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ABSTRACT 

 
Simulation models for unitary air conditioners and heat pumps usually can not provide accurate predictions in the 
case of two-phase refrigerant entering the compressor or fixed-area expansion device. This paper focuses on 
improving modeling methods in these situations. The study utilized extensive laboratory tests and detailed modeling 
of two unitary air conditioners, one using R-410A and the other using R-407C. Heat exchanger models were used to 
give upstream qualities of the compressor and fixed orifice. It was found that it is best to use a two-phase suction 
density correction for compressor maps to predict mass flow rate.  However, using a two-phase suction density 
correction with a compressor map to predict the power consumption leads to significant under-predictions.  It is best 
not to correct the compressor map power consumption for a two-phase entering condition.  For the case of two-
phase refrigerant entering a fixed-area expansion device, mass flow rate predictions from short-tube orifice models 
are extremely sensitive to the upstream quality. A two-point charge tuning method is recommended, as it can lead to 
an accurate prediction of upstream state for the expansion device at all refrigerant charge levels. 
  

1. INTRODUCTION 
 
Leroy et al. (1997) conducted system simulations for ten different R-22 unitary air conditioners operating under off-
design conditions.  The units had cooling capacities ranging from 2 to 5 tons and different types of expansion 
devices and compressors. There were two cases where the system simulation results were poor:  1) two split units 
having a fixed orifice and working at high ambient temperatures and 2) a packaged unit having four parallel fixed 
orifices and operating at low refrigerant charge. 
 
Based on a detailed analysis of the results, it can be concluded that the poor simulation results of Leroy et al. (1997) 
were due to two-phase refrigerant entering the compressor and/or fixed-area expansion device. Two-phase 
refrigerant inlet conditions to a short-tube usually can occur at low charge levels or very high ambient temperatures. 
Two-phase refrigerant inlet conditions to a compressor tend to occur at high outdoor temperatures, low indoor 
humidity, low indoor air flow rates, and high charge levels.  These off-design conditions are important since they 
can occur in the field, and can lead to significant errors in predictions from simulation models.   
 
ARI compressor maps (ANSI/ARI 540-99) are typically used within system simulation models to predict 
compressor mass flow rate and power consumption. The equations are polynomials that are developed for a fixed 
superheat entering the compressor (e.g., 11.1 K).  For the purpose of system simulation, the maps for mass flow rate 
and power consumption are typically corrected for actual (non-standard) suction superheat.  The standard ARI mass 
flow equation can be corrected for varying superheats using the ratio of the calculated suction gas density to the 
standard suction gas density corresponding to the ARI standard test condition. Rice (1981) proposed adjusting the 
suction density using Equation 1.    
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where massF  is an empirical correction factor assigned a value of 0.75, 
mapARIrefm −,

 and actualrefm ,  are the mass flow 
rates at the standard and actual suction superheat, and 
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 and actv  are the specific volumes at the standard and 

actual superheat. 
 
Rice (1981) also proposed using Equation 2 to correct power consumption predictions for different superheat levels.   
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where 
mapARIW −

and 
actualW  are the compressor power consumptions for the standard and actual superheat and 

mapARIish −Δ ,
 and 

actualish ,Δ  are the isentropic enthalpy changes for the compressor for the standard and actual superheat.  
Equation 2 assumes that the isentropic efficiency doesn’t change between the standard and actual suction superheat 
and accounts for the variations in mass flow rate and isentropic enthalpy change 
 
The Rice (1981) methods for correcting ARI standard compressor maps lead to accurate simulations for a large 
range of superheated suction states. However, there are no published investigations that have evaluated how well 
these methods work when two-phase refrigerant enters the compressor. Two-phase refrigerant entering a compressor 
shell of a hermetic compressor can lead to wet compression, which reduces compressor performance. The actual 
state of refrigerant entering the compression chamber depends on both the shell inlet state and an energy balance for 
refrigerant in the shell.  For compressor shells that operate at suction pressure, liquid refrigerant is likely to 
evaporate inside the compressor shell due to heat losses from the motor.  This is not the case for shells that operate 
at discharge pressure.  Therefore, it is difficult to know the best suction state to use for correcting compressor mass 
flow and power predictions in a simple compressor map model when two-phase flow enters the shell. Two simple 
approaches are considered in this paper: 1) use the calculated two-phase suction density or 2) use saturated vapor 
density at the suction pressure.   
 
