
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1989

Fast Parallel Lyndon Factorization With Applications Fast Parallel Lyndon Factorization With Applications

Alberto Aposiolico

Maxime Crochemore

Report Number:
89-931

Aposiolico, Alberto and Crochemore, Maxime, "Fast Parallel Lyndon Factorization With Applications"
(1989). Department of Computer Science Technical Reports. Paper 792.
https://docs.lib.purdue.edu/cstech/792

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

FAST PARALLEL LYNDON FACTORIZATION,
WITH APPLICATIONS

Alberto AposLolico
Maxime Crochcmore

CSD·1R·931
November 1989

(Revised April 1990)

FAST PARALLEL LYNDON FACTORIZATION
WITH APPLICATIONS

Alberto Apostolico1

Department of Computer Science, Purdue University, West Lafayette, IN 47907
and

Dipartimento di Matematica Pura e Applicata, Universita de L'Aquila, L'Aquila, Italy

Maxime Crochemore'l
L.I.T.P., University of Paris VII, 4-Place Jussieu, 75252 Paris, France

Purdue University CS TR 931
(November, 1989)

(Revised April 1990)

Abstract: It is shown that the Lyndon decomposition of a word of n
symbols can be computed by an n~processorsCReW PRAM in O(log n)
time. Extensions of the basic algorithm convey, within the same time
and processors bOWlds, efficient parallel solutions to problems such as
finding the lexicographically minimum or maximum suffix for aU prefixes
of the input string, and finding the lexicographically least rotation of all
prefixes of the input.

Key words: parallel computation, combinatorics on words, string match
ing, Lyndon words.

AMS subject classification: 68C25

1 This author's research was supported in part by the French and Italian Ministries of Education,
by the British Research Council Grant SERC-E76797> by NSF Grant CCR-B9-00305, by NIH Library of
Medicine Grant ROJ LM0511B, by AFOSR Grant 90-0107, and by NATO Grant eRG 900293.

2 This author's research was supported in part by PRC 'Mathematiques et Informatique' and by NATO
Grant CRG 900293.

2

1. INTRODUCTION

Within the vast domain of sorting, a special role is played by problems defined in terms

of lexicographic orders. Among problem.s in this class, we find that of sorting a set of
strings over some ordered alphabet, finding the lexicographically least circular shift of a
string, finding the lexicographically smallest or largest suffix for a string, etc. In the realm

of serial computation, the last three problems are solved efficiently by resort to a special
factorization of the free monoid [131 introduced in [8] and known as Lyndon factorization

(or decomposition). According to this factorization, any word can be decomposed wriquely

into a sequence of lexicographically non increasing factors, with the additional property

that each such factor is lexicographically least among its own circular shifts. Optimal,
linear-time algorithms for the Lyndon factorization of a word were given in [10], along

with the implied linear-time solutions for the related problems of finding lexicographically

least circular shifts, computing minimum suffixes, etc. Recently, further properties of the
Lyndon factorization were used to compute in optimal O(n2) time the least rotations of

all substrings of a string of n symbols [3].

A handful of algorithmic problems on strings [4] have been attacked to date also in
the framework of parallel computation (see, e.g., [2], [5], [6], [9]). In this framework, one
is usually interested in approaching optimum speed-up for a problem, in the sense that the

product of the time taken by a parallel solution and the number of processors used should
be as close as possible to the asymptotic complexity of the best serial algorithm available for

that problem. Typically, the available efficient sequential algoritluns do not lend themselves
to efficient parallelizatiollS, so that fast parallel algorithms are to be developed mostly from

scratch. In particular, none of the parallel algorithms on words produced resembles any
sequential predecessor. The algorithm presented in this paper is no exception to this

rule. In this paper, we show that the Lyndon decomposition of a word of n symbols can
be computed by an n-processors CRCW PRAM in O(log n) time and linear space. The

best previous parallel solution to this problem uses a CRCW PRAM with n processors and

takes O(log2 n) time with linear space, or O(logn) time with quadratic space (9]. Although

the time x pToceS!JOTS bound of this paper does not achieve optimum speed-up, it is very
close to the n(logn/loglogn) lower bound for computing such elementary flUletions as
the parity of n bits on a CReW PRAM using a polynomial number of processors [7].

This paper is organized as follows. In the next section, we recall some basic known

facts of combinatorics on words and lexicographic orderings. In Section 3, we analyze

the robustness of the Lyndon decomposition of a word x under extension operations that

change x into a new word Xl = xw, where w is an arbitrary word. In Section 4, we study
more in detail the relation between the Lyndon factorizations of two given words x and

Xl and the Lyndon decomposition of w = xx'. Some of the properties we derive are of

3

independent interest. Section 5 contains the description of our parallel algorithm for the

Lyndon decomposition of a word, based on the results of the previous sections. In the

final section, we describe some applications and extensions of the main algorithm that

lead to solve, in overall O(logn) time, some problems defined on the set of all prefixes

of the input string. Specifically, we consider the problem of finding, for every prefix of

the input, the lexicographically smallest or largest suffix, and the lexicographically least

among all rotations of that prefix. The last application is based on some properties of

Lyndon decompositions recently introduced in [3].

2. PRELIMINARIES

Let E be an alphabet totally ordered according to the relation <, E+ the free semigroup

generated by E, and E* = E+ U {A}, where A is the empty word. The total order < is

extended in its corresponding lexicographic order on E+ 1 as follows: For any pair of words
x,y E E+ , X < Y iff either y E xE+ or

x = ras , y = rbt, with a < bj a, b E Ej r , s, tEE"'.

In the following, we wri te u « v or v ~ u to denote that u < v but v is not in uE*.

Fact 1 . Let u -< v. Then, for any W , z in E*, we have uw -< vz.

A word x E E- is a Lyndon word iff x is strictly smaller that any of its proper suffixes.

For example, a, b, aaab, abbb, aabab and aababaabb are Lyndon words on the alphabet E =

a, b, but abab and abaab are not. By the definition of lexicographic order, one gets then
immediately that if x is a Lyndon word, then no nonempty suffix of x can be also a prefix

of x. A word with this property is border·free. A word x is primitive if setting x = w k

implies k = 1. An immediate consequence of the preceding statement is then that any

Lyndon word is a primitive word. A word x is strongly primitive or squarefree if every

substring of x is a primitive word. For example, cabea and cababd are primitive words, but

eabea is also strongly primitive, while cababd is not , due to the square abab.

Fact 2. Let 1 be a Lyndon word, v E E+ a suffix of 1 and u a prefix of v. Then u < 1
implies that u is a prefix of l. In other words, u -< 1 is impossible.

The following central theorem holds [8].

