK private key DPAPI Blob

7

4.5 Confirming the master key

In order to verify that the 5lss structure was indeed the master key, a quick

test was performed. Briefly, the process was as follows:

1. Wireshark was started on Kali Linux

2. xfreerdp was launched to connect to the target through Peter Wu's sslkeylog
bash wrapper

3. the library pre-loaded by the script transparently dumped the pre-master key
to a file

4. a process dump of LSASS was created on the target

5. the process dump was searched with HxD for the pre-master key from the file

This did confirm that the master key was in memory, and that it was stored in the
sslb structure. This step was only performed once, and is not necessary to validate
findings. It is included here solely as a demonstration of another approach for

verification.

4.6 Mapping master keys to session IDs

The analysis up until this point had not yielded a master key paired to a
unique public value for a given session, which is required to decrypt the session. The
master key structure only had a single pointer, which did not provide an avenue to
one of these unique values. For this reason, the approach was taken to inversely walk
the pointers by scanning for references to instantiated master key memory addresses.

Scanning for pointers to master key structures was successful and led to
identification of a new interstitial structure in a different module. Specifically, every
master key was pointed to by a single structure with the Magic value “BDDD.”

Leveraging the methods employed previously, BDDD was noted to appear in
the Nerypt module, and a “validate” function for this structure was identified: the
“nerypt!ValidateSslKeyHandle” function. Two other validate functions existed, one

for the Hash (CDDD) and the other for the Provider (ADDD).

78

The BDDD structure will be referred to as the “NeryptSslKey” structure for
distinction. The NeryptSslKey structure bears resemblance to the ssl4 and ssl6
structures, constituted mainly by the size, magic, and two pointers. The first
pointer is to the key structure, and the second is to an NeryptSslProvider (ADDD).

Armed with this information, the BDDD magic was used to scan memory for
additional key instances. This endeavor yielded several new NeryptSslKey instances
in addition to those found pointing to the master key structures. Dereferencing the
key pointer in all of the identified NeryptSslKeys led to the output depicted in

Figure 4.17, which clearly shows ssl4, ssl5, and ssl6 key structures being referenced.

0:000> .foreach(nKey {s -[1wla 0 L?800000000000 BDDD}){db poi(${nKey}-4+10) L10;}

0000005e¢e72d2500 50 00 00 00 35 6¢c 73 73-03 03 00 00 00 00 00 00 P...Blss........
0000005e ‘e73544d0 50 00 00 00 35 6¢ 73 73-03 03 00 00 00 00 00 OO P...5lss........
0000005e ‘e725e840 20 00 00 00 34 6¢ 73 73-01 00 03 00 00 00 00 00 R =
0000005e‘e72fab20 50 00 00 00 35 6¢ 73 73-03 03 00 00 00 00 00 OO P...5lss........
0000005e‘e72c£580 20 00 00 00 36 6¢ 73 73-0a 00 03 00 00 00 00 00 ...Blss...... ..
0000005e ‘e72fbba0 50 00 00 00 35 6¢ 73 73-03 03 00 00 00 00 00 00 P...5lss........
0000005e¢e72fb790 50 00 00 00 35 6¢ 73 73-03 03 00 00 00 00 00 00 P...5lss........
0000005e‘e72c£d60 20 00 00 00 36 6¢ 73 73-0a 00 03 00 00 00 00 00 ...Blss...... ..
0000005e‘e72cf9c0 20 00 00 00 34 6¢ 73 73-01 00 03 00 00 00 00 00 ...41lss...... ..
0000005e¢e72£fd770 50 00 00 00 35 6¢ 73 73-03 03 00 00 00 00 00 00 P...5lss........
0000005e¢e73551f0 50 00 00 00 35 6¢ 73 73-03 03 00 00 00 00 00 00 P...Blss........

Figure 4.17. NeryptSslKey instances Dereferenced (x64)

After exhausting the two pointers in the NeryptSslKey structure, another
pointer scan was performed with the addresses of the NeryptSslKeys associated with
master keys. This consistently led to at least one, but sometimes more than one,
pointer to those NeryptSslKeys instances. The context around these pointers was
inspected, which did not yield any magic values but did lead to consistency
denoting a managed structure and an important finding — a unique public value.

Values heuristically matching the session 1D pattern were spotted reliable at
0x70 bytes below one pointer to every NeryptSslKey that pointed to a master key.

As discussed in the Checkoway paper, each of these values had two sets of zeros in

79

the third and fourth position due to a peculiarity in the session ID generation
mechanism employed by Windows (Checkoway et al., 2014). One of these suspected
IDs matched the session ID from the test connection, confirming this speculation.
Figure 4.18 shows an example of mapping master keys to session IDs by pointer
scanning, and then dumping the session ID. Extraneous pointers are filtered on the
loose fingerprint of two non-zero bytes followed by two zero bytes in the first dword

of the possible session ID.

0:000> .foreach(sslSess {.foreach (BDDDPoi {.foreach(sslbKey {s -[1w]d 0x0 L7800000000000 ’ss15’}){s
-[11q 0x0 L7800000000000 ${ssl1l5Key}-4;}}){s -[11q 0x0 L?80000000000 ${BDDDPoi}-10}}){.if (dwo (${
sslSess}+78) < 0x00010000 & dwo(${sslSess}+78) >= 0x00000101){db ${sslSess}+78 L20;.echo ***}}

0000005e ‘e72e5c08 78 1f 00 00 f3 50 8a 72-39 87 ba 3b cb 15 fb 48 x....P.r9..;...H
0000005e ‘e72e5c18 a8 1d 89 61 dl 94 b0 15-eb 64 b5 4f 05 a0 ad 3d ...a..... d.0...=
*okok

0000005e ‘e72e5ac8 29 2b 00 00 c6 6f 97 9b-ald £8 eb 44 26 01 79 £3)+...0..... D&.y.

