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QUANTUM KINETIC ANALYSIS OF 
MESOSCOPIC SYSTEMS: LINEAR RESPONSE 

Y. Lee*, M. J. McLennan**, G. Klimeck, R. K. Lake and S. Datta 
School of Electrical Engineering 

Purdue University 
West Lafayette, IN 47907 

(Received 20 May 1991) 

Numerical results are presented for R,, and Rxy in a rectangular Hall geometry 
from B =0- 1OT. At low fields we find the usual semiclassical results while at high 
fields both Shubnikov-de Haas oscillations and the quantum Hall effect are evident. 
Electrochemical potential profiles and current flow patterns are also discussed. The 
analysis is based on a linear response equation derived earlier from the Keldysh formal- 
ism. This equation assumes low temperatures and point-like phase-breaking scatterers. 
We also discuss how this equation is generalized to high temperatures and extended 
scatterers. 

1. Introduction 

Quantum kinetic equations provide a general 
approach for incorporating phase-breaking processes into 
transport problems. Two different formulations have been 
used (see discussions in Refs. 1 and 2). The tirst is the en- 
sity matrix approach based on the Liouville !! equation( -‘). 
The svond approach was developed independently by Kel- 
dysh 
systems 

(p&by Kadanoff and Baym(*). In homogeneous 
tt is customary to make the so called ‘gra- 

dient expansion’ which is inapplicable to mesoscopic dev- 
ices with rapid spatial variations in the potential. However, 
the basic formalism is quite general and has been applied 
to tunneling devices(“), to current fluctuations in mesos- 
topic device&‘*), to resonant tunneling diodes(13-‘4) and to 
single electron charging effects(15). It is the purpose of this 
paper to describe our work in applying this formalism to 
linear steady-state electronic transport in mesoscopic sys- 
tems. 

2. The Method 

Earlier we have derived(16) the following linear 
response equation starting from the Keldysh formalism: 

where 

TO(r,r’) = 
Ii’ 1 GR(r, r’.EF) 1’ 

z+(r,EF)%&r’>EF) 
(2) 

at equilibrium 
The retarded Green function is obtained from a 
Schriidinger-like equation including a self-energy poten- 
tial. 

* 
** 
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I 
GR(r,r’,E) = 6(r - r’) (3) 

The numerical analysis proceeds as follows. We first com- 
pute GR(r,r’,E) on a lattice using the tight-bindina formal- 
ism. The contacts are treated as Gpen b&mdaries &tending 
to infinity. Electron-electron interactions are neglected 
altogether. We also neglect the real part of the self-energy 
o(r,E) and assume that the imaginary part hr;’ (r;E) is pro- 
portional to the loCal density of states 
Nu(r,E)=-ImGR(r,r,E)/x. This is true for elastic point- 
like scatterers. The computation of GR(r,r,E) from Eq. (4) 
has to be carried out iteratively so that a self-consistent 
value of r( is obtained. Once