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Time series from complex systems with interacting nonlinear and stochastic subsystems and hierarchical
regulations are often multiscaled. In devising measures characterizing such complex time series, it is most
desirable to incorporate explicitly the concept of scale in the measures. While excellent scale-dependent
measures such as � entropy and the finite size Lyapunov exponent �FSLE� have been proposed, simple
algorithms have not been developed to reliably compute them from short noisy time series. To promote
widespread application of these concepts, we propose an efficient algorithm to compute a variant of the FSLE,
the scale-dependent Lyapunov exponent �SDLE�. We show that with our algorithm, the SDLE can be accu-
rately computed from short noisy time series and readily classify various types of motions, including truly
low-dimensional chaos, noisy chaos, noise-induced chaos, random 1/ f� and �-stable Levy processes, stochas-
tic oscillations, and complex motions with chaotic behavior on small scales but diffusive behavior on large
scales. To our knowledge, no other measures are able to accurately characterize all these different types of
motions. Based on the distinctive behaviors of the SDLE for different types of motions, we propose a scheme
to distinguish chaos from noise.
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I. INTRODUCTION

Complex systems are usually comprised of multiple sub-
systems that exhibit both highly nonlinear deterministic, as
well as, stochastic characteristics, and are subject to hierar-
chical regulations. The irregularities in the price of a stock in
a financial market, for example, are highly influenced by
multilayered decisions made by various policy makers. The
Internet, as another example, has been designed in a funda-
mentally decentralized fashion and consists of a complex
web of servers and routers that cannot be effectively con-
trolled or analyzed by traditional tools of queuing theory or
control theory, and give rise to highly bursty and multiscale
traffic with extremely high variance �1�, as well as complex
dynamics with both deterministic and stochastic components
�2�. Similarly, with our increasing capability to monitor and
control biological activities, we have no choice but to deal
with signals generated by systems that are by nature hetero-
geneous, massively distributed, and highly complicated.
When devising measures to characterize complex multi-
scaled signals, it is of fundamental importance to explicitly
incorporate the concept of the scale in the measures. Along
this line, three measures are most noteworthy. One is the
recently introduced multiscale entropy �MSE� �3�, which in-
corporates the concept of scale in the temporal domain,
through nonoverlapping running means. This measure is use-
ful for analyzing stochastic systems. Two other measures are
� entropy �4� and the finite size Lyapunov exponent �FSLE�
�5–7�. They are highly related. Having the concept of scale in
phase space, � entropy and FSLE can be applied to both
deterministic and stochastic systems. Indeed, theoretically, �
entropy has been known for a number of dynamical systems,

including chaos and random fractals. Unfortunately, efficient
algorithms have not been proposed to reliably calculate them
from short noisy time series. This has severely limited their
application to many real world signal processing applica-
tions. To fully realize their potential, in this paper, we pro-
pose a fast and reliable algorithm to compute a variant of the
FSLE, which depends on the scale continuously and there-
fore, is more appropriate to be called the scale-dependent
Lyapunov exponent �SDLE�. We shall show that with our
computational algorithm, the SDLE is able to characterize all
known types of motions by obtaining the most important
parameters from a time series of practical length, and there-
fore, can shed much new light on the problem of distinguish-
ing chaos from noise.

Distinction between chaos and noise is a classic issue
arising from life sciences, finance, ecology, physics, fluid
mechanics, and geophysics. Albeit tremendous effort has
been made to solve this issue �8–11�, it remains widely open
�6,12–14�. Two major difficulties for solving this issue are �i�
chaos can be induced by noise �6,15,16�, and �ii� standard
Brownian motions may have a deterministic origin �6�. To
overcome these two difficulties, we ask two questions: �i�
What are the fundamental differences between clean low-
dimensional chaos, noisy chaos, and noise-induced chaos?
�ii� When a Brownian motion has a deterministic origin, can
we determine whether it is from a low-dimensional deter-
ministic system or a high-dimensional deterministic system?
The above questions motivate us to propose the following
algorithmic scheme to solve the problem of distinguishing
chaos from noise. Denote two scales resolvable by the reso-
lution of the data by �1 and �2, where �1��2. On this scale
range, if the behavior of the data is the same as a chaotic
data, then we say the data is chaotic. If the behavior is like a
Brownian motion, then we say the data is a Brownian mo-
tion, etc. Of course, there may exist scale ranges disjoint
with ��1 ,�2�, where the data behave neither like a chaotic*Electronic address: gao@ece.ufl.edu
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motion nor like a Brownian motion, but have features that
can define other types of motions. The data on those scales
will be classified accordingly. The feasibility of such a
scheme critically depends on whether one is able to, by ana-
lyzing short noisy time series, �i� classify different types of
motions, and �ii� characterize the time series by automati-
cally identifying different scale ranges where different types
of motions are manifested. Note that when dealing with com-
plex multiscaled data, the choice of a scale-dependent clas-
sification scheme is the most natural, as pointed out by Cen-
cini et al. �6�. However, when a Brownian motion is
generated by a very high-dimensional deterministic system,
we shall simply treat it as a type of stochastic process, so
long as it has the defining properties for a Brownian motion.