Theorem 1. Any word x E E+ may be written in a unique way as a nonincreasing product

of Lyndon words:

x = 1112 ...lkl 11 ~ 12 2::: ... ~ lk·
Moreover, lk is the (lexicographically) smallest suffix of x.

4

The sequence (h,12 , ... j lk) of Lyndon words such that x = ZllZ ...lk and 11 :2:: 12 :;::: ... ;:::

lk is called the Lyndon decomposition or Lyndon factorization of x. In the following, we
refer to it simply as the decomposition or factorization of x. The following claim is an

obvious consequence of the fact that 11 is the longest Lyndon word that is also a prefix of
x.

Fact 3. Let 1 be a Lyndon word. For any wEE"', the first factor 11 in the decomposition

of Iw obeys the condition 11,12: III.

The following notions will be needed in the sequel. If x = vwy, then the length Ivl
of v is the position of w in x. Let 1112 ...h be the Lyndon decomposition of a string x.

For any t (t = 1,2, ... ,k -I), tail(lt) is the suffix of x having the same position in x
as lHb i.e.) tail(lt) = It+lZt+2 ...1k. We also set tail(lk) = A, and, with the convention
that 10 = >., tail(lo) = x. For any t(t = 1,2, ... ,k), rest(lt) is the suffix of x at position

i + lId, where i is the position of the last factor identical to It in the decomposition of
x. For example, for x = bbababa we have it = 12 = b, 13 = 14 = ab and 15 = a. We

also have tail(l,) = bababa and Test(l,) = tai/(l,) = ababa. Finally, tail(l,) = aba, and
tail(l.) = Test(l.) = Test(l,) = a.

3. FACTOR STABILITY UNDER RIGHT EXTENSIONS

In this section, we study the robustness of the factors in the decomposition of a word x

with respect to arbitrary extensions of x into a new word xw. It is easily seen that the

factorization of some such extensions are themselves easy extensions of the factorization
of x, while others depart quite substantially from the factorization of x. For example, let
x = abcababcababcab. Then, we have 11 = abc, 12 = 13 = ababc and 14 = abo Appending to

x a string w consisting of the single symbol b leaves h, hand 13 unaltered, and only requires
extending 14 into the new factor abb. If, on the other hand, we had chosen w = c, then the

decomposition of xc would have 11 = abc and 12 = ababcababcabc, which is dramatically
different from the decomposition of x.

We say that a factor I in the decomposition of a string x is right-stable if I is a factor

of the decomposition of xw for any w E ~•. Let now 1],12 , ... ,lk be the decomposition

of x. Clearly, lk is never right stable unless lk coincides with the maximum symbol c in

~. However, if lk = c and k > I, then it must be 11 = 12 = ... = h, and all factors
are right-stable. Observe also that, for [hI> 1 the first symbol of Ii cannot be c. In the

nontrivial case that lk is not c and that k > I, the following theorem characterizes the
right-stable factors in the decomposition of x.

Theorem 2. Let 11 ,12 , ...,lk be the decomposition of x, and assume that k > 1 and lk =f:. c.

For any t in [1, k - I], it is right-stable if and only if rest(lt) is not a prefix of it.

5

Proof. Assume that It is right-stable but rest(lt) is a prefix of It. We show that, in this
case, It is not a factor in the decomposition of xc. By the definition of rest(lt), we have
that w = tail(lt_d = (It)!resi(lt) for some integer f ;::: 1. We show that we is a Lyndon

word. Thus, even if a factor of the decomposition of xc started with 1t1 It would only be

a proper prefix of such a factor. Choose i such that Irest(lt)cil = 11t l + 1. Let z be an

arbitrary suffix of Itl and u be the suffix of of resi(lt)ci
-

1 such that lui = Izi. Clearly,
u ~ z, whence uc > z. But z > It1 so that uc ~ It_ Since h =F c, then c >>It . Since

it is a Lyndon word, then we already have that for any suffix z of It, z » It. Hence, for

any f' < I, Fact 1 yields z(It)!' rest(lt)c i » (It)!rest(lt)ci . In conclusion, we is a Lyndon
word, which contradicts the assumption that It is right-stable.

For the second part of the proof, we show that if rest(lt) is not a prefix of It, then It

is right-stable.

Assume for the moment that It is not a prefix ofrest(It), i.e., neither of It or rest(It)

is a prefix of the other. Then, letting v be the longest common prefix of It and rest{lt),

we have Ivl < min{IItl,lrest(lt)I}. But then there are symbols a and a' such that a =1= ai,

va is a prefix of It and va' is a prefix of rest(It). Now, it is known from [10) that a < a'

implies that ItIt+l ...va' is a Lyndon word. Hence, a < a' is impossible in our case, since it
would violate Fact 3. It is convenient to carry out this part of the proof explicitly, both
for completeness of presentation and for future reference. Recall that, since it is a Lyndon

word, then for every suffix z of it, we have z::»- it and, by Fact 1, z(It)9va' ::»- (It)fva',

where f was defined earlier in this proof and 9 < f is a natural number. Thus, we only
need to show that for every suffix z of va', it is also z::»- ItIt+l ...va'. This is obvious for
z = va', due to the hypothesis that va is a prefix of It and a < a'. Let then z be an

arbitrary proper suffix of va', and write z = zlal. Since v is a prefix of III then clearly

z' « it is impossible, by Fact 2. Hence z' < It implies that z' is a prefix of It. Thus,
there exist a" in E such that z'all is a prefix of It. But va is also prefix of It, and z' is a
suffix of v. Therefore, it must be a 2:: a", by Fact 2. Hence, a' > a yields a' > a" and

z = z'a'» z'all
, that is, z ~ Itva'. In conclusion, assuming a' > a yields that ltva' is a

Lyndon word. This violates Fact 3. Thus, since a f:. a', it must be that a > a', whence the

claim is established for it not a prefix of rest(It}.

We now show that It cannot be a prefix of rest(it). In fact, let 9 > aand u be chosen,
respectively, as the maximum integer and the longest prefix of it for which (It)9 U is a prefix

of rest(lt). Clearly, rest{lt) = (It)9u is impossible, for otherwise every factor following it in

the decomposition of x except u would be identical to It, and we would have rest(lt) = u

and u a prefix of It, in contradiction with our assumptions. Thus, there are symbols a
and a' such that a =1= a', (It)gua' is a prefix of rest(It) and ua is a prefix of It. Assuming

a > a' yields that the first 9 factors in the decomposition of rest(lt) are each identical to

6

It, which contradicts the definition of rest(lt). Assuming a < a' implies instead, through

an argument already used earlier in this proof, that ltlt+l ...ua' is a Lyndon word, which
contradicts the assumption that It is a factor in the decomposition. Hence, It cannot be a
prefix of rest(lt). 0

4. COMBINATORICS OF COMPOSITIONS

In this section, we study how the decompositions of two strings x and x' are related to

the decomposition of string xx'. This is easy in the case where both x and x' are Lyndon
words, in view of the following known fact (cf., e.g., [10]).