When the inlet condition to a short-tube orifice or capillary tube changes from a subcooled liquid to a two-phase 
mixture, there is a sudden drop in mass flow rate. The experiments of Kim and O’Neal (1994) for R-22 flowing 
through short-tube orifices reveal this phenomenon, as depicted in Figure 1. Kim and O’Neal indicated that this 
tendency is due to a large void fraction for two-phase refrigerant at the entrance. Figure 1 indicates that the curves 
for different upstream pressures converge to the same point at zero subcooling, meaning that mass flow rate is not 
sensitive to upstream pressure when the inlet is a saturated liquid.  Payne and O’Neal (1999 and 2003) investigated 
R-410A and R-407C flowing through short-tube orifices and developed separate semi-empirical correlations for 
mass flow rate within short-tubes for subcooled and two-phase refrigerant inlet conditions.  However, in order to 
obtain accurate results with these correlations, it is very important to have accurate predictions of the inlet state 
especially when the inlet condition is two-phase or close to the transition between subcooled liquid and two-phase 
mixture. 

 

 
Figure 1: Mass flow rate as a function of subcooling and quality in a sharp-edged short tube  

(Kim and O’Neal 1994). 
 

2. RESEARCH METHODOLOGIES 
 

Test data and simulation results were used to investigate modeling issues associated with two-phase refrigerant 
entering compressors and the expansion devices. Two unitary air conditioners were tested, including a 3-ton R-410A 
packaged unit using a short-tube orifice and a scroll compressor, and a 5-ton R-407C packaged unit using twelve 
parallel short-tubes and a scroll compressor.  The varied operating conditions were outdoor temperature, indoor air 
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flow rate, outdoor air flow rate, indoor relative humidity and charge inventory.   Descriptions of the test units, 
measurements, and test conditions are presented by Shen et al. (2006b). 
 
In the case of two-phase refrigerant entering a compressor or expansion device, pressure and temperature 
measurements do not provide sufficient information to determine upstream quality. In addition, air-side capacity 
measurements are not accurate enough to use in calculating refrigerant-side qualities.  
 
In this study, qualities at the entrances to compressors and expansion devices were determined using tuned 
evaporator and condenser models.,.   The evaporator and condenser were modeled using ACMODEL, which is 
described by Shen et al. (2006b).  The  heat exchanger models were tuned by adjusting the air side heat transfer 
coefficients with a multiplier to match the measured cooling and condensing capacity at one design operating 
condition.  
 
The accuracies of individual component models were assessed independently by employing local measured (or 
estimated) boundary conditions.  For the compressor model, suction pressure, discharge pressure, and suction 
temperature were inputs and mass flow rate and compressor power were outputs that were compared with measured 
values.  For the fixed-area expansion device model, upstream and downstream states were inputs and mass flow rate 
was output and compared with measurements. For the heat exchanger models, measured inlet states and flow rates, 
were inputs and energy transfer rates (capacities) were outputs and compared with measurements determined from 
refrigerant-side capacities.   
 
The model assessments are presented in terms of relative deviations (i.e., deviation between predicted and measured 
values divided by the measured value). Table 1 shows mean and maximum (max) deviations between adjusted heat 
exchanger model capacity predictions and measured values for the cases that did not have two-phase refrigerant 
entering the compressor and expansion device. A single heat transfer tuning coefficient works very well for a large 
range of operating conditions, with deviations between predicted and measured capacities smaller than 3.0%. The 
adjusted heat exchanger models are more accurate than measured air-side capacities and represent a better tool for 
estimating qualities upstream of the compressor and expansion device for two-phase entrance conditions. 
 