At this point, we need to make a comment on the concept
of resolvable scale. Denote a time series under investigation
by x�1� ,x�2� , . . . ,x�n�. Using time delay embedding �17�,
one obtains vectors of the form Vi= �x�i� ,x�i+L� , . . . ,
x(i+ �m−1�L)�, where the embedding dimension m and the
delay time L are chosen according to certain optimization
criterion �11,18�. In the reconstructed phase space, the
dataset determines two scales, the maximum and the mini-
mum of the distances between two vectors, �Vi−Vj�, where
i� j. Denote them by �max and �min, respectively. This is the
resolvable scale range. Analysis of data must be confined
within these two scales. Of course, with more data available,
the resolvable scale range can be enlarged. Note that one can
treat �max as one unit. This amounts to normalizing the time
series x�1� ,x�2� , . . . ,x�n� into the unit interval �0, 1� before
further analysis.

We make another comment on embedding of a stochastic
process. Since a stochastic process is infinite dimensional,
how high should the embedding dimension be chosen? It
turns out that often the major advantage of embedding a
self-affine stochastic process to a phase space is to transform
it to a self-similar process. When this is the case, specific
values of m and L are not important, so long as m�1. For
example, one could simply choose m=2,L=1. One excep-
tion is stochastic oscillations. This will be made clearer when
we discuss a concrete example, the stochastic Van de Pol
oscillator.

II. SCALE-DEPENDENT LYAPUNOV EXPONENT

The SDLE we shall compute in this paper is a variant of
FSLE �5�. The algorithm for calculating the FSLE is very
similar to the Wolf et al. algorithm �9�. It computes the av-
erage r-fold time by monitoring the divergence between a
reference trajectory and a perturbed trajectory. To do so, it
needs to define “nearest neighbors,” as well as needs to per-
form, from time to time, a renormalization when the distance
between the reference and the perturbed trajectory becomes
too large. Such a procedure requires very long time series,
and therefore, is not practical. To facilitate derivation of a
fast algorithm that works on short data, as well as to ease
discussion of continuous but nondifferentiable stochastic
processes, we cast the definition of the SDLE as follows.

Consider an ensemble of trajectories. Denote the initial
separation between two nearby trajectories by �0, and their

average separation at time t and t+�t by �t and �t+�t, respec-
tively. Being defined in an average sense, �t and �t+�t can be
readily computed from any processes, even if they are non-
differentiable. Next we examine the relation between �t and
�t+�t, where �t is small. When �t→0, we have,

�t+�t = �te
���t��t, �1�

where ���t� is the SDLE. It is given by

���t� =
ln �t+�t − ln �t

�t
. �2�

Given a time series data, the smallest �t possible is the sam-
pling time �.

The definition of the SDLE suggests a simple ensemble
average based scheme to compute it. A straightforward way
would be to find all the pairs of vectors in the phase space
with their distance approximately �, and then calculate their
average distance after a time �t. The first half of this descrip-
tion amounts to introducing a shell �indexed as k�,

�k 	 �Vi − Vj� 	 �k + ��k. �3�

where Vi ,Vj are reconstructed vectors, �k �the radius of the
shell� and ��k �the width of the shell� are arbitrarily chosen
small distances. Such a shell may be considered as a differ-
ential element that would facilitate computation of condi-
tional probability. To expedite computation, it is advanta-
geous to introduce a sequence of shells, k=1,2 ,3 , . . .. Note
that this computational procedure is similar to that for com-
puting the so-called time-dependent exponent �TDE� curves
�11,18�.

With all these shells, we can then monitor the evolution of
all of the pairs of vectors �Vi ,Vj� within a shell and take
average. When each shell is very thin, by assuming that the
order of averaging and taking logarithm in Eq. �2� can be
interchanged, we have

���t� =
�ln�Vi+t+�t − Vj+t+�t� − ln�Vi+t − Vj+t��

�t
, �4�

where t and �t are integers in unit of the sampling time, and
the angle brackets denote average within a shell. Note that
contributions to the SDLE at a specific scale from different
shells can be combined, with the weight for each shell being
determined by the number of the pairs of vectors �Vi ,Vj� in
that shell. In the following, to see better how each shell char-
acterizes the dynamics of the data on different scales, we
shall plot the ���� curves for different shells separately.