0000005¢ ‘e72e5ad8 82 f4 66 cc ae ac 81 d5-d6 e2 97 e5 11 90 bf 27 ..f............ ’
*okok
0000005e‘e72f£fd78 d4 17 00 00 da 09 f8 59-67 39 21 5e 21 6¢ 49 65 Ygo!~!1lIe
0000005e“e72ffd88 68 fa 66 e4 2a c3 2b 97-4d 44 09 49 df £f3 3d 2b h.f.*.+.MD.I..=+
*okok
0000005e ‘e67fe1d8 b9 3c 00 00 al 10 69 Ob-4a e9 11 1b ce 57 25 c6 .<....i.J....Wh.
0000005e ‘e67fele8 c4 7a 03 7b 3c 39 c4 9¢c-75 ce 51 el c2 eb 79 ee .z.{<9..u.Q...y.
*okk
0000005e ‘e72fe508 43 2a 00 00 bf 4f 62 2f-0f cl1 19 97 4a Oe f3 Oc C*...0b/....J...
0000005e‘e72fe518 d8 38 c3 a0 25 b8 3a bb-dc db ce 7b 23 25 d2 d9 .8..%.:....{#%..
*okk
0000005e “e72e5fc8 b0 17 00 00 9c c4 95 44-a9 0d 12 97 a9 e3 c8 10 D........
0000005e‘e72e5fd8 7c d4 2f 3a 82 Ob 6f f7-6d 62 25 45 26 93 df f1 |./:..o.mb%E&...
Hokk
0000005e‘e72e5988 6f 23 00 00 a0 21 aa c4-8d 15 54 45 24 c1 45 4e o#...!....TE$.EN
0000005e‘e72e5998 4e cO 1d 5a db 30 5d 8d-9d 57 ab 2b 99 1d d5 97 N..Z.0]..W.+....

kkk

Figure 4.18. Master key to session ID mapping

The pointer addresses that did have seemingly valid session IDs below them
were then explored and compared to identify a possible structure. This showed that,

consistently, a pointer appeared directly before the NerypSslKey pointer that

80

referenced an offset into the Schannel module. The remainder of the analysis

regarding this new structure is discussed in the ensuing section.

4.7 SSL Session Cache Items

Symbolically resolving the memory address of the pointer above the reference
to the master key revealed that it was the “vftable” for a class inside of the schannel
module. In fact, it was vftable symbols of two different classes:
“CSslCacheClientItem” and “CSslCacheServerltem.” These names follow the
internal Microsoft use of Hungarian Notation by prefixing classes with a capital “C”
(Microsoft, n.d.-b, n.d.-g). The class names themselves are descriptive, revealing
both whether the host was the client or server of a given connection, and that the
structures identified are in fact part of a cache, likely maintained to enable session
resumption.

“Vftable” is a reference to the Virtual Function Table, sometimes also
abbreviated “vtable.” In appears that in C++ binaries compiled with MSVC,
virtual function tables are often the first item stored for a class instantiation in
memory (Microsoft, n.d.-i). This means that one could parse PDBs for vftable
entries, find classes of interest, and use the vftable symbol for the class to scan for
instantiations of the class as a method for reversing.

Following the process employed when discovering the NeryptSslKey, scanning
was performed for the SslCacheServerltem and SslCacheClient Item to enumerate
any instantiations not yet identified. This did not return additional results, giving a
strong indicator that a master key may exist for every SslCache item. This creates
an opportunity to scan for the class, dump the session ID and simply deference the
pointers to the master key, a process depicted in Figure 4.19. The added context of
“Client” or “Server” is echoed in the output as well, and only two entries for each

are shown for brevity, with missing entries being replaced by an ellipses.

81

0:000> .foreach(cacheSess {s -[wl]lq 0x0 L?800000000000 schannel!CSessionCacheServerItem:: ‘vftable’}){.

echo **SERVER*x*x*x*x**; echo **SessID**;db ${cacheSess}+88 L20;.echo **MasterKey**;db poi(poi (${

cacheSess}+10)+10)+1C L30};.foreach(cacheSess {s -[wllq 0x0 L?800000000000 schannel!

CSessionCacheClientItem:: ‘vftable’}){.echo **CLIENT*********; K echo **SessID**;db ${cacheSess}+88

L20; .echo **MasterKey**;db poi(poi(${cacheSess}+10)+10)+1C L30}

*k SERVER % % %k %k k
SessID
0000005¢ ‘e67fe1d8
0000005¢ ‘e67fele8
**MasterKey*x*
0000005¢ ‘e72fbbbc
0000005e ¢ e72fbbcc
0000005e ‘e72fbbdc
<...>

#k SERVER s ks sk k ok
**SessID*x*
0000005¢ “e72f£d78
0000005¢e “e72££d88
**MasterKey*x*
0000005¢ ‘e72fb7ac
0000005€e ‘e72fb7bc
0000005¢e ‘e72fb7cc
#k CLTENT sk sk kok sk ok
**SessID*x*
0000005¢ “e72e5988
0000005¢ “e72e5998
**MasterKey*x*
0000005€ ¢e735520c
0000005€e “e735521c
0000005¢ “e735522¢
#kCLIENT** ko %k kok
**SessIDx*
0000005¢ ‘e72e5ac8
0000005¢ ‘e72e5ad8
**MasterKey*x*
0000005€e ‘e72fab3c
0000005€e ‘e72fab4c
0000005€e ‘e72fabbc

<. LW

b9
c4

bc
9a
23

d4
68

44
23
15

6f

8b
d4
do

29
82

8a
83
9f

3c
Ta

28
b4
£3

b5
b7
95

23
c0

c9
53
66

2b

4

74
fe

00
03

46
3e
db

00
1d

e9
b8
6a

00

66

2d
6d

00
7b

79
51
e0

00
e4

be
87
4c

00
ba

df
ce

ad

00

cc

06
87
72

a0
db

c6

ae

53

60

10
39

3e
ds
5b

6f

ac

29
cl
d4

69

9f
6e
30

2b

2e
29

aa

5d

3c
38
e2

97
81

d5
9d
48

Ob-4a
9c-75

d3-fd
01-45
d7-86

59-67
97-4d

a9-ad
7b-25
Ob-£f2

c4-8d
8d-9d

bf-53
9e-9c
25-8f

9b-a0
d5-dé

c6-el
34-a4
55-0c

11
51

a2
12
db

21
09

fb
ac

f4

54
ab

e8
59
b9

eb
97

c8
3a
15

46
0b
Ta

Se
49

£8

42
68

45

2b

4c

25

44

eb

52

ea

43

ce

42
a9
b6

21
df

b6

8d

24

68
9

26
11

db

ea

57
eb

cb
8a
6f

6¢c
£3

3b
7
e0

cl

97
97

01
90

d9
db
ds

79

d9
1c

49
3d

93
c8
b7

45
ds

do
a7

bf

d1i
4b
90

c6

ee

3b
32
18

65
2b

2b
el

aa

de
97

7b
c8
17

£3
27

4c
c8
9d

....... Yg9!~!1lIe
h.f.*.+.MD.I..=+

3 HI S
#.....){%>.Bxw. .
L?...... h
o#...!....TE$.EN

N..Z.0]..W.+

.S5....8..6Y.....