Fact 4. Let u and v be Lyndon words. Then uv is a Lyndon word if and only if u < v.

In general, the composition of two factorizations is less straightforward. Of course,
right-stable factors of x are not affected by the extension of x into xx', but we know that
in the general case at least one factor is not right~stable. We start by listing two lemmas
that shall be of use later.

Lemma 1. Let I and I' be two distinct Lyndon words such that, for some u E E+ and

vEE"', we have that I' = uv, and u is a suffix of l. Then, Iv is a Lyndon word.

Proof. The assertion trivially holds if v is empty, thus we assume henceforth that v is not

empty. Since I is a Lyndon word, then for any suffix u' of I we have u' » I, whence, by

Fact 1, also u'v ~ Iv. Letting now v' be v or some suffix of v we have also v' ~ I' > u ~ l,
which concludes the proof. •

Lemma 2. For u E E+ and vEE"', let [= uv be a Lyndon word. Then, for any wEE"',

Ivl is the position of a factor in the decomposition of vlw.

Proof. Let [' be the last factor in the decomposition of v. Then, [' is border-free. Let

u be the longest prefix common to 1/ and l. Since I is a Lyndon word, we have luj < WI,
whence there are symbols a and a' such that ua' is a prefix of I' and ua is a prefix of I.
Now at < a is impossible, since it violates Fact 2. Hence, it must be a > a', i.e., [/ is right

stable in vI. The rest of the claim is an immediate consequence of Fact 3. •

From now on and until stated otherwise, [~[~ ...I~, is the factorization of a nonempty

string x'. Consider the string xx', where x has factorization h[2 ...h, and let d be the

7

minimum index in the decomposition of x for which factor Id is not right-stable. From

now Oll, when referring to a string Z, we use z as a subscript of rest and tail. Let f 2:: 1

be the integer value for which tailz(ld_d = (ld)'resi:l:(ld). For an arbitrarily large m,

let y be the longest prefix COllUDOD to (ld)m and rest:r;(ld)X'. We have, by Theorem 2,

that Iy] 2:: Irestx(ld)l· Clearly, ld is either a factor or the proper prefix of a factor in the
decomposition of xx/.

Lemma 3. Asswne that IYI < 211dl, and let 9 be the largest index for which s =

Testx(ld)l~ l~ ... l~ is a prefix of (ld?' Then one of the following cases applies:

Case 1: each one of the consecutive occurrences of Id in tailzUd_dx' is a factor in

the decomposition of XXi; moreover, each such occurrence is right-stable in xx' iff y =I=

restx(ld)X'.

Case 2: the word z = tail:r;(ld_dl~ l~ ...l~+l = (ld)f Sl~+l is a Lyndon word.

Before starting with the proof, we observe that, since all the Ii'S with i < dare right

stable, then, in the light of Fact 3, we get that in Case 2 z is a factor or the prefix of a

factor in the decomposition of xx'.

Proof. The assertion holds if we have y = rest:r;(ld)X', since in this case the suffix of XXi

at position 11l1z ... ld_ll is in the form (ld)il with f $ i $ f + 1 and I = ld or I is a proper

prefix of ld. Hence, Case 1 of the claim applies, since ld is a Lyndon word. Clearly, the

occurrences of ld in such a suffix are not right-stable factors for xx'.

Asswne henceforth y =F rest:r;(ld)X'. We have the following alternatives.

(A) lyl =F 11dl· This case encompasses two subcases depending on whether (subcase

AI) Iyl < Iidl or (subcase A2) Iidl < Iyl < 211dl. Clearly, there exist two distinct symbols a

and a' such that a' is a symbol of l~+l' ya is a prefix of ld' and either (subcase AI) va' is

a prefix of rest:r;(ld)x', or (subcase A2) ldya' is a prefix ofrest:r;(ld)x'.

Irrespective of which subcase applies, if a > a', then we have Case I, with every

consecutive factor identical to ld being also right-stable in xx'. For a < ai, we have that

a prefix of tail:r;(ld_dx l is either in the fonn w = (ld)f ya l (Iyl < Ild!), or in the form

w = (ld)f+1ya' (lid I < Iyl < 211dl) In either snhcase, w is a Lyndon word. Case 2 of the

claim then follows by applying Lemma 1 to the Lyndon words w and l~+l'

(B) Iyl = Ildl· This is similar to the previous alternative: we have now a =F ai, where

a is the first symbol of ld and a' is a symbol of l~+l' Clearly, a < a' yields Case 2, while

a > a' yields Case 1, with every factor right-stable in xx'. •

Lemma 4. Assume that Iyl > lldl, and that llllz, ... ,ld are the first d factors in the

8

decomposition of xx'. Then either p = Ildl- Irestx(ld)1
factor in the decomposition of x'.

]x'i or p IS the position of a

Proof. The claim holds trivially for p = Ix'l, so that we concentrate on the case p < Ix'i.
Assume first Iy] = Iidl and let a and a' be defined as in alternative B of Lemma 3. Since ld

is a factor in the decomposition of xx' 1 then Case 2 of Lemma 3 cannot apply, and we have

a > a'. Assume that a/ is not the first symbol of l~+l. Then there is a nonempty word u

such that u is a prefix of l~+l and also a suffix of [do Let al/ be the first symbol of u. Since

l~+l is a Lyndon word, we must have a f
~ all. But then also a > a" I contradicting the

assumption that Id is a Lyndon word.

Let now Iyl > IIdl, and assume that p is not the position of a factor in the decompo

sition of x'. Then, there is a factor I' in such a decomposition such that I' = u'v' with u'
nonempty and u' a suffix of Id. But then Lemma 1 ensures that {ld)f+ 1

V ' is a Lyndon word,

and thus a factor or the prefix of a factor in the decomposition of xx'. This contradicts
the assumption that Id is the d-th factor in such a decomposition. •

Lemma 5. Assume IYI ?: 21Idl, i.e., (ld)2 is a prefix of rest2;(ld)X' , and that Ii = Id is
a factor in the decomposition of x', but I~ =f:. Id for i < j. Let t be the largest integer
for which {ld)t is a prefix of taiI2;(Id_x)x'. Then, every occurrence of Id in this prefix of
taiI2;(Id_1)x' is a factor in the decomposition of xx'.