In the above formulation, it is implicitly assumed that the
initial separation, �Vi−Vj�, aligns with the most unstable di-
rection instantly. For high-dimensional systems, this is not
true, especially when the growth rate is nonuniform and/or
the eigenvectors of the Jacobian are non-normal. Fortunately,
the problem is not as serious as one might be concerned,
since our shells are not infinitesimal. When computing the
TDE �11,18�, we have found that when difficulties arise, it is
often sufficient to introduce an additional condition,
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�j − i� 
 �m − 1�L , �5�

when finding pairs of vectors within each shell. Such a
scheme also works well when computing the SDLE. This
means that, after taking a time comparable to the embedding
window �m−1�L, it would be safe to assume that the initial
separation has evolved to the most unstable direction of the
motion.

Before proceeding on, we wish to emphasize the major
difference between our algorithm and the standard method
for calculating the FSLE. As we have pointed out, to com-
pute the FSLE, two trajectories, one as reference, another as
perturbed, must be defined. This requires huge amounts of
data. Our algorithm avoids this by employing two critical
operations to fully utilize information about the time evolu-
tion of the data: �i� The reference and the perturbed trajecto-
ries are replaced by time evolution of all pairs of vectors
satisfying the inequality �5� and falling within a shell, and
�ii� introduction of a sequence of shells ensures that the num-
ber of pairs of vectors within the shells is large while the
ensemble average within each shell is well defined. In the
following, we shall illustrate the effectiveness of our algo-
rithm by examining various types of complex motions.

III. CLASSIFICATION OF COMPLEX MOTIONS

To understand the SDLE as well as appreciate its power,
we apply it to classify seven major types of complex mo-
tions.

A. Chaos, noisy chaos, and noise-induced chaos

Obviously, for truly low-dimensional chaos, ���� equals
the largest positive Lyapunov exponent, and hence, must be
independent of � over a wide range of scales. For noisy
chaos, we expect ���� to depend on small �. To illustrate
both features, we consider the chaotic Lorenz system with
stochastic forcing:

dx/dt = − 16�x − y� + D�1�t� ,

dy/dt = − xz + 45.92x − y + D�2�t� ,

dz/dt = xy − 4z + D�3�t� , �6�

where D�i�t�, i=1,2 ,3 are independent Gaussian noise forc-
ing terms with mean 0 and variance D2. When D=0, the
system is clean. Figure 1�a� shows five curves, for the cases
of D=0,1 ,2 ,3 ,4. The computations are done with 10 000
points and m=4, L=2. We observe a few interesting features:
�i� For the clean chaotic signal, ���� slightly fluctuates
around a constant �which numerically equals the largest posi-
tive Lyapunov exponent� when � is smaller than a threshold
value which is determined by the size of the chaotic attractor.
The reason for the small fluctuations in ���� is that the di-
vergence rate varies from one region of the attractor to an-
other. �ii� When there is stochastic forcing, ���� is no longer
a constant when � is small, but increases as −� ln � when the
scale � is decreased. The coefficient � does not seem to de-
pend on the strength of the noise. This feature suggests that
entropy generation is infinite when the scale � approaches to
zero. Note that the relation of ����	−� ln � has also been
observed for the FSLE and the � entropy. In fact, such a
relation can be readily proven for the � entropy �4�. �iii�
When the noise is increased, the part of the curve with
����	−� ln � shifts to the right. In fact, little chaotic signa-
ture can be identified when D is increased beyond 3. When
noise is not too strong, this feature can be readily used to
quantify the strength of noise.

Next we consider noise-induced chaos. To illustrate the
idea, we follow Ref. �15� and study the noisy logistic map

xn+1 = xn�1 − xn� + Pn, 0 � xn � 1, �7�

where  is the bifurcation parameter, and Pn is a Gaussian
random variable with zero mean and standard deviation �. In
Ref. �15�, we reported that at =3.74 and �=0.002, noise-
induced chaos occurs, and thought that it may be difficult to
distinguish noise-induced chaos from clean chaos. In Fig.
1�b�, we have plotted the ���t� for this particular noise-
induced chaos. The computation was done with m=4, L=1
and 10 000 points. We observe that Fig. 1�b� is very similar
to the curves of noisy chaos plotted in Fig. 1�a�. Hence,
noise-induced chaos is similar to noisy chaos, but different
from clean chaos.