Table 1: Overall accuracy of heat exchanger models. 
R-410A, Packaged R-407C, Packaged Heat Exchanger 

Mean Max Mean Max 
Condenser 0.7% 2.2% 0.6% 2.7% 
Evaporator 0.8% 2.8% 0.4% 1.7% 

 
3. TWO-PHASE REFRIGERANT ENTERING COMPRESSORS 

 
Table 2 presents compressor model assessments for cases having superheated vapor entering the compressor shell. 
The mass flow rate predictions were determined using the suction density correction given in Equation 1.  
Compressor power consumption predictions were determined both with and without the suction density correction 
of Equation 2 and then compared with measurements for the results in Table 2.  The compressor map predictions of 
mass flow rate and power consumption are very accurate for these cases having superheated vapor inlet. It is 
interesting that the power consumption predictions are a little better if the suction density correction is not utilized.  
However, the differences associated with using and not using Equation 2 are relatively small.  Compressor mass 
flow rate decreases and isentropic enthalpy difference increases with increasing suction superheat.  These effects 
balance each other so that the correction for power consumption is relatively insensitive to suction superheat.   
. 

Table 2: Compressor model assessments in cases having superheated vapor inlet conditions. 
Units R-410A, Packaged R-407C, Packaged  
Deviations Mean Max Mean Max 
Mass flow rate Rice correction (1981) 1.2% 3.1% 0.5% 2.3% 

No suction density 
correction 

0.6% 2.5% 0.4% 1.8% Power 
consumption 

Rice correction (1981) 1.0% 3.0% 1.3% 4.6% 
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Both the R-410A and R-407C packaged units had scroll compressors, which can tolerate significant liquid 
refrigerant without damage.  Among the test conditions that were considered, two-phase refrigerant entered the 
compressor for 26 operating points with the R-410A unit and 23 operating points for the R-407C packaged. These 
operating points tended to occur at high outdoor temperatures, low indoor humidity, low indoor air flow rates, and 
high charge levels. The lowest inlet quality encountered was about 90%. When significant two-phase refrigerant 
entered the compressor, the compressor body temperature dropped drastically.  
 
Deviations between mass flow rate predictions and measurements for the R-410A scroll compressor are shown in 
Figure 2 for cases with two-phase inlet conditions.  Corrections for suction density were determined using either a 
saturated vapor condition at the measured inlet pressure or a two-phase condition at the measured pressure and 
quality predicted by an evaporator model. Figure 2 indicates that the use of a saturated vapor density correction 
tends to give under-predictions of mass flow rate, and the deviations increase with decreasing quality. The use of a 
two-phase density correction gives more accurate predictions, especially at qualities larger than 93%. Similar results 
were obtained for the R-407C scroll compressor.  Overall statistics for accuracy of the two different correction 
approaches applied to the R-410A and R-407C compressors with two-phase inlet conditions are given in Table 3.     
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Figure 2: Mass flow rate prediction deviations for cases of two-phase suction with the R-410A scroll compressor 

 
Table 3: Mass flow rate prediction deviations for cases of two-phase suction. 

Units R-410A, Packaged R-407C, Packaged  
Deviations Mean Max Mean Max 
Two-phase suction 1.5% 6.0% 3.5% 6.5% 
Saturated vapor suction 3.8% 9.6% 4.3% 8.5% 

 
Deviations between compressor power predictions and measurements for the 3-ton R-410A scroll compressor are 
presented in Figure 3 for cases of two-phase flow entering the compressor suction.  The predictions were obtained 
both with and without a correction for suction conditions.  The results of Figure 3 indicate that it is best not to 
correct the map-based power consumption for variations in suction state using Equation 2.  The power consumption 
is nearly independent of inlet quality for these two-phase cases.  The use of Equation 2 with two-phase suction state 
leads to significant underestimation of compressor power.  Similar results were obtained for the R-407C compressor.  
Table 4 shows summary statistics for all two-phase cases with the R-410A and R-407C compressors.   
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Figure 3: Power consumption prediction deviations in the cases of two-phase suction for the 3-ton R-410A packaged 

unit. 
 