Proof. Since Id is border-free, then Ii must coincide with the second occurrence of Id in

restz(ld)X I
• Let g be the largest integer and u E E'" the longest prefix of ld such that

(Id)9 U is a prefix of restx(Id)x' . Since Ii is a factor in the decomposition of x', then either
taiI~(li) = (ld)t-2u or else tail~(li) = (ld)9-2uav for some a E E and vEE'" such that

ua « Ii = Id· The assertion clearly holds in both cases. (Note that, in the second case,
every occurrence of ld is right-stable in XXi.) •

Lemma 6. Assume that (ld)2 is a prefix of rest(Id)x'. Let Ii be defined as in Lemma 5,
but assume that Ii is not a factor in the decomposition of x'. Then there is a nonempty

prefix v of x' such that tail.(ld_l)V is a Lyndon word and Ivl ! Ix'i implies that Ivl is the
position of a factor in the decomposition of x'.

Proof. We know from Lemma 2 and Fact 3 that Ii must be the prefix of a factor in the

decomposition of x'. Let y be this factor. Since both Ld and yare Lyndon words and

Id < y, then repeated application of Fact 4 yields that (ld)i y is also a Lyndon word for any

i?: 1. Obviously, II~l~ ... Ii_lyl is the position of a factor in the decomposition of x'. This

establishes the claim. •

9

We say that the two strings x and x' have a simple composition if x is a Lyndon word.

In the following theorem, we make the convention that lk+l = 10 = >.. In informal terms,
the theorem shows that the factorization of XXi can be always split into two segments with

the following properties. The first segment is simply a prefix of the factorization of x.
The second segment is the solution to a problem of simple composition that involves an
identifiable Lyndon word and a suffix fe of x' such that the factorization of x' is a suffix

of the factorization of x'.

TheorelD 3. Assume that x and x' do not have a simple composition. Then, there are
always integers m and i', with m > 0 and 1 ::; if :S k' + 1, and a nonempty Lyndon word 1

such that we can write xx' = xx', with x = loll12 .. .lj(l)m, x' = Ij.li'+l .. .lk,l~'+l' and such
that either xx' has decomposition loll12 ...h(l)ml~,li'+1 ...lkllkl+1 or else m = 1 and I and x'
have a simple composition.

Proof. Let d ::; k be the smallest index for which la is not right stable in x. We distinguish
the following cases.

Case ld = lk·

The claim holds trivially if x' is of the form (ld)C u , with u a prefix of ld = lk and c ;::: o.
Asswne next that, for some c ;::: 0 and distinct symbols a and a', we have that (ldYua
is a prefix of tail:e(ld_l)X' = (ld)k-d+l x ' and (ldYua' is a prefix of (ld)k-d x '. If a> a',
then we know that each one of the consecutive c + 1 occurrences of ld in tail:e(ld_l):X' is

a factor (in fact, a right-stable factor) in the decomposition of xx' l and that l~_k+d is the

first factor in the decomposition of u. Setting then i = d - 1, i' = m = c - k + d and
1= ld clearly meets the claim. If a < a', then w = (ldy+1ua' is a Lyndon word, and we

know from the preceding lemmas that w is also the prefix of a Lyndon word z such that

Izi - (k - d + 1)11dl is either Ixll or the position of a factor l~ in the decomposition of x'.
Clearly, setting i = d - 1, 1= z, m = 1 and i' = t satisfies the claim.

Case ld "Ilk.

By Theorem 2 and the definition of rest, we have that restz(ld) is a proper prefix

of ld. Since Id =f:. lk, we also have that restz(ld) =f:. A. Assume first that the condition of
Lemma 3 is satisfied and results in an instance of Case 2. Then, taking i = d - 1, [= z

and i' = 9 + 2, where z and 9 are defined in that lemma, clearly meets the claim. The

claim is easily met for each one of the cases considered in Lemmas 4-6, i.e., in all cases

where Ld = restz(ld)v with v a prefix of x'. In brief, this is due to the fact that in all these

cases there is one occurrence of ld which originates in x and terminates in x'. Then, either

Ld is a factor in the decomposition of xx' and we choose I = Ld (Lemmas 2 and 4 guarantee

10

then the existence of i' as specified in the claim), or else Id is the prefix of a Lyndon word
that originates in x and ends in x' (then Lemma 6 guarantees the existence of i').

We are left now with the instances of d < k where Case 1 of Lemma 3 occurs. The

existence of i' is no longer guaranteed for the choice 1= [do However, we know that under
these conditions Id and every subsequent replica of it are right-stable factors in xx'. Let It
be the first factor in the decomposition of restz(ld). If It = lkl then we have seen that it is
possible to satisfy the claim. If It =f:. lk' then rest:z;(ld) is not border-free. It is also easily seen

that, for It ::f Ikl It cannot be right-stable (since rest:r;(ld) is a prefix of Id' then imposing
that It be right-stable would violate Fact 2 for Id). In summary, for It =f Ik we have that it
is not right stable, and there is an integer c ~ 1 such that taii~(lt_])= (It)Crestz(lt), with
restz(lt) a nonempty prefix of It. Applying to It the case analysis previously developed

for Id either satisfies the claim or else yields that the c replicas of it in x are right-stable.
Repeated application of this treatment yields the claim. •

Assume now that we are given a Lyndon word 1and the decomposition h,l'l, ... , h of
some string x. At this point, we are interested in the relation between the decomposition
of x and the decomposition I]I2 ... lr. of Ix. This is the case where we say that 1 and x admit

of a simple composition, which seems to imply that the structure of the decomposition of
Ix is related in some trivial way to the structures of 1 and of the decomposition of x. This

is not always the case. In fact, appending just one symbol to the left of some string x

may upset the entire decomposition of x. For example, let x = ebebbebebbcbeabbe. We have

h = e, h = be,13 = 14 = bbebe,is = abbe. If we append an a to the left of x, we get, for ax,

that I] = aebebbebebbebe and 1'1. = abbe. The following is an easy consequence of lemmas 5

and 6.

Lemma 7. Assume that Lyndon word 1is a prefix of x. Then either II = 1, or else II = Ih.

Proof. That only one of the cases in the claim may apply follows from Fact 3. The rest

of the claim is an easy corollary of lemmas 5 and 6. •

Theorem 4. Let t be the smallest index m the decomposition of x such that w

111 i2 •••1t_1 2:: It· Then, II = wand 12 = it·

Proof. By our choice of t, we have that, for every d < t, IhI2 ... ld < id+1 • But then, using

Fact 4, it is easy to establish by induction on d that that 111 i2 ...1d is a Lyndon word for

d ::; t. The assertion then follows from Lerruna 7 in case of equality between wand It.
Assume henceforth it < w. The assertion is obvious if II « w, thus we assume henceforth

that It is a prefix of w. Let u be the longest common prefix of w and ittail~(it). The

11

claim holds clearly when u = Ittai12:(lt). Assuming then u =f:. lttailx(lt), there are distinct

symbols a and a' such that ua is a prefix of wand ua' is a prefix of lttail:r:(lt). We show
that a < a' is impossible, thus establishing the claim also in this case. Since u is a prefix
of a Lyndon word, then u can be written as (vax)mv for some integer m and Lyndon word

vax. If a > a/, then ua' = (vax)rnva l is also Lyndon word. But It is a proper prefix of ua',
which contradicts Fact 3. •

5. ALGORITHMIC IMPLEMENTATION

In this section, we use the results developed earlier in the paper to design a CROW PRAM

algorithm for computing the Lyndon factorization of an input word s of IsI = n symbols.