FIG. 1. ���� curves for �a� the
clean and the noisy Lorenz sys-
tem, and �b� the noise-induced
chaos in the logistic map �curves
designated by circles, pentagrams,
and diamonds correspond to shells
�2−i−1 ,2−i�, i=9,14,19�.
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At this point, it is worth making two comments: �i�
On very small scales, the effect of measurement noise is
similar to that of dynamic noise. �ii� The ���� curves shown
in Fig. 1 are based on a fairly small shell. The curves com-
puted based on larger shells collapse on the right-hand side
of the curves shown in Fig. 1. Because of this, for chaotic
systems, one or a few small shells would be sufficient. If one
wishes to know the behavior of � on ever smaller scales, one
must use longer and longer time series.

Finally, we consider the Mackey-Glass delay differential
system �19�,

dx/dt =
ax�t + ��

1 + x�t + ��c − bx�t� .

When a=0.2, b=0.1, c=10, �=30, it has two positive
Lyapunov exponents, with the largest Lyapunov exponent
close to 0.007 �11�. Having two positive Lyapunov expo-
nents while the value of the largest Lyapunov exponent of
the system is not much greater than 0, one might be con-
cerned that it may be difficult to compute the SDLE of the
system. This is not the case. In fact, this system can be ana-
lyzed as straightforwardly as other dynamical systems in-
cluding the Henon map and the Rossler system. An example
of the ���� curve is shown in Fig. 2, where we have followed
Ref. �11� and used m=5, L=1, and 5000 points sampled with
a time interval of 6. Clearly, we observe a well defined pla-
teau, with its value close to 0.007. This example illustrates
that when computing the SDLE, one does not need to be
very concerned about nonuniform growth rate in high-
dimensional systems.

B. 1/ f� processes

1/ f� noise is a form of temporal or spatial fluctuation
characterized by a power-law decaying power spectral den-
sity. It has been observed in many areas of science and en-
gineering �see Refs. �20,21� and references therein�. Two im-
portant prototypical models for such processes are the
fractional Brownian motion �fBm� process �22� and the on/
off intermittency with power-law distributed on and off pe-
riods �21�. For convenience, we introduce the Hurst param-
eter 0�H�1 through a simple equation,

� = 2H + 1. �8�

Depending on whether H is smaller than, equal to, or larger
than 1/2, the process is said to have antipersistent correla-
tion, short-range correlation, and persistent long-range corre-
lation �21�. Note that D=1/H is the fractal dimension of
such processes, while the famous Kolmogorov’s 5 /3 law for
the energy spectrum of fully developed turbulence �23� cor-
responds to H=1/3.

It is well known that the variance of such stochastic pro-
cesses increases with t as t2H. Translating into the average
distance between nearby trajectories, we can write

�t = �0tH. �9�

Using Eq. �2�, we readily find ���t�	H / t. Expressing t by �t,
we finally find

���t� 	 H�t
−1/H. �10�

Note that the same functional relation can be derived for �
entropy �4�. However, using � entropy, it is not easy to esti-
mate H through analysis of short time series. In contrast, Eq.
�10� can be conveniently used to estimate H. To illustrate
this, we first study fBm processes BH�t�, which are Gaussian

FIG. 3. ���� curves for �a�
fBm processes with H=1/3, 0.5,
and 0.7, and �b� on/off models
with =1.2, 1.6, and 2.0.

FIG. 2. The ���� curve for the Mackey-Glass system. The com-
putation was done with m=5, L=1, and 5000 points sampled with a
time interval of 6.
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process with mean 0, stationary increments, variance

E��BH�t��2� = t2H �11�

and covariance

E�BH�s�BH�t�� = 1
2 �s2H + t2H − �s − t�2H� . �12�

In Fig. 3�a�, we have shown three curves for H=0.33, 0.5,
and 0.7, where the calculation is done with 214 points and
m=2, L=1. We observe that the estimated 1/H clearly match
those used in simulating these processes.

Next, we study on/off models with power-law distributed
on and off periods,

P�X 
 x� = 
b

x
�

, x 
 b � 0, 0 �  	 2. �13�

When �2, such processes have infinite variance. It is well
known that �21�

H = �3 − �/2. �14�

In Fig. 3�b�, we have shown three curves for =1.2,1.6,2,
which corresponds to H=0.9, 0.7, and 0.5, respectively.
Again, the estimated H accurately reflect the values of 
used in the simulations.