Figure 4.19. Schannel CSslCacheltem parsing (x64)

82

Being able to scan once and then reference the pointers forward is far more
efficient than scanning multiple times to walk the pointers inversely, however, it
relies on symbols. The symbols, in this case, simply provide an offset from the base
of the image to the address where the vftable can be found (in the .rdata section of
Schannel). The difficulty is that this offset cannot be statically referenced due to
the mutability of the vftable location, which can change with every version of
Schannel. The Schannel dll may be arbitrarily updated for any number of reasons,
causing variations even within a given Windows release. The implications of this for
the main memory analysis suites will be discussed in a later section.

The SslCacheServerltem and the SslCacheClientItem differ in length and
composition, as expected. One interesting artifact of the SslCacheClientItem is a
pointer to the public certificate for the connection that appears directly after the
pointer to the master key, providing additional context about the other end of the
connection. There is also a pointer to the Unicode server name, though this value
can also be empty. The total size of each class, while technically unknown, has been
roughly estimated through comparison of many instantiations across samples to be
approximately 0x140 bytes.

Time constraints and the the ability to map the master key to the session 1D
meant that full enumeration of the members of these classes was left for future
work. The members that were identified are shown in Figure 4.20. Because there
are a large number of unknowns, Figure 4.20 depicts the known values in the
Volatility VType format, which provides a structure length, then members with an

offset into the structure and a data type.

83

’ _SSL_SESSION_CACHE_CLIENT_ITEM’: [0x140, {
’ClassVftable’: [0x0, [’pointer64’, [’void’]]],
’MasterKey’: [0x10, [’pointer64’, [’void’11],
’PublicCertificate’: [0x18, [’pointer64’, [’void’]]l],
’PublicKey’: [0x28, [’pointer64’, [’void’]]],
’NcryptSslProv’: [0x60, [’pointer64’, [’void’]1]l],
’SessionID’: [0x88, [’array’, 0x20, [’unsigned char’l]],
’ServerName’: [0xf8, [’pointer64’, [’void’11],
’SessionTicket’: [0x128, [’pointer64’, [’void’]]]
’CSessCacheManager’: [0x110, [’pointer64’, [’void’]]]

}

’ _SSL_SESSION_CACHE_SERVER_ITEM’: [0x140, {
’ClassVftable’: [0x0, [’pointer64’, [’void’]]],
’MasterKey’: [0x10, [’pointer64’, [’void’11],
’NcryptSslProv’: [0x60, [’pointer64’, [’void’]]],
’SessionID’: [0x88, [’array’, 0x20, [’unsigned char’]]],
’CSslCredential’: [0xf0, [’pointer64’, [’void’]]]

}

Figure 4.20. Schannel CSslCacheltem V-Types (x64)

One point of note is that the cache may not always contain a session ID, but
may instead reference a session ticket if it is a client cache. This was first noticed
during a brief test that was not originally going to be included in the thesis. Skype
was installed in a Windows 10 target to identify whether or not it leveraged the SSL
Cache. This may sound odd considering Skype is a Microsoft product, but Skype
was an acquisition, not developed internally, and so logically may not have used
Schannel.

This led to very interesting results: Skype, when launched, did leverage the
cache, but entries appeared for the CSslCacheClientltem which had a null session
ID. This is because those sessions used Ticket-based session resumption. A pointer
to the ticket seems to be located at 0x128 into the structure on x64 systems

examined. This was then verified through examination of the

84

“schannel!CSessionCacheClientItem::SetSessionTicket” function, which uses this
address.

An unexpected discrepancy was noted amongst the ticket-based cache items:
multiples of the same ticket existed for different cache entries, but mapped to
different master key values. Intuitively, this is not possible for successful cache
operation; the ticket is meant to be unique, and contains the master key as part of
the state within the ticket. By virtue of a sound encryption scheme, different
masker keys would necessitate a different ticket, as a single bit changed in the
plaintext state would cause a massive change in the ciphertext.

Wireshark can decrypt sessions that employ session tickets, but it does so by
mapping them to the client random. Because the session cache does not appear to
maintain a relationship with the client random (as, after all, it used the ticket for a
unique identifier and it caches the master key that was derived with the client
random), this means that manual decryption of items using session tickets is
currently required. It would be feasible, though outside the scope of this thesis, to

programmatically enable this by extending Wireshark through its scripting engine.

4.8 Schannel Classes

Extrapolating from the use of the vftable symbol as a class marker, the
Schannel symbols were searched for other vftable symbols to enumerate classes,
which yielded several classes of interest. There were two entries containing the word
“Key”: “CSslServerKey” and “CSslEphemKeyData.” Noting the similarity to 4lss
and 6lss respectively, this was investigated.

The first entry in CSslServerKey after the vftable pointer was a pointer to an
NeryptSslKey that in turn pointed to a 4lss struct. Similarly, the first entry in
CSslEphemData after the vftable pointed to an NcryptSslKey that pointed to a 6lss

struct.

85

Another set that were interesting were those that used the term
“Credential.” Two classes with this in the title had interesting names:
“CSslCredential” and “CCredentialGroup,” both of which had instantiations that
were memory resident. A pointer to CSslCredential was found within the
CSslCacheServerltem structure. A pointer to CCredentialGroup was found inside of
another identified class: “CSchannelTelemetryContext.” This telemetry class was
found to also contain the session ID (when session tickets were not employed), but it
did not reliably exist across samples. In addition to the session ID, this class was
observed to contain the glstls version, cipher suite, and the Server Name Indicator,
amongst other values. It seems, purely speculatively, that it may exist for active
connections, though this is truly anecdotal.

The “CSchannelTelemetryContext” class, when present, also pointed to

either “CSchannelClientTelemetryContext” or “CSchannelServerTelemetryContext.”

4.9 Schannel Parameters

While looking at the Schannel binary, several strings of interest were found
in the .rdata section. Nominally, the following three string contained the text
“cache,” bearing possible relation to the classes discovered previously:
“ClientCacheTime,” “ServerCacheTime,” and “MaximumCacheSize.”