We assume to be given n processors PbP2, "'lPn, that have simultaneous, random access
to a memory bank consisting of OCn . T) locations, where T is the total time taken by

our computation. We say that processor Pi (i = 1, 2, ... ,n) has serial number i. The input
is stored into an array of consecutive locations of the conunon memory, and processor

Pi is assigned to the i-th symbol of s (i = 1,2, ... ,n). Any subset of the n processors
can concurrently read from or write to the same memory location. When more than

one processor attempts to write, we make the convention that the one with the smallest

serial number succeeds. This variant of the model is called PRlORITY CRCW. In our
application, this type of concurrent write can be simulated in constant time [11] by the
weaker model where one processor at random succeeds in writing but it is not know in
advance which one will succeed.

We adopt a standard divide-and-conquer scheme, consisting of log n stages each re

quiring constant time. Assuming w.l.o.g. that n is a power of 2, we regard the positions of

the input string at the beginning of the S-th stage as partitioned into n/25 - 1 disjoint bloch!

each of size 25 - 1 . Starting with the first block [1,25 - 1], we give all blocks consecutive
ordinal numbers. For S = 1,2, ... ,logn, stage S handles simultaneously and independently

every pair formed by an odd-numbered block B and by the even-numbered successor B'
of B. For every such pair, the goal of the stage is that of combining the already computed

factorizations of the two substrings x and x' of s that are stored, respectively, into Band
B' into the factorization of xx'. Thus, the main invariant is that at the beginning of stage

S the factorization of every block of size 25 - 1 has been computed. We call this Invariant

o. Invariant 0 trivially holds for S = 1, since the factorization of a single symbol is the
symbol itself.

We only need to show how two blocks such as Band B' are combined. We apply to

the two associated strings x and x' the notational conventions made in connection with

Theorem 3. We need a few additonal notions, that are given next.

12

The first position of each block of s is called the block head, and the processor assigned

to the head of a block is the block representative of that block. Since the block partitions
are rigidly defined for each stage, then the position of any block head can be computed by

any processor in constant time. Similaxly, if 1 is a factor in the decomposition, say, of X,

then the first position of I is the head of that factor, and the processor assigned to the first

symbol of I is the factor representative of I. With respect to the decomposition of either
x or X ' , an I-run is a maximal sequence of factors identical to I in such a decomposition.
The total number of replicas of 1 in the l-run is the size of that run. For every run, the

factor of the run having minimum index in its associated decomposition is called the head

of that run; the representative of that factor is also the run representative of that run. Our
scheme will maintain, in addition to Invariant 0, the following auxiliary invariants.

Invariant 1. If processor p is assigned to a position of factor [in the decomposition
of x (respectively, x'), then p knows the address in B (resp., B') of the head of I as well

as the address (or serial number) of the representative of the run containing I.

Invariant 2. The representative of an [-run knows III and the size of that run.

The following three steps have the effect of combining the decompositions of x and x'

into the decomposition of xx'. The first two steps take place only if x and x' do not have

a simple composition. The combination of a single Lyndon word with the decomposition
of a given string is instead the task of the third step. The condition that the factorization

of x contains only one factor is easily checked in constant time, e.g., using two consecutive
appropriate concurrent writes to the block head of B to see whether there are two distinct

factor representatives. Henceforth, we assume that there are at least two factors in the

decomposition of x. In the course of our description, we will say often that our scheme
identifies or handles the indez (i.e., ordinal number) of a factor in the decomposition of

either x or x'. This phraseology is used only in order to relate in a clearer way to the
results of the previous section. It should be understood that, in actuality, the scheme only

identifies and handles the heads of the factors having the said indices. This distinction

is important, since our time bound would not be achieved if an explicit computation of

factor indices had to take place at each stage.

Step 1. The goal of Step 1 is to detect the factors of x that are not right-stable.

Theorem 2 is the handle for this. For every factor y of x, the representative of the y-run

computes, using Invariant 2, the position of restx(Y) in B. If jrestx(y)1 > Iyl, then (every
factor in the y-run is right-stable) the run representative simply sets an appropriate flag

in the first position of the run head. If, on the other hand, Irestx(y)1 ::; Iyj, then the

Iyl processors assigned to the head of the run inspect the first Iyl symbols of restx(Y)x'.

13

Specifically, the processor assigned to the d-th symbol of y (d = 1,2, ... lyl) checks whether

that symbol matches the d-th symbol of restz(Y)x'. Note that this processor can actually

compute the value d using Invariant 1. Subsequently, all processors detecting a mismatch

attempt to write their respective serial numbers into a memory cell uniquely associated

with the representative of the run. In OUI working model, the processor having smallest

index succeeds. The representative of the run can now check in constant time whether the

right-stability condition of Theorem 2 is satisfied, in which case it sets the :flag located in

the first position of the the nrn head. Using Invariant 1 again, every processor of block B
can learn at this point by inspection of the appropriate flag whether the factor it is assigned

to is right-stable or not. The processors assigned to right-stable factors will remain idle

for the remainder of the stage. All others (recall that there is always at least one non

right-stable factor) proceed to Step 2.

Step 2. The main goal of this step is to identify i, il,l, m and the position in x' of if',
as per Theorem 3. If 1 and its possible subsequent replicas are found to be factors in the

decomposition of xx', then such a decomposition will also be computed in Step 2, whence

Step 2 will be terminal for the stage. If this is not the case, then Theorem 3 tells us that

m = 1 and I and x' have a simple composition. In conclusion, if Step 2 is not terminal

for the stage, we will only have to solve a well defined problem of simple composition,

and this problem will be handled in Step 3. The details of Step 2 cannot consist of a

mere recapitulation of the criterion set forth in Theorem 3. In fact, we are only allowed.

constant time for the stage, which forbids pursuing the cascaded tests in that theorem.

Our approach will be instead to exploit the constant time min computation inherent to our

working model in order to reach quickly the bottom of the iterated argument subtending

Theorem 3. From that point on, our main concern will be to show how the n processors

can exchange information efficiently and carry out the rest of the work in constant time.