Note that as far as estimating the H parameter from fBm
and on/off processes is concerned, our algorithm is as accu-
rate as any other methods, including the detrended fluctua-
tion analysis �DFA�. �24�

Before proceeding on, a comment should be made on the
meaning of � in the power-law distributed on/off model. As
we have pointed out, when �2, on/off processes have in-
finite variance. Therefore, to effectively characterize on/off
processes, the absolute value of � also has to be large. So
long as � is small relative to the largest scale resolved by the
dataset, our algorithm should work. This comment is also
pertinent to the Levy flights to be studied next. In fact, the
example of a Levy flight to be discussed not only has infinite
variance, but also has infinite mean. Interestingly, the defin-
ing parameter for such a Levy flight can still be readily es-
timated by our method.

C. Levy flights

We now consider Levy processes, one of the prototypical
random fractal models that have found numerous applica-
tions �25,26�.

There are two types of Levy processes �21�. One is Levy
flights, which are random processes consisting of many in-
dependent steps, each step being characterized by a stable
law, and consuming a unit time regardless of its length. The
other is Levy walkers, where each step takes time propor-
tional to its length. A Levy walker can be viewed as sampled
from a Levy flight with a uniform speed. The increment pro-
cess of a Levy walker, obtained by differencing the Levy
walker, is very similar to an on/off train with power-law
distributed on and off periods. Therefore, in the following,
we shall not be further concerned about it. We shall focus on
Levy flights. Note that Levy flights, having independent
steps, are memoryless processes characterized by H=1/2,

irrespective of the value of the exponent � characterizing the
stable laws �21�. In other words, methods such as DFA can-
not be used to estimate the � parameter.

In order to derive an analytic expression for ���� to esti-
mate �, we define Levy flights more precisely. A �standard�
symmetric �-stable Levy flight �L��t� , t
0 is a stochastic
process �27� which is almost surely zero at t=0, has inde-
pendent increments, and L��t�−L��s� follows an �-stable

distribution with characteristic function e−�t−s��u��, where 0
	s� t��. A random variable Y is called �strictly� stable if
the distribution for �i=1

n Yi is the same as that for n1/�Y,

�
i=1

n

Yi=
d

n1/�Y , �15�

where Y1 ,Y2 , . . . are independent random variables, each
having the same distribution as Y. From Eq. �15�, one then
finds that n Var Y =n2/� Var Y. For the distribution to be
valid, 0��	2. When �=2, the distribution is Gaussian,
and hence, the corresponding Levy flight is just the standard
Brownian motion. When 0���2, the distribution is heavy
tailed, P�X
x�	x−� ,x→�, and has infinite variance. Fur-
thermore, when 0��	1, the mean is also infinite.

The symmetric �-stable Levy flight is 1 /� self-similar.
That is, for c�0, the processes �L��ct� , t
0 and
�c1/�L��t� , t
0 have the same finite-dimensional distribu-
tions. By this argument as well as Eq. �15�, it is clear that on
average, the length of the motion, �L��t�, in a time span of
�t, is given by the following scaling:

�L��t� � �t1/�. �16�

Comparing to 1/ f2H+1 processes, we identify that 1 /� plays
the role of H. Therefore, the scaling for the SDLE is

���t� 	
1

�
�t

−�. �17�

We have simulated a number of Levy flights with differ-
ent �. One realization for the flights with �=1 is shown in
Fig. 4�a�. The computed ���t� curves �based on 215 points
and m=2, L=1� are shown in Fig. 4�b�. In fact, the ���t�
curves from a number of different shells are plotted together.
We observe that the slope for the envelope is −1, consistent
with the value of � chosen in simulating the flights.

To understand why the envelope of the ���t� gives a better
estimate of �, we resort to the two small boxes, denoted as A
and B, in Fig. 4�a�. When those two small boxes are en-
larged, they show similar pattern as that of Fig. 4�a�. Obvi-
ously, the scales involved in A and B are different. Those
different scales are captured by shells of different sizes.
Since the mean as well as the variance of the flights are both
infinite, while the number of points in each small box is not
large, ���t� from each shell cannot have a long scaling re-
gion. However, when ���t� from different shells are plotted
together, they form an envelope with a long scaling region.
With this argument, it is clear that when computing ���t� for
a Levy flight, a number of shells is more advantageous than
a single shell, especially when the time series is not too long.
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D. Stochastic oscillations