Table 4: Power prediction deviations in the cases of two-phase suction 
 R410A, Packaged R407C, Packaged 
Deviations Mean Max Mean Max 
No suction state correction 1.2% 3.0% 0.6% 1.9% 
Two-phase suction state correction 5.6% 9.8% 1.9% 4.1% 

 
4. TWO-PHASE REFRIGERANT ENTERING FIXED-AREA EXPANSION 

DEVICE 
 

Table 5 presents assessments of the short tube models of both units for the cases with a subcooled upstream state.  
For the R-410A packaged unit, the Payne and O’Neal (1999) correlation for pure R-410A was used. For the R-407C 
unit, the Payne and O’Neal (2003) correlation for pure R-407C was used, and the refrigerant distribution among the 
twelve parallel orifices was assumed to be uniform. 

 

Table 5: Mass flow rate deviations of short-tube correlations for cases having subcooled upstream states 

 R410A, Packaged R407C, Packaged 
Deviations Mean Max Mean Max 
Mass flow rate 0.6% 1.8% 1.3% 4.7% 

 
Table 5 indicates that the short-tube correlations provide accurate predictions when the upstream state is subcooled. 
However, there is a sharp drop in refrigerant mass flow rate when the inlet state to a fixed-area expansion device 
transitions from a subcooled to a two-phase condition, as shown in Figure 1. In this case, model predictions are 
extremely sensitive to the upstream quality. The inlet condition for a short-tube can become two-phase at low charge 
levels or very high ambient temperatures. Among the test conditions that were considered, two-phase refrigerant 
entered the expansion device for 11 operating points with the R-410A system and 8 operating points for the R-407C 
packaged unit.  The highest inlet quality encountered was about 10%. 
 
The accuracies of the short-tube orifice models were evaluated through comparisons of predicted mass flow rates 
and mass flow rates determined from measurements.  Unfortunately, the liquid-line refrigerant flow measurements 
were unreliable for cases with two-phase exit conditions from the condenser.  In these cases, measured mass flow 
rates were obtained by using the compressor as a virtual sensor.  This involved using the tuned compressor map with 
measured suction conditions and discharge pressure.  Table 6 shows validation results for the short-tube orifice 
model with two-phase inlet conditions for the R-410A packaged unit.  In Table 6, Xcond is the upstream quality 
predicted with the tuned condenser model and Devmr is the deviation between short-tube orifice predictions of mass 
flow rate and mass flow rates determined using the tuned compressor map model.  The deviations in mass flow rate 
can be quite large for these cases and varied between about 3 and 20%.  The largest deviation occurred at a point 
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where the inlet quality was nearly a maximum for the cases considered. In general, the refrigerant inlet qualities and 
deviations are higher for low refrigerant charge and high ambient temperature.   
 

Table 6: Case studies of two-phase entering short-tube for the R-410A packaged unit. 
Conditions Xcond [%] Devmr [%] Xmr [%] or Tsubmr [˚F] Dev between Xcond & Xmr 

9.5% -9.4% 6% 2.3% 
4.5% -7.6% 2.2% 1.3% 

Charge<80% of rated;  
82 ˚F ambient; 

Dry 0.5% -13.5% 1.8 ˚F 0.83% 
5.0% 3.5% 6.0% 1.02% 
4.5% -9.9% 1.5% 2.47% 

Charge<80%;  
82 ˚F ambient; 

Wet 1.0% -16.0% 3.8 ˚F 1.67% 
10.5% -12.4% 6.0% 3.15% 
7.0% -13.9% 2.5% 2.89% 

Charge<80%;  
95 ˚F ambient; 

Wet 1.0% -15.4% 1.8 ˚F 0.88% 
10.0% -20.4% 2.8% 4.3% Charge<80%;  

115 ˚F ambient 3.0% -14.5% 0.9% 0.98% 
Mean Absolute Devmr [%] 12.4% Mean Dev between Xcond & Xmr 2.0% 

 
The upstream qualities or subcooling necessary for the short-tube orifice model to predict the mass flow rates 
determined with the tuned compressor map model are also presented in Table 6 under the columns labeled Xmr and 
Tsubmr.  The last column in this table gives deviations between Xcond and Xmr.  These results indicate that mass flow 
rate predictions from a short-tube orifice model are extremely sensitive to the upstream state under two-phase 
conditions.  For instance, the maximum mass flow rate error of 20.4% only corresponds to a 4.3% deviation in the 
condenser exit quality.  An average difference of 2.0% in exit quality leads to an average error of 12.4% in 
predicting refrigerant mass flow rates.  Therefore, determining an accurate upstream state is the most important issue 
in obtaining an accurate refrigerant mass flow rate prediction when two-phase flow enters a fixed-area expansion 
device.  