As the strings are resident in the so-named “read-only data” section of the
binary, it seemed that they may not be variables to be modified, but possibly used
as a comparator against something like a registry key (e.g. as an existence check of
a regisrty value that overrides the default value). The strings were also reminiscent
of the “hard-coded” values alluded to by Checkoway and others in their Dual EC
paper. They specifically note that “SChannel caches ephemeral keys for two hours
(this timeout is hard-coded in the configurations we examined)” (Checkoway et al.,
2014, p. 8) and referenced a value of 20,000 when discussing the generation of

session IDs (Checkoway et al., 2014, p. 9).

86

Searching MSDN revealed that these values are indeed registry settings, with
default values that can be overridden (Microsoft, 2015e). A section defining the

ClientCacheTime setting contains the following excerpt:

The first time a client connects to a server through the Schannel SSP, a
full glstls handshake is performed. When this is complete, the master
secret, cipher suite, and certificates are stored in the session cache on the

respective client and server. (Microsoft, 2015e, p. 1)

This statement corroborates the independent findings of the thesis.
Table 4.2 contains the default values for the Client/Server cache time, per

Microsoft’s documentation (Microsoft, 2003b, 2015e):

Table 4.2. Client and server SSL cache time

OS Version ClientCacheTime ServerCacheTime
Windows 8.1 10 Hours 10 Hours
Windows Server 2012 R2 10 Hours 10 Hours
Windows 8 10 Hours 10 Hours
Windows Server 2012 10 Hours 10 Hours
Windows 7 10 Hours 10 Hours
Windows Server 2008 R2 10 Hours 10 Hours
Windows Vista 10 Hours 10 Hours
Windows XP 10 Hours 10 Hours
Windows 2000 SP2 10 Hours 10 Hours
Windows 2000 SP1 2 Minutes 2 Minutes
Windows NT 4.0 SP6a + Q265369 1 Hour 5 Minutes
Windows NT 4.0 SP6a 2 Minutes 2 Minutes

These default values can also be found in the .rdata section of the binary.

Searching for the dword 0x00004€20 (20,000) in Schannel matched exactly on the

87

symbol “schannel!CSslGlobals::m_dwMaximumEntries.” Likewise, searching for the
dword 0x02255100 (10 hours in milliseconds) returned exact matches on the
symbols “schannel!CSslGlobals::m_dwSessionTicketLifespan,”
“schannel!CSslGlobals::m_dwServerLifespan,” and
“schannel!CSslGlobals::m_dwClientLifespan.”

The outcome is that a captured connection created using Schannel, even if it
uses an ephemeral key exchange, can be decrypted by plundering the cache entry of
either party up to 10 hours after the connection was initiated, for up to 20,000
entries. It also means that the loose fingerprint present for Schannel-generated
session IDs can be altered by creating the registry key that overrides the cache size

and setting it to something other than 20,000.

4.10 Scanning Physical Memory

After exhausting those master key entries within the LSASS process space,
scanning was then performed on the physical address space with bulk_extractor’s
lightgrep scanner. Interestingly, about twice as many seemingly valid SSL structures
appeared. About half of these were duplicates of known master keys, but some were
unique to those found within LSASS. Those not resident in the LSASS process
space (i.e. the other structures) were not aligned on 32-bit or 64-bit boundaries
(respective of the system), whereas those that were identified in the LSASS process
space were byte aligned. Volatility was leveraged to scan all other processes in the
same memory image for instances of the ssl5 struct, but did not return the results

that were identified with bulk_extractor from physical memory.

4.11 Automating Extraction

While the WinDbg one-liner is a semi-automation solution, it isn’t can’t be
applied across other memory samples without significant alteration to the sample.

To that end, the Volatility and Rekall frameworks were leveraged to make the PoC

38

flexible. Rekall was initialy favoured for development because of its philosophical
approach and embrace of symbols; however, during some preliminary examinations,
Rekall would not parse the test Windows 10 VMEM files correctly, whereas Volatiliy
did. This could be due to some peculiarity of the testers environment, however, the
latest release version and master branch from the projects git repository were tested
on Windows, Linux, and Mac environments to the same effect.

Volatility was extended through a plug-in that dumps the session IDs and
master keys into the format that Wireshark accepts, allowing a single file to be
imported to decrypt packet captures containing sessions that were in the cache.
Because Volatility does not currently support the dynamic downloading and
extraction of symbols in the either the release version or master branch from its git
repository, a different algorithm was leveraged to extract cache items. Specifically,
because each cache entry maintains a one-to-one relationship with an NeryptSslKey
structure, which maintains a one-to-one relationship with a master key structure,
one can walk those structures backwards. This is inefficient, however, because it
involves scanning the entire address space three times instead of one time, followed
by two dereferences.

For efficiency, the plugins scans for NeryptSslKey and checks if they point to
master keys, and then scans for pointers to the NeryptSslKey that do. This saves an
extra iteration of scanning the entire address space. The address space itself is
limited by only scanning VADs that have read-write permissions. This was chosen
as a precautionary middle ground between only scanning the heaps and scanning the
full address space, effectively checking the writable address space within the process.

The real issue is detecting the vftable class identifier without symbols, which
was addressed successfully but imperfectly. In order to identify a valid cache entry,
the identified pointer to the NeryptSslKey is instantiated as a cache item, and then
the pointer that should reference the vftable is tested. It is tested to see if it points
to Schannel’s .rdata section, which would rule out any invalid address, but does not

rule out. Currently, this has been completely Using rekall’s method of scanning for

89

the RSDS signature?, downloading the appropriate symbol file, and locating the
exact address would alleviate this concern.

The next issue is determining whether or not a cache entry is a server cache
item or a client cache item. This is done currently by checking a flag present within
the master key structure that, in testing, was always zero for server cache entries
and one for client cache entries. This too is imperfect, but has proven functional in
all tests. As the client and server caches that employ session IDs store them at the
same offset, this only becomes problematic when looking for session tickets or other
structure specific information.

The final issue is how to handle cache items with session tickets instead of
session IDs. This was accomplished by adding the capability to recognize valid
cache items that don’t have a session ID but do have a session ticket pointer and
enable printing them as debugging information, but not printing them by default. If
it is found that a relationship does persist for the client random and the session
tickets, then this could be extended to print in the format that Wireshark expects,
as the session ID entries do. One could also extend Wireshark to handle this
through its scripting engine, as has been pointed out earlier.