Stochastic oscillation is an important type of complex mo-
tion that has been observed in many different disciplines of
science and engineering. A stochastic oscillator, having struc-
tures due to oscillatory motions but not having closed orbits
in the phase space, may be interpreted as chaos. Which func-
tional form of ���t� characterizes such motions? To gain in-
sights into this problem, we study a stochastically driven Van
de Pol’s oscillator

dx/dt = y + D1�1�t� ,

dy/dt = − �x2 − 1�y − x + D2�2�t� , �18�

where ��i�t��=0, ��i�t�� j�t���=�ij��t− t��, i , j=1,2, and the
parameters Di, i=1,2 characterize the strength of noise. We
have calculated the SDLE for many different choices of the
noise level. There are two types of behaviors for ���t�, quite
independent of the noise level. One functional form for ���t�
is ����	−ln �, observed when the embedding dimension m
and delay time L are both small. Another type of behavior is
����	�−1/H, where H�1/2, observed when �m−1�L is com-
parable to one-half of the period of the oscillation. An ex-
ample of the latter is shown in Fig. 5.

The relation ����	−ln � for small embedding window
suggests that locally, the dynamics of a stochastic oscillator
is just like other noisy dynamics, such as those shown in Fig.
1. The relation ����	�−2 for large embedding window sug-
gests that the motion is like a Brownian motion. This reflects
the variation of amplitude of the oscillation on longer time
scales, as studied in Ref. �28�.

Note that stochastic oscillators may be characterized by
more general relations ����	�−1/H, with H�1/2 �29�, espe-
cially in the case of noise-induced chaos, H is usually larger
than 1 when noise level is appropriate �15�.

Finally, we emphasize that relations such as ����	�−1/H

for stochastic oscillators cannot be characterized by many
other methods, such as the DFA.

E. Complex motions with multiple scaling behaviors

Some dynamical systems may exhibit multiple scaling be-
haviors, such as chaotic behavior on small scales but diffu-

sive behavior on large scales. To see how our algorithm can
characterize such systems, we follow Cencini et al. �6� and
study the following map:

xn+1 = �xn� + F�xn − �xn�� + ��t �19�

where �xn� denotes the integer part of xn, �t is a noise uni-
formly distributed in the interval �−1,1�, � is a parameter
quantifying the strength of noise, and F�y� is given by

F�y� = ��2 + ��y if y � �0,1/2� ,

�2 + ��y − �1 + �� if y � �1/2,1� .
� �20�

The map F�y� is shown in Fig. 6 as the dashed lines. It gives
a chaotic dynamics with a positive Lyapunov exponent
ln�2+��. On the other hand, the term �xn� introduces a ran-
dom walk on integer grids.

It turns out this system is very easy to analyze. When �
=0.4, with only 5000 points and m=2, L=1, we can resolve
both the chaotic behavior on very small scales, and the nor-

FIG. 4. �a� 2D Levy flights
with �=1.0, �b� ���� curves for
the Levy process �curves desig-
nated by circles, diamonds, penta-
grams, asterisks, left triangles, and
squares correspond to shells
�2−i−1 ,2−i�, i=24,25, . . . ,29�. The
estimated slope 1.01 is close to
the given �, which is 1.0.

FIG. 5. ���� curves for the y�t� data of the stochastic Van de
Pol’s oscillator with D1=D2=0.02 �curves designated by circles,
diamonds, and squares correspond to shells �2−i−1 ,2−i�, i
=11,12,13�. The estimated slope 2.10 yields an H close to 0.5. The
data was sampled with a time interval of 0.2. The period of the
oscillation is about 30 sample points. The embedding parameters
are m=8, L=2, therefore, the embedding window �m−1�L is about
one-half of the period.
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mal diffusive behavior �with slope −2� on large scales. See
Fig. 7�a�.

We now ask a question: Given a small dataset, which type
of behavior, the chaotic or the diffusive, is resolved first? To
answer this, we have tried to compute the SDLE with only
500 points. The result is shown in Fig. 7�b�. It is interesting
to observe that the chaotic behavior can be well resolved by
only a few hundred points. However, the diffusive behavior
needs much more data to resolve. Intuitively, this makes
sense, since the diffusive behavior amounts to a Brownian
motion on the integer grids and is of much higher dimension
than the small scale chaotic behavior. Therefore, more data
are needed to resolve it. As will be shown in the next section,
this important result will allow us to determine whether a
deterministic Brownian motion is of low or high dimension.

We have also studied the noisy map. The resulting SDLE
for �=0.001 is shown in Fig. 7�a�, as squares. We have again
used 5000 points. While the behavior of the SDLE suggests
noisy dynamics, with 5000 points, we are not able to well
resolve the relation ����	−ln �. This indicates that for the
noisy map, on very small scales, the dimension is very high.