The opening action of Step 2 is the following test: for each nm of non-right-stable

factors in the decomposition of x, the processors assigned to the head ld of the rtm test

simultaneously and in constant time whether ld < restx(ld)X'. The details of this test are

similar to those of Step 1. If no run head passes the test, then by Theorem 3 every factor in

the decomposition of x is right stable in xx'. (The condition ld = restx(ld)X' is impossible

at this point, since we ruled out that x is a Lyndon word.) Hence, the decomposition of

XXi consists simply of the concatenation of the decomposition of x and that of x'. The

operation of the stage is complete, since Invariant 0 holds now for xx' and invariants 1 and

2 are trivially propagated to next stage.

Assume, on the other hand, that at least one run head passes the test. In this case, all

run representatives passing the test use common-write to the block head in order to identify,

14

in constant time, the successful run head having smallest index in the decomposition of

x. Let It be the winning run head. By Theorem 3, every factor preceding It in the
decomposition of x is now right-stable in XXi, while It is either a factor or the prefix of a

factor in the decomposition of xx'. The remainder of the stage takes one of two possible
avenues, according to whether or not the condition resi;c(lt) = ,\ is satisfied.

Alternative 1: rest:z:(lt) =..\. This splits into two subcases according to whether or
not It is a prefix of resi;c(lt)x'.

Assume first that It is a prefix of x'. Then (cf. Fact 3) It either is identical to or is the
prefix of the first factor 1~ in the decomposition of Xl. Which case applies can be learned by

inspecting the factor representative of factor l~ 1 which is also the run representative of the

l~-run in the decomposition of x'. If [~ is identical to It, then I~ must surrender its status

of run head to the head of the It-run. Each one of the factor representatives of a factor
formerly in the l~ run learns about this change by inspection of their old run representative,
and updates its knowledge of the run representative accordingly. This preserves invariants

1 and 2. Having accomplished the decomposition of xx' the stage tenninates. If II~1 > lit!,
then It and all its subsequent replicas in x must coalesce with I~ into a single Lyndon word.
In the most general case, l~ will be the head of a run of size larger than 1. Before combining

with tail:E:(lt-d, l~ must pass its leadership on to the second factor in this I~ -run. This
is easily accomplished in constant time, due to invariants 1 and 2. The processors now
assemble the Lyndon word z = IttaiI~(It)I~ (cf. Case 2 of Lemma 3) and enter Step 3 with
i = t - 1, m = I,l = z and i' the index of the first factor following [~ in x'.

Asswne now that it is not a prefix of x'. We need to explain how the word z (that

will serve as the parameter I to be passed on to Step 3) is computed. With the notation

of Lemma 3, the main problem is that of identifying I~+l' Let ya' be the shortest prefix of

re.9t(lt)x' that is not a prefix of It. The It-run representative p identifies the factor head of
the factor of x' containing a' (this factor is called 1~+1 in Lemma 3). Processor p achieves

this simply by inspecting the information about the factor head stored in the processor
assigned to a'. At an extra constant time, p can also identify the run head of the l~+l-run

containing 1~+1' Again, 1~+1 or its run-representative may have to surrender the status of

run-representative to the successor 1~+2 of l~+l' if 1~+1 = 1~+2' and this is done as earlier
using the invariants. Once this is done, the lrrun representative can assemble word z

of Lemma 3, using its own information and that stored in the old head of the l~+rrun.

Every processor assigned to a position of z updates its pointers to both faetor- and run

representative, so that both point now to the old run representative of the it-run. The

procedure now enters Step 3 with i = t - 1, i' = 9 + 2, [= z and m = 1.

Alterna.tille 2: restx(lt) # >... This case splits into two subcases depending on whether

15

or not (It)2 is a prefix of rest:z;(lt)x'. In the following, we use v to denote the prefix of x'

of length 11,1- IrestxU,)I·

Assume first that (It)2 is a prefix of rC8t:z;(lt)X'. Then Lemma 2 guarantees that Ivl
is the position of a factor in the decomposition of x'. In other words, the decomposition

of the suffix x' of x' that is obtained by deleting the first Ivl symbols of x' is a suffix of

the decomposition of x'. Consider now the word xv. Clearly, the decomposition of xv

can be obtained by that of x by first deleting all factors in the decomposition of resiz(lt)

and then appending a new factor identical to Itl i.e., the factor contributed by the Lyndon

word rest:z;(lt)v. At this point, the problem of composing the decompositions of xv and

x' is identical to the problem handled in the first subcase of Alternative 1. In the light

of the preceding discussion, the manipulations that lead the processors to extend the

decomposition of x into that of xv, and truncate x' into x', are trivial and are omitted.

Finally, assume that (1t)2 is not a prefix of restx(1t)x'. If Ivl is the starting position

of a factor in the decomposition of x', then this is similar to the subcase of Alternative 2

that was just discussed. Observe that, under our current assumptions, if it is to stay as a

factor in the decomposition of xx' then lvl is guaranteed to be the position of a factor in

the decomposition of Xl, by virtue of Lemma 4. All other cases of Alternative 2 are similar

to the second subcase of Alternative 1.

Step 3. If Step 3 is entered, then we have identified a prefix x of x such that

the decomposition of x is a prefix of the decomposition of x and also a prefix of the

decomposition of xx'. We also have a Lyndon word z and a suffix x' of Xl such that we

know the decomposition of x' and we know that XXi = xzx'. Thus, solving the problem

of simple composition for z and x' is all is needed to complete the stage. Step 3 consists

of applying first Lemma 7 and then possibly Theorem 4 to the arguments 1 = z and

x = x'. If the test implied by Lemma 7 fails, the comparisons of Theorem 4 are carried

out simultaneously by the processors assigned to the factors of x'. The block head of B
is used to identify the position of z in XXi. The remaining details are trivial at this point

and are thus omitted.

This concludes the description of our scheme. The discussion of this section establishes

the following result.

Theorem 5. The Lyndon decomposition of a word of n symbols can be computed by a

CReW PRAM with n processors in time O(logn) and linear space.

6. APPLICATIONS

16

1 - The minimum suffix of all prejixe8 of a string.

The most immediate application of the parallel algorithm of Section 5 is to the compu

tation of the minimum suffix of the input string. In fact, the minimum suffix of a string is

precisely the last factor in the Lyndon decomposition of that string [10]. Just as it happens

for its serial predecessor [10], some light upgrades of our algorithm lead to actually com

pute the minimum suffix for every prefix of the string, leaving time and processor bounds

unaltered. (We note, incidentally, that computing the minimum suffixes of all prefixes of

a string yields an implicit description of the Lyndon decompositions of all such prefixes.)