The result is a plug-in that successfully identifies and extracts the required
information from the cache to decrypt a session with Wireshark when employing
session IDs. Ttems that use session tickets can be recognized and decrypted with
Wireshark more manually, but require a packet capture containing the client
random value. The plug-in is named “LSASSLKey,” and the result of running the

plug-in can be seen in Figure 4.21.

2The RSDS is a unique GUID that changes every time the binary is compiled, when this feature

is enabled, as it is by default on all Microsoft binaries

90

> vol.exe --plugins=./plugins --profile=Win10x64 -f WinlO-Test-c2a4a77d.vmem lsasslkey

Volatility Foundation Volatility Framework 2.5

RSA Session-ID:b93c0000a110690b4ae9111bce5725¢c6c47a037b3c39c49c75ceblelc2eb79ee Master-Key:
bc28467999b99£d3£df3a24642c5d93b9ab43e51627£6e0145e£120ba98a1c3223£3dbe0154e30d7869bdb7ab66£5318

RSA Session-ID:173300000f84a86aebb2c5de0af20e6d5c2cab95ab65043e14c6el9ceebdeel? Master-Key:9
dd750e12e6e4439b08326d4alf9eba2d2fe65c2a26c2088e7cec22cel1d91e9£219b704547a2b2eccb9a81d557d5aela

RSA Session-ID:3c2c000024b8£70dd2613d8b13d0c4ac4daaefbe53abdb7cb9763e80fecchb4fl Master-Key:2
d119c64695ffc9c143c136471£5625d8cde92d35721£5£2849b92639603799a45e1e601786cbf89b00c186969d44983

RSA Session-ID:d4170000da09f8596739215e216c496568fa66e42ac32b974d440949df£33d2b Master-Key:44
b503bef7842ea9a416fbf8b63b932b23b7b687fbf5297b253eac427877c8e11595e14c3£00c40bf2a0f4688de0b7aa

RSA Session-ID:432a0000bf4f622f0fc119974a0ef30cd838c3a025b83abbdcdbce7b2325d2d9 Master-Key:552699
d61e21d1b871af4b05a54003bf03eade60666dd1e54b94c3bbec98f296dbdae99baed4e23882175e5ffd88be31

RSA Session-ID:6£230000a021aac48d15544524c1454e4ec01d5adb305d8d9d57ab2b991dd597 Master-Key:8
bc9e9df653e3cbf533be84c6897787bd453b8cee9d5389e9c3659ebf997d9c8d0666aadcabbe22568£30b9251215a717

Figure 4.21. Volatility LSASSLKey plug-in output

4.12 Decrypting a TLS session

Decrypting a TLS connection was now trivial, and simply involved directing
Wireshark to use the output from the Volatility plugin, and opening the associated
packet capture. The decrypted RDP session can be seen in Figure 4.22

M2 pcaprg - o X
File Edit View Go Capture Analyze Statistics Telephony Wireless Teols Help
ame TRE Qe EFLE AR
= e :
Destinaticn Protecal Length Info -
40.047765 .17 . 18.17.3.104 TLSv1.2 73 Ignored Unknown Record
50.082645 A i 19.17.3.182 TLSv1.2 73 Ignored Unknown Record
608.143088 .17.3. 18.17.3.184 TP 5449232 - 3389 [ACK] Seqe20 Ack=20 Win=65536 Len=@
T43.542175 .17.3. 19.17.3. TLSv1.2 220 Client Hello
B43.544657 17,3, 18.17.3. TLSv1.2 1229 S5erver Helle, Certificate, Server Key Exchange, Server Hello Done
543.556822 .17.3. 18.17.3. TLSvl.2 228 Client Key Exchange, Change Cipher Spec, Finished
1043.558033 2373 19.17.3.182 TLSv1.2 14SChange Cipher Spec, Finished
1143.565894 .17.3. 10.17.3.104 CredSsP 171 NTLMSSP_NEGOTIATE
2 12 43.568381 «3. 18.17.3.182 CredSsP 379 NTLMSSP_CHALLENGE
| 1343.573500 : 16.17.3.104 CredssP 939 NTLMSSP_AUTH, User: IEL1Wing_1\tester
14 43.577396 . 18.17.3.182 CredSsP 411

»Lan Manager
Liv2 Client Challenge: GOOSBR0800000000
NTLM ba7d3

*Domain name: IE11Wing_1

YUser name: tester

*Host name: IE1IWINE 1

*Session Key: GeedfobESRalf79253e088ddcd5adich &l

B0 @c 29 BO 27 58 60 ©3 @8 §d 05 16 OF 00 45 00
@3 9d 05 B4 40 80 80 86 d6 e7 Oa 11 83 &6 8a 11
83 68 ¢@ 58 Bd 3d 51 12 b8 67 e6 55 38 97 50 18

@1 90 35 aF 9@ 8@ 17 @3 93 83 7@ a3 @b Sc bf &b

Frame (33 bytes) Decrypted S5 deta

¥ 'a Packets: 2116 * Duplayed: 2116 (100.0%) © Load time: 0:0.212 Profie: Default

Figure 4.22. Decrypted RDP session

92

CHAPTER 5. CONCLUSIONS

This thesis answered the question of whether connection parameters exist in
the memory of modern Windows systems to retroactively decrypt sessions, affirming
that the requisite parameters do exist. A process for reliably extracted the master
key paired with a unique connection parameter was developed. This process was
then implemented in a technical solution atop one of the community accepted
memory forensic frameworks. The author achieved this result by systematically
identifying and reverse engineering data structures per the outlined methodology,
with several deviations that will likely be incorporated into future work. Finally,
ancillary findings about the tools used, and other related structures were identified,

which may also contribute to future work.

5.1 Summary of Outcomes

A summary of the outcomes of the thesis is as follows:

e Cached TLS/SSL master keys were identified and related to the session ID or
session ticket

e An automated method for extracting these artifacts into a form compatible
with Wireshark was developed as a PoC atop of the Volatility framework

e Ancillary structures that provided additional context about the connection,
including the public certificates, cipher suite were identified

e Methods that leverage symbol parsing, the vitable for object scanning, and
validation functions / error codes were discussed to improve upon the original
methodology

e Other structures, such as the session key structure and the client-server

random values, were identified, but not linked contextually to specific sessions

93

5.2 Contributions

Prior to this research there was no publicly available or discussed mechanism
for extracting master keys and private keys from main memory of Windows hosts,
and no mechanism existed for decrypting ephemeral connections retroactively on
Windows hosts. The author has contributed both a method that is generalizable
across Windows Vista to Windows 10 which enables retroactive decryption of
ephemeral connections and provided a PoC implementation of this method through
one of the main memory analysis frameworks, Volatility. This implementation
addresses the use cases documented in the Significance section of Chapter One.