Map �19� can be modified to give rise to an interesting
system with noise-induced chaos. This can be done by re-

placing the function F�y� in map �19� by G�y� to obtain the
following map �6�:

xt+1 = �xt� + G�xt − �xt�� + ��t, �21�

where �t is a noise uniformly distributed in the interval
�−1,1�, � is a parameter quantifying the strength of noise,
and G�y� is a piecewise linear function which approximates
F�y� of Eq. �20�. An example of G�y� is shown in Fig. 6. In
our numerical simulations, we have followed Cencini et al.
�6� and used 104 intervals of slope 0.9 to obtain G�y�. With
such a choice of G�y�, in the absence of noise, the time
evolution described by the map �21� is nonchaotic, since the
largest Lyapunov exponent ln�0.9� is negative. With appro-
priate noise level �e.g., �=10−4 or 10−3�, the SDLE for the
system becomes indistinguishable to the noisy SDLE shown
in Fig. 7 for the map �19�. Having a diffusive regime on large
scales, this is a more complicated noise-induced chaos than
the one we have found from the logistic map.

Before proceeding on, we make a comment on the com-
putation of the SDLE from deterministic systems with nega-
tive largest Lyapunov exponents, such as the map �21� with-
out noise. A transient-free time series from such systems is a
constant time series. Therefore, there is no need to compute
the SDLE or other metrics. When the time series contains
transients, if the time series is sampled with high enough
sampling frequency, then the SDLE is negative. In the case
of simple exponential decay to a fixed point, such as express-
ible as e−�t, where ��0, one can readily prove that the
SDLE is −�. Since such systems are not complex, we shall
not be further concerned about them.

IV. DISTINGUISHING CHAOS FROM NOISE

In the introduction, we have argued that the key to distin-
guish chaos from noise is to identify different scale ranges
where different types of motions are manifested. Now that
we have found distinctive behaviors of the SDLE for seven
important types of motions that have been known so far, we
are ready to answer how chaos can be distinguished from
noise. Since our purpose is for practical applications, we
shall assume that our dataset is not only finite, but of small or
medium size.

We first ask a question. When all three distinctive behav-
iors of the SDLE, �i� ����	−ln �, �ii� ����	constant, and

FIG. 6. The function F�x� �20� for �=0.4 is shown as the
dashed lines. The function G�x� �21� is an approximation of F�x�,
obtained using 40 intervals of slope 0. In the case of noise-induced
chaos discussed in the paper, G�x� is obtained from F�x� using 104

intervals of slope 0.9.

FIG. 7. ���� for the model de-
scribed by Eq. �19�. �a� 5000
points were used; for the noisy
case, �=0.001. �b� 500 points
were used.
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�iii� ����	�−1/H, coexist, is it typically true that the scales
for them to occur are in an ascending order? The answer is
yes, as can be readily understood by the following argument.
Behavior �i� amounts to stochastic forcing. Its effect is to
kick the dynamics to larger scales. For the chaotic motion to
be resolvable, its effect must be limited to scales that are
smaller than the scales showing chaotic motion. To under-
stand why diffusive behavior �iii� must occur on scales larger
than those showing chaotic motions, it suffices to note that
diffusive motion is a nonstationary process. It needs a huge
or even an unbounded region of phase space to play out. It is
unimaginable to have chaotic motion beyond those scales
still resolvable by a finite data. Therefore, the scales for the
three behaviors to occur must be in an increasing order.

The above discussion suggests that if a Brownian motion
is generated by a deterministic system, then the dimension of
the system can be readily determined. This is because for
deterministic low-dimensional systems such as the map �19�
to generate large scale diffusive motions, locally its dynam-
ics must be unstable. Low-dimensional local unstable dy-
namics amounts to a low-dimensional chaotic motion. There-
fore, we must have a constant ���� on small scales. In other
words, coexistence of ����	constant and ����	�−2 would
indicate that the Brownian motion is from a low-dimensional
deterministic system. We emphasize that ����	constant
should occur on the scales smaller than those for diffusion to
occur, and that the behavior of ����	−ln � should not occur,
since the system is low-dimensionally deterministic.