 
One of the keys in obtaining an accurate inlet state for the expansion device is to adequately account for the effect of 
refrigerant charge.  Typically, refrigerant charge is tuned to account for unknown internal volumes by adjusting the 
simulated charge level by a fixed amount so that the simulation predicts the correct subcooling at a single operating 
point.  Rossi (1995) presents a method for single-point tuning that was developed for ACMODEL.   However, Shen 
et al. (2006a) demonstrated that a single-point charge tuning method can not provide good simulation results over a 
large range of charge levels. Shen et al. (2006a) also presented an improved method for adjusting refrigerant charge 
using a charge correction equation that requires data for two operating points and is called a two-point charge tuning 
method. The approach associates the variable charge errors with the subcooled liquid length, and considers all other 
errors to be a constant offsets. The ability of a system model to predict off-design charge effects is significantly 
improved through the use of this tuning approach. Figure 4 presents example predictions of condenser subcooling 
from simulations that used the two-point charge tuning method as compared with a one-point charge tuning method.  
Similar results were obtained for other operating conditions and units.  In general, the two-point charge tuning 
method provides much better predictions of expansion device inlet states than the single-point method.. 
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Figure 4: Condenser subcooling as a function of charge mass for the R-410A packaged unit  

 
Table 7 shows the impact on cooling capacity and power predictions of using the two-point charge tuning method as 
compared with the single-point method for cases with two-phase refrigerant entering the expansion devices for both 
units.   The two-point tuning leads to much better system-level predictions.   
 

Table 7: Simulations of the cases having two-phase state upstream of the fixed-area expansion device. 
Prediction Deviations Devcooling [%] 

One-point 
Devcooling [%] 

Two-point 
Devpower [%] 
One-point 

Devpower [%] 
Two-point 

Mean 24.1% 8.3% 4.9% 2.8% R-410A 
Max 42.0% 22.5% 7.7% 5.6% 
Mean 13.5% 5.0% 4.0% 0.6% R-407C 
Max 24.3% 9.3% 6.8% 1.6% 

 
5. CONCLUSIONS 

 
Typical compressor maps work well for predicting mass flow rate when the entering refrigerant is a superheated 
vapor.   However, they become significantly worse in predicting mass flow rate when the inlet condition is a two-
phase mixture.  Under these conditions, it is significantly better to use a two-phase suction density correction for 
mass flow rate predictions as compared with a saturated vapor density correction.  For power consumption, it is best 
to use the compressor map with no correction for the actual superheat (or two-phase) condition.  Correcting the 
suction state for two-phase conditions can lead to large errors in compressor power predictions.  Even for 
superheated conditions, the uncorrected compressor map for power provides slightly better predictions than the 
correction of Equation 2.  It is important to note that the current study was performed only for hermetic, scroll 
compressors with the shells under suction pressure.  Additional work may be necessary to verify the results for other 
compressor types.   
 
Semi-empirical models for short-tube orifices provide mass flow rate predictions that are extremely sensitive to 
refrigerant quality for two-phase refrigerant inlet conditions.  One of the keys to having accurate predictions of 
condenser exit states for these cases is to properly account for the effects of refrigerant charge.  This can only be 
accomplished through proper tuning of the simulated refrigerant charge.  A single-point charge tuning method is not 
sufficient.  However, a two-point charge tuning method can significantly improve the ability of system simulations 
to accurately predict cooling capacity and power consumption for situations where two-phase refrigerant enters the 
expansion device.   
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