In so doing, the author also documented otherwise undocumented structures
used by Schannel and the cryptographic libraries for managing key material and
session related artifacts. This information can be leveraged by other analysts to
develop further research and contribute to the field.

The implementation developed is easy to use and dumps output to a
Wireshark compatible format for decryption by default. This is designed to be
approachable for practitioners such as LEOs who may have had limited technical
training or exposure.

The cache items can live up to 10 hours by default, which may also outlive
the current connection identification methods employed in Volatility and Rekall.
There may also be 20,000 entries by default for both the client and server caches,
which could provide a wealth of information previously not accessed. Session
Tickets were also noted to live 10 hours by default, which indicates that the key to
decrypt them should live on the server for at least 10 hours as well.

The methods described enable linking the TLS version and cipher suite to
unique connection identifiers. Tying cipher suites and protocol versions to
connections can help identify exploitative or anomalous connections. For example,
SSL. downgrade attacks like “POODLE” and weak cipher suite parameters like those

used in “LogJam” and “FREAK” would be apparent when observing the caches.

94

The public certificate and server name indicator (SNI) seems to exist in the
client cache for connections that are made to virtual hosts sharing a single IP
address. Authors of the MiTLS website, which includes members of the Microsoft
Research team and is dedicated to identifying and mitigating attacks against SSL
and TLS, note that “Because of the popularity of cloud hosting and content delivery
networks, it is increasingly common for webservers to serve several websites on the
same [P address” (miTLS, n.d., p. 1). Other current OS-based connection
identification mechanisms that exist within Volatility only operate at Layer 4 of the
OSI model and below. This means that they cannot currently make the distinction
between multiple virtual hosts co-located at the same IP address when observing
connections.

The presence of an entry in the server cache of a host that is supposed to be
a client could be an indicator of compromise, and this is almost guaranteed to live
for the full 10 hours of the cache default. The information in the server cache of a
client would also indicate what type of connection was served — for example, the
RDP server component uses a specific signing key pair with the identifier
“TSSecKeySet1,” a reference to “Terminal Services.” For the client cache, in
addition to the information available from the public certificate, the Session ID can
also possibly give information on whether the host on the other end of the
connection was a Windows server.

Finally, the methods employed do not rely on proprietary functions to
extract credentials, meaning that the extraction is analysis environment agnostic.
This enables the possibility of transparently decrypting connections retroactively
through the use of virtual machines and memory introspection. One could
transparently monitor connections inside of a Windows virtual machine, when those

connections leverage Schannel.

95

5.3 Anecdotes

e Leveraging Microsoft’s provided code to execute
“BCryptEnumContextFunctions” and return cipher suites in order of
preference, all examined systems returned ephemeral suites first, contrary to
the cited Schannel documentation.

e Previous research in the literature review focused either heavily or solely on
the process itself and not on the underlying data structures. The methodology
employed in this research took the reverse approach, which seems to have
illuminated overlooked, but valuable structures like the “KPSK” Key storage
structure that points to the private key, which other research indirectly
touched via some of the Microsoft cryptographic functions.

e The author noted that, in the limited samples observed, a symbol for an
“CSchannel TelemetryContext” existed in Windows 10, which did not exist in
symbols for the Schannel versions observed in Windows 8 and Windows 7,
though these versions were admittedly delimited from the study.

e An open-source python AES implementation was briefly employed to compare
the key schedule to the fixed-length 448 byte field in the “MSSK” structure,
verifying that, in the case of AES 256, the first 240 bytes match the key

schedule, but the remaining bytes are unaccounted.

5.4 Future Work

Given these findings, there are still more questions to be answered and work
to be done. This technique developed is self-validating in that, if it fails or is
erroneous, it will not correctly decrypt the session. Still, it should be more
rigorously evaluated by other practitioners to identify any flaws or acknowledged
gaps in the implementation and meet the standards required of a forensic tool. A

list of future work the author has identified follows:

96

Identify any relationship between the client random values and the master key
in order to process session tickets in a way that is suitable for use with
Wireshark

Set up a rigorous testing paradigm for evaluating the current method
thoroughly across platforms and cipher suites to identify edge cases

Examine the functions identified as related to the numbered SSL magic values
to gain further insight about the ssl7 structure

Write a Rekall plug-in that leverages symbols for efficiency and accuracy over
the current method

Further explore extracting private keys from memory alone using DPAPI-NG
Add functionality to the plug-in to scan all processes with Schannel loaded for
session key structures

Identify ticket encryption scheme and add functionality to the LSASSLKey

plug-in to decrypt session tickets

LIST OF REFERENCES

97

LIST OF REFERENCES

Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley, A., & Ray, M. (2015,
September). Transport Layer Security (TLS) session hash and extended
master secret extension (RFC No. 7627). 48377 Fremont Blvd., Suite 117,
Fremont, California 94538, USA: Internet Engineering Task Force. Internet
Requests for Comments. Retrieved from http://www.ietf.org/rfc/rfc5246.txt

Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T. , Ristenpart,
T, Fredrlkson M. (2014) On the practlcal explmtablhty of Dual EC in
TLS 1mplementa,t10ns In 23rd USENIX security symposium (USENIX
security 14) (pp. 319-335).

Cohen, M. (2015a). Rekall memory forensics framework.
http://www.rekall-forensic.com/about.html.

Cohen, M. (2015b). Rekall memory forensics framework.
http://www.rekall-forensic.com/index.html.

Daigniere, F. (2013). TLS ‘secrets’ [Conference].
https://media.blackhat.com/us-13/US-13-Daigniere-TLS-Secrets-WP.pdf.
(Presentation at BlackHat USA 2013)

Delphy, B. (2013). Windbg et l’extension de mimikatz! (Blog No. November 25).
http://blog.gentilkiwi.com/securite/mimikatz/windbg-extension.

Delphy, B. (2016a). Mimikatz. https://github.com/gentilkiwi/mimikatz.