We are now ready to answer to what extent chaos can be
distinguished from noise. First, in order to say that a time
series under study has a chaotic scaling regime, ���� must
show a plateau �i.e., almost constant� for a scale range
��1 ,�2�. Since many arbitrary functions locally could be
treated as a constant, if ���� is constant only for �2 very close
to �1, then it should not be interpreted as a plateau. In other
words, �2 must be considerably larger than �1. Unfortunately,
it is not easy to state exactly how much larger �2 should be
than �1, since this depends on the dimension of the data. We
recommend that log10��2 /�1� must be at least around 1/2.

After knowing existence of a chaotic scaling regime in the
data, it is natural to ask if the dynamics is deterministically
chaotic or not. This can be readily inferred by checking the
behavior of ���� on scales smaller than �1. If on those scales,
���� is above the plateau, then we have good reason to sus-
pect that the data is noisy. If on those scales, ����	−ln �,
then we can be sure that it is noisy chaos or noise-induced
chaos. However, if all is known is the time series, then we
will not be able to further distinguish between noisy chaos
and noise-induced chaos.

In most situations, when the data is found to be noisy, it is
important to find out which type of noise process the data is.
The power-law behavior of the SDLE is especially interest-
ing for this purpose. For example, we can combine analysis
using the SDLE with spectral analysis and distributional
analysis, to determine whether the data is a type of 1 / f�

process, or Levy processes, or stochastic oscillations. More
precisely, a power-law behavior of the SDLE together with
sharp spectral peaks revealed by Fourier analysis would in-
dicate a stochastic oscillation, a power-law behavior of the

SDLE together with a Gaussian-type distribution would in-
dicate a fBm-like data. If instead, heavy-tailed distributions
are observed, then the data is of on/off intermittency type or
similar to Levy processes. While many excellent methods for
estimating the Hurst parameter have been proposed �see a
recent comparative study �21��, the SDLE offers another ef-
fective approach. In fact, as we have pointed out in Sec. III,
the SDLE provides better characterization of Levy flights
and stochastic oscillations, since most other methods would
only give H=0.5 for Levy flights, irrespective of the values
of the defining parameter �, and would fail to characterize
the power-law behavior of the SDLE for stochastic oscilla-
tions.

V. CONCLUSIONS

Motivated by lack of efficient computational approaches
to simultaneously characterize complex signals on a wide
range of scales, we have proposed a algorithm to compute
the SDLE from short noisy time series. We have shown that
with our algorithm, the SDLE can readily characterize seven
important types of complex motions, including truly low-
dimensional chaos, noisy chaos, noise-induced chaos, ran-
dom 1/ f� processes, random �-stable Levy processes, sto-
chastic oscillations, and motions with multiple scaling
behaviors such as chaotic behavior on small scales and dif-
fusive behavior on large scales. In particular, the power-law
relation in the SDLE offers another excellent method for
estimating the defining parameters for major models of sto-
chastic processes, including 1/ f� processes and Levy pro-
cesses. Classification of different types of motions based on
the SDLE of short time series has helped us understand how
much chaos can be distinguished from noise, and enabled us
to propose a simple scheme to solve this problem.

Since � entropy and the SDLE �as well as the FSLE� are
equivalent �6�, our work has shed considerable light on
whether microscopic chaos exists or not �14� as well as why
the K2 entropies for 1 / f� processes converge to zero when
the embedding dimension increases �13�. In light of our
work, the power-law decaying � entropy �with slope −2� re-
ported in Ref. �14� simply indicates Brownian motions in-
stead of chaos on the scales examined. To understand why
the K2 entropies for 1 / f� processes converge to zero when
the embedding dimension increases, it suffices to note that
after one chooses a norm for the reconstructed phase space,
the scale increases with the embedding dimension m �in the
case of the Euclidean norm, the scaling is m1/2�. Following
the power-law behavior of ����	�−1/H, if we start from a
power-law decaying K2 entropy, K2���	�−1/H, then in the
case of the Euclidean norm, we can express it in terms of the
embedding dimension,

K2�m� 	 m−1/2H,

therefore, it converges rapidly to 0 when m is increased.
We have found that for noisy chaotic dynamics, on very

small scales, the SDLE scales with � as ����	−� ln �. It is
of considerable interest to determine the coefficient � in
terms of other quantities such as the dimension. This will be
one of our future tasks.
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Throughout the paper, we have assumed that the dataset
under consideration is not only finite, but of small or medium
size. What would the SDLE behave if the dataset can be
extremely large? One possibility is that on scales smaller
than where the behavior of ����	−� ln � is observed,

one could observe another plateau, indicating existence of
a high-entropic chaotic state. Nonlinear maps used as ran-
dom number generators �30� belong to this category. For
practical applications, one may not be concerned about this,
however.
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