To start the discussion of our method, we single out in Fact 5 below a useful char
acterization due to Duval [10] of the class P of all words that are nonempty prefixes of

Lyndon words. A proof of Fact 5 is also pespersed in the proof of Theorem 2. Let S be

the set of all words in the form (uv)k u , where u E E*, v E E+, k ~ 1 and uv is a Lyndon

word.

Fact 5. 'P = S if the alphabet E is unbounded, and 'P = S - {cklk ~ 2}, where c is the

maximum symbol in E, otherwise.

We assume familiarity of the reader with the notion of period of a string. We say that

a period q of a word w is nontrivial if q =1= Iwl.

Lemma 8. Let w be a word in 'P, and set p = 0 if w is unbordered, and p equal to the

maximum nontrivial period of w otherwise. Then p is the position in w of the last factor

in the Lyndon decomposition of w.

Proof. By Fact 5, we can write w in the form (uv)ku , where u E E· , V E E+, uv is a

Lyndon word, and either u is not empty and k ~ 1 and or u is empty and k > 1. If u is

empty, then the decomposition of w consists of k factors all identical to uv, and the position

of the last factor is (k -l)luv[. We also have p = (k -l)luv[, since uv is unbordered. For

u not empty, kluvj is a nontrivial period of w. The claim thus holds if p = kluvl. If, on

the other hand, p =1= kluv[, then it must be p > kluvl, i.e., u is bordered. Since u E 'P, we

can apply to U the analysis previously applied to uv. Iteration of this argument yields the

claim. •

Let 1112 ...h be the decomposition of some word x. Combined with Fact 3, Lemma 8

shows that the minimum suffixes of all prefixes of x can be obtained by computing the

minimum suffixes of all prefixes of each individual factor in the decomposition of x. From

now on, we can therefore assume that the Lyndon decomposition at the outset of the

algorithm of the previous section is given, and concentrate on a single factor 1 in such a

17

decomposition. The understanding is that the manipulations performed on I take place

synchronously on all other factors of the decomposi tiOD of x.

In view of Lemma 8, it is not surprising that III processors can compute all mim

imum suffixes of Lyndon word I in O(log Ill) time, due to the strong relationship be

tween this problem and plain string searching. Specifically, consider the table reach/ such

that reachl[i] equals the maximwn length of a prefix of 1 that occurs also at position i

(i = 0,1,2, ... , Ill-I). Given an integerk ~ i, we say that the i-thsymbol of 1 is dominated

by reachdk], iff k + reach[k] ~ i. For i = 1,2, ... , III, define now clo.e,!i] as the largest k

such that reachdk] dominates l[i]. At this point, the criterion of Lemma 8 translates into

saying that, for every prefix 1[1]1[2] ...l[iJ of 1, the position in 1 of the minimum suffix of

I[I]1[2] .. .1[i] is closerIi]. It is not difficult to compute either one of the tables reach1or closel

with 111 processors in O(log 111) time, e.g., by adaptation of the string searching algorithm

in [12]. Thus, given the Lyndon decomposition of a string x, the minimum suffixes of all

prefixes of x can be computed by a CReW PRAM with n processors in O(logn) time and

linear space.

£ - The maximum su.Jji:z;es of a.ll prefize3 of a 3tring.

As pointed out in [10], this problem is not symmetric to the previous one. However,

it is known that the lexicographically maximum suffix of a string x with respect to the

converse of the order relation "<" is the longest one among the suffixes of x that belong

also to the set S defined earlier. We will use a re-statement of this property to compute

the maximum suffixes of all prefixes of x in log n CRCW steps, with n processors.

Let 1 be a factor in the decomposition of x and i the position of 1 in x. We say that

an integer j is covered by 1 if either (j - i) s: 111 or restZ'[l]Z'[2] ...Z'U](I) = tailx [l)X[2] ...Z'(jJ(l)

and restx[l]x[2) ...x(jj(1) is a prefix of 1. Let C be the set of all factors covering j, and Im(j)
the element of C having minimum index in the decomposition of x. The following property

yields a criterion for finding all maximum suffixes of x.

Fact 6. The position in x of the maximum suffix of x[1]x[2] ...x[j] equals the position in x
of the run head of the Im(j)-run.

We refer to [10] for a justification of Fact 6. Given the Lyndon decomposition of x in

the format specified in Section 5, it is easy to compute, for all j's, the positions of Im(j)
and its run head, using n processors and log n steps. To avoid many tedious details, we

describe the method informally. Let l(lJ(j), I(2J(j), ... , I(hl(j) be the factors of x covering

j. For any d in [1, hJ, aligning factor I(dl(j) with tailz(l(dl(j)) will bring onto position j

precisely one among the processors assigned to l(d)(j). Note that, for any j, there is a

group of processors uniquely assigned to j in this way. Clearly, all processors assigned to

18

j can perform a binary search driven by the length of x to identify the minimum among
their own serial numbers. The j-th position of an array, serving as the target for common
writes, can be used to perfonn the binary search. Having fOWld the minimum, invariants

1-2 lead to the identification of lm[j] and, from there, to the head of the lm(j)-run.

9 - The lexicographically least rotations of all prejizes of a string.

Given a word x = x[l]x[2] x[n], the i-th rotation of x (i = 1,2, ... ,n) is the string

w = x[i]x[i+ 1] ...x[n] x[l] x[2] xli -1]. A least lexicographic rotation (llr) of string x is a

rotation of x that is lexicographically smallest among all rotations of x. Since all rotations
of x have equal length, then for any two such rotations wand w', w :f w' implies that w

and w' differ in at least one symbol. An llr of x is completely identified by its starting
position (mod. [xl) in xx. We call such a position a least starting position (lsp). An lsp

of x can be computed in linear time by serial computation. The fastest solution known
was given in [14]. As pointed out in [10], the Lyndon decomposition of word xx will also

expose an llr of x. This is due to the fact that the llr of x is either a Lyndon word or a
power of a Lyndon word, and either case manifests itself while decomposing xx.

It is not difficult to compute the least rotation of x on a CRCW PRAM with n

processors in O(logn) time. One possible approach is to perform, on xx, logn constant
time iterations of the following kind: At the i-th iteration, x is partitioned into n/2 i

blocks of size 2i , and, for each block, we know the starting position of a lexicographic

minimum among all substrings of length 2i +1 of x originating in that block. The iteration
consists of combining pairwise the blocks and computing one minimum substring of size

2 i+2 for each combined block. We clearly have enough processors to perform all substring

comparisons in constant time. The only difficulty is when both candidate substrings from
two combining blocks extend into identical minima. Using an observation already in [14],
however, it is possible to always rule out one of the candidates in constant time, whence

the overall computation is done in time O(log n).