Delphy, B. (2016b). Mimikatz. https://github.com/gentilkiwi/mimikatz/tree/
master/mimikatz/modules/sekurlsa/crypto/kuhl\ _m\ sekurlsa_nt6.c.

Dierks, T., & Allen, C. (1999, January). The TLS protocol version 1.0 (RFC No.
2246). 48377 Fremont Blvd., Suite 117, Fremont, California 94538, USA:
Internet Engineering Task Force. Internet Requests for Comments. Retrieved
from http://www.ietf.org/rfc/rfc2246.txt

Dierks, T., & Rescorla, E. (2008, August). The Transport Layer Security (TLS)
protocol version 1.2 (RFC No. 5246). 48377 Fremont Blvd., Suite 117,
Fremont, California 94538, USA: Internet Engineering Task Force. Internet
Requests for Comments. Retrieved from http://www.ietf.org/rfc/rfc5246.txt
(http://www.rfc-editor.org/rfc/rfc5246.txt)

Diffie, W., Van Oorschot, P. C., & Wiener, M. J. (1992). Authentication and
authenticated key exchanges. Designs, Codes and cryptography, 2(2),
107 125.

98

Dolan-Gavitt, B. (2007). The VAD tree: A process-eye view of physical memory.
Digital Investigation, 4, 62-64.

Dreijer, J., & Rijs, S. (2013, December). Perfect forward not so secrecy.
https://os3.n1/ media/2013-2014/courses/ssn/projects/
perfect_forward_not_so_secrecy _report.pdf.

Elliot, S. (2014). RDP Replay (Blog No. October 30).
http://www.contextis.com/resources/blog/rdp-replay/.

Freier, A., Karlton, P., & Kocher, P. (2011, August). The Secure Sockets Layer
(SSL) protocol version 3.0 (RFC No. 6101). 48377 Fremont Blvd., Suite 117,
Fremont, California 94538, USA: Internet Engineering Task Force. Internet
Requests for Comments. Retrieved from http://www.ietf.org/rfc/rfc6101.txt

Garfinkel, S. L. (2013). Digital media triage with bulk data analysis and
bulk_extractor. Computers & Security, 32, 56-72.

Gefner, J. (2011). Ezxporting non-exportable RSA keys [Conference].
https://media.blackhat.com/bh-eu-11/Geffner/
BlackHat_EU_2011_Geffner_Exporting\ _RSA_Keys-WP.pdf.
(Presentation at BlackHat Europe 2011)

Goh, E.-J., & Boneh, D. (2001, October). SSLv3/TLS Sniffer (proxy server):
Documentation page [Tool Documentation).
https://crypto.stanford.edu/~eujin/sslsniffer /documentation.html.

Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J. AL, ... Felten, E. W. (2008). Lest we remember: Cold-boot attacks on
encryption keys. In 17th USENIX security symposium (USENIX security 08)
(pp. 45-60).

Huppert, P. (2015). Volatility. https://github.com/volatilityfoundation/
community /blob/master /PhilipHuppert /rsakey.py. (RSAKey community
plugin)

Inman, K., & Rudin, N. (2002). The origin of evidence. Forensic Science
International, 126(1), 11-16.

Intel Corporation. (2015, December). Intel® 64 and IA-32 Architectures software
developer’s manual (Computer software manual No. 325462-057US).

Jaqueme, L. (2015). Volatility. https://github.com/volatilityfoundation/
community /blob/master/Lo%C3%AFcJaquemet /vol_haystack.py. (HayStack
community plugin)

Klein, T. (2006, February). All your private keys are belong to us. extracting RSA

private keys and certificates from process memory.
http:/ /www.trapkit.de/research /sslkeyfinder /keyfinder_v1.0-20060205.pdf.

Kornblum, J. (2011). Finding aes keys (Blog No. January 18).
http://jessekornblum.livejournal.com/269749.html.

99

Ligh, M. H., Case, A., Levy, J., & Walters, A. (2014). The art of memory forensics:
Detecting malware and threats in Windows, Linuzx, and Mac memory. John
Wiley & Sons.

Microsoft. (n.d.-a). Certificate file formats (Technet Article No. cc770735). One
Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://technet.microsoft.com/en-us/library /cc770735.aspx.

Microsoft. (n.d.-b). Coding style conventions (Developer Network Article No.
378932). One Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft
Corporation.
https://msdn.microsoft.com/en-us/library /windows/desktop/aa378932.aspx.

Microsoft. (n.d.-c). Common data types (Document No. cc230309). One Microsoft

Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com/en-us/library /cc230309.aspx.

Microsoft. (n.d.-d). Cryptographic primitives (Document No. bb204776). One
Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com/en-us/library /windows/desktop/bb204776.aspx.

Microsoft. (n.d.-e). Memory limits for Windows and Windows Server releases
(Developer Network Article No. aa36677). One Microsoft Way, Redmond,
WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com/en-us/library /windows/desktop/aa366778.aspx.

Microsoft. (n.d.-f). Memory pools (Document No. aa965226). One Microsoft Way,
Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com/en-us/library /windows/desktop/aa965226.aspx.

Microsoft. (n.d.-g). Names of classes, structs, and interfaces (Document No.
ms299040). One Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft
Corporation. https://msdn.microsoft.com/en-us/library /ms299040.aspx.

Microsoft. (n.d.-h). PEB structure (Document No. aa813706). One Microsoft Way,
Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com/en-us/library /windows/desktop/aa813706.aspx.

Microsoft. (n.d.-i). s (search memory) (WinDbg Document No. ff558855). One
Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com/en-us/library /windows /hardware /ff558855. aspx.

Microsoft. (2003a, July). How TLS/SSL works (Document No. cc783349). One
Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://technet.microsoft.com/en-us/library/cc783349.aspx.

Microsoft. (2003b, March). TLS/SSL tools and settings (Document No. c¢c776467).
One Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://technet.microsoft.com/en-us/library/cc776467.aspx.

Microsoft. (2010, July). How to create a user-mode process dump file in Windows
Vista and in Windows 7 (Knowledge Base Article No. 931673). One
Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://support.microsoft.com/en-us/kb/931673.

100

Microsoft. (2014a, July). CNG features (Document No. bb204775). One Microsoft
Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com/en-us/library /windows/desktop/bb204775.aspx.

Microsoft. (2014b, July). Key storage and retrieval (Document No. bb204778). One
Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com /en-us/library /windows/desktop/bb204778.aspx.

Microsoft. (2014c, July). Prioritizing Schannel cipher suites (Document No.
bb870930). One Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft
Corporation.
https://msdn.microsoft.com/en-us/library /windows/desktop/bb870930.aspx.

Microsoft. (2014d, July). Transport Layer Security protocol (Document No.
dn786441). One Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft
Corporation. https://technet.microsoft.com/en-us/library/
dn786441.aspx#BKMK _SessionResumption.

Microsoft. (2015a, July). DER encoding of ASN.1 types (Document No. bb648640).
One Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com/en-us/library /windows/desktop/bb648640.aspx.

Microsoft. (2015b, November). Public and private symbols (Document No. ff553493).
One Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://msdn.microsoft.com/en-us/library /windows/hardware /ff553493.aspx.

Microsoft. (2015¢). Remote Desktop Connection: frequently asked questions. http://
windows.microsoft.com/en-us/windows /remote-desktop-connection-faq.
(Question “Which PCs can I connect to using Remote Desktop
Connection?”)

Microsoft. (2015d, July). Schannel SSP overview (Document No. dn786429). One
Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://technet.microsoft.com/en-us/library /dn786429.aspx.

Microsoft. (2015e, November). TLS/SSL settings (Document No. dn786418). One
Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft Corporation.
https://technet.microsoft.com/en-us/library /dn786418.aspx.

Microsoft. (2015f). Upgrade to Windows 10: Faq. http://windows.microsoft.com/
en-us/windows-10/upgrade-to-windows-10-faq. (Question “What is the free
upgrade to Windows 10”)

miTLS. (n.d.). Cross-layer protocol attacks. https://mitls.org/pages/attacks/VHC.

Mozilla. (2015). NSS key log format. Mozilla Developer Network. Retrieved from
https://developer.mozilla.org/en-US/docs/Morzilla/Projects/NSS/
Key _Log_Format

101

Myerson, T. (2015). Windows 10: Preparing to upgrade one billion devices (Blog
No. July 2). https://blogs.windows.com/windowsexperience,/2015/07/02/
windows-10-preparing-to-upgrade-one-billion-devices/ .

NIST. (2001, November). Announcing the Advanced Encryption Standard (AES)
FIPS Publication No. 197). 100 Bureau Drive, Stop 1070, Gaithersburg,
MD 20899-1070, USA: National Institute of Standards and Technology
(NIST). Federal Information Processing Standards (FIPS) Publication.
Retrieved from http://csrc.nist.gov/publications/fips/fips197 /fips-197.pdf

Petroni, N. L., Jr., Walters, A., Fraser, T., & Arbaugh, W. A. (2006, December).
Fatkit: A framework for the extraction and analysis of digital forensic data
from volatile system memory. Digit. Investig., 3(4), 197-210. Retrieved from
http://dx.doi.org/10.1016/j.diin.2006.10.001 doi: 10.1016/j.diin.2006.10.001

Picasso, F. (2015). Happy dpapi! (Blog No. January 13).
http://blog.digital-forensics.it /2015/01 /happy-dpapi.html.

Picod, J.-M. (2016). Dpapick. https://bitbucket.org/jmichel/dpapick/src/
372929678b0c5d6a6f025¢26d262tbfcebaeebb7/DPAPI/Probes/certificate.py.
(Certificate Probe python file)

Polk, T., McKay, K., & Chokhani, S. (2014). Guidelines for the selection,
configuration, and use of Transport Layer Security (TLS) implementations
(SP No. 800-52 Revision 1). 100 Bureau Drive, Stop 1070, Gaithersburg, MD
20899-1070, USA: National Institute of Standards and Technology (NIST).
NIST Special Publication. Retrieved from
http://dx.doi.org/10.6028 /NIST.SP.800-52r1 doi:
10.6028 /NIST.SP.800-52r1

Russinovich, M. E., Solomon, D. A., & Allchin, J. (2005). Microsoft Windows
internals: Microsoft Windows Server 2003, Windows XP, and Windows 2000
(Vol. 4). One Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft
Press Redmond.

Russinovich, M. E., Solomon, D. A., & Tonescu, A. (2012). Windows internals
(Vol. 6). One Microsoft Way, Redmond, WA 98052-7329, USA: Microsoft
Press Redmond.

Salowey, J., Zhou, H., Eronen, P., & Tschofenig, H. (2008, January). Transport
Layer Security (TLS) session resumption without server-side state (RFC No.
5077). 48377 Fremont Blvd., Suite 117, Fremont, California 94538, USA:
Internet Engineering Task Force. Internet Requests for Comments. Retrieved
from http://www.ietf.org/rfc/rfc5077.txt

Shamir, A., & van Someren, N. (1998). Playing ‘hide and seek’ with stored keys. In
Financial cryptography (pp. 118 124).

Shirey, R. (2007, August). Internet security glossary, version 2 (RFC No. 4949).
48377 Fremont Blvd., Suite 117, Fremont, California 94538, USA: Internet
Engineering Task Force. Internet Requests for Comments. Retrieved from
http://www.ietf.org/rfc/rfc4949.txt

102

Taubert, T. (2014). Botching forward secrecy. the sad state of server-side TLS
session resumption implementations (Blog No. November).
https://timtaubert.de/blog/2014/11/
the-sad-state-of-server-side-tls-session-resumption-implementations/.

Volatility. (2015). Volatility. https://github.com/volatilityfoundation/volatility/
blob /master /volatility /plugins/dumpcerts.py. (DumpCerts plugin)

Walters, A., & Petroni, N. L. (2007). Volatools: Integrating volatile memory into the
digital investigation process [Conferencel. https://www.blackhat.com/
presentations/bh-dc-07/Walters /Presentation /bh-de-07-Walters-up.pdf.
(Presentation at BlackHat DC 2007)

Warren, T. (2015). Why Microsoft is calling Windows 10 ‘the last version of
Windows’ (No. May 7). http://www.theverge.com/2015/5/7/8568473/
windows-10-last-version-of-windows.

Wireshark. (2015). Wireshark. https://github.com/wireshark /wireshark /blob/
master /epan/dissectors/packet-ssl-utils.c.

	Purdue University
	Purdue e-Pubs
	4-2016

	Extracting CNG TLS/SSL artifacts from LSASS memory
	Jacob M. Kambic
	Recommended Citation

	untitled