Computing the llr's of all prefixes of x within the same bounds is more involved. For
this task, we resort to a criterion recently established in [3], and used to compute the
llr of all prefixes of x in overall linear time. Let 1 be one of the factors in the Lyndon

decomposition of x. Define prev(l) as the prefix of x that precedes the first occurrence of

1. We say that 1is a special factor of x if and only if rest(l) is a prefix of 1and, in addition,
one of the following conditions is satisfied:

- rest(l) is emptYi
- I is a prefix of rest(l)prev(l); or

- I < rest(l)prev(l) but I is not a prefix of rest(l)prev(l) .
Observe that, for any word x, the Lyndon decomposition 11121k of x has at least one

special factor, namely, lk' As shown in [31, the following fact holds.

19

Fact 7. Let lth ...h be the Lyndon factorization of a non-empty word x. Let t be the

smallest index such that It is a special factor of x. Then It .. .lkh ... lt-l is an llr of X, and
Iprev(l,)1 is an lsp for x.

To see how Fact 7 can be used in our computation, assume that the table reach;c has
been computed. (Recall that the n processors can compute reach;c in O(logn) time.) Con

sider now an integer j :$ Ixl = n, and let as earlier ImU) be the factor in the decomposition
of x such that j is covered by lm(j) and m is minimum. Let i be the position of lm{j) in x
and assume for generality that U - i) > IlmU)1 (i.e., j does not fall inside ImU)). It is not
difficult to show that ImU) is a factor also in the decomposition of x[l]x[2] ...x[j]. Once

reachx and the position i of lm(i) in x are available, it takes constant time for processor

Pi to test whether lm{j) (whence also the run head of the lm(j)-run) is a special factor
in the decomposition of x[l]x[2] ...x[j): This processor simply checks on reach:z; whether

j - Ilm(j)1 is the starting position of a sufficiently long or (lexicographically) sufficiently

small prefix of x. If the run head of the ImU)-run is a special factor for x[1]x[2] ...x[j],
then, by Fact 7, the position of such a run head is also an Isp for x[1]x[2] ...x[j]. Assume

now that the test preformed by Pi fails, and, setting f = j - 11m(j)I, consider the prefix
w = xli + I]x[i + 2) ...x[j] of ImU). Let k be the maximum length of a border of w. It

is easy to see that the the factor following lm(j) in the decomposition of x[1]x[2]. ..x[j] is

x[i+ III +IJx[i+111 +2]...x[j - k]. Therefore, if k = 0, then x[i+ 111+I]x[i+III+2]...x[j] is the
last factor in the decomposition of x[1]x[2] ...x[j] and, also the earliest special factor in such
a decomposition. Otherwise, the next Lyndon word to be tested by Pi as a special factor in

the decomposition of x[l]x[2]...x[j] is xli + III + I]x[i + III + 2] ...x[j - k]. Note that Pi needs
only to know k and III in order to identify this word. If also x[i+ III + l]x[i+ III +2] ...x[j - k]
fails the test, then we consider its rest in the decomposition of x[l]x[2] ...x[j] and apply
the same treatment to it. In conclusion, given reach:z; and a mechanism for identifying

the words to be considered in succession, it takes Pi time proportional to the number of
words tested in order to compute an Isp for x[l]x[2]. ..x[i]. As is easily seen, the words

considered by Pi are all replicas of shorter and shorter prefixes of lm(j), and they can be
identified in succession by repeated application of the function "longest border of" to such

prefixes. The "longest border of" function is actually the failure /unction [1] for Im(j), and

it is not difficult to show that Pi will go through at most log 11m(j)1 applications of this
function during its tests. Computing the failure function for a factor I is somewhat dual

to the computation of the table closel discussed earlier, and is done easily in O(log Ill)
time either starting from the table reach l or by direct adaptation of the techniques in [12].

In conclusion, n processors can compute the least rotations of all prefixes of a string in

O(log n) time.

20

References

[IJ A. V. Aho, J. E. Hopcroft, J. D. Ullman, "The design and analysis of computer

algorithms ll
, Addison-Wesley, 1974.

[2] Apostolico, A., M.J. Atallah, L.L. Larmore and H.S. McFaddin, "Efficient Parallel

Algorithms for String Editing and Related Problems", ProceedinglJ of the 26·th Aller

ton Conference on Communications, Control and Computing, Monticello, Ill. (Sept.
1988). Also, SIAM Journal on Computing, to appear.

[3] Apostolico, A. and M. Crochemore, "Optimal Canonization of All Substrings of a
String", Purdue University CS TR 903 (1989). Also, Information and Computation,

to appear.

[4] Apostolico, A. and Z. Galil (eds.), Combinatorial Algorith~ on Words, Springer
Verlag Nato ASI Series F, Vol. 12, 1985.

[5] Apostolico, A., C. Iliopoulos, G. Landau, B. Schieber and U. Vishkin, "Parallel Con

struction of a Suffix Tree, with Applications", Algorithmica 3, 347-365 (1988) .

[6J Berkman, 0., D. Breslauer, Z. Galil, B. Schieber and U. Vishkin, "Highly Parallelizable
Problems", Proc. 21-st ACM Symp. on Theory of Computing, Seattle, Wash., (May
1989), 309-319.

[7] Beame, P. and J. Hastad, "Optimal Bounds for Decision Problems on the CRCW
PRAM", Journal of the ACM 96,3,643·670 (1989).

[8] Chen, K.T., R.H. Fox and R.C. Lyndon, "Free Differential Calculus, IV", Ann. of

Math. 68, 81-95 (1958).

[9] Crochemore, M. and W. Rytter, "Usefulness of the Karp-Miller-Rosenberg Algorithm

in Parallel Computations on Strings and Arrays", typescript, (1989).

[10] Duval, J.P., "Factorizing Words over an Ordered. Alphabet", Journal of AlgorithmJ 4,

363-381 (1983).

[11] Fich, F .E., R. L. Ragde and A. Wigderson, "Relations between Concurrent-write Mod

els of Parallel Computation" , Proceeding8 of the 9-rd A eM Symp08ioum on Principle8

of Di8tributed Computing (Vancouver, B.C., Canada, Aug. 27-29), ACM, New York,

179-184 (1984).

[12] Galil, Z., "Optimal Parallel Algorithms for String Matching", Information and Control

67, 144-157 (1985).

21

[13] Lothaire, M" Combinatoric8 on Word.9, Addison Wesley, Reading, Mass., 1982.

[14] Shiloach, Y., "Fast Canonization of Circular Strings", Journal of Algorithms 2, 107
121 (1981).

	Fast Parallel Lyndon Factorization With Applications
	Report Number:
	

	tmp.1307986960.pdf.F0PK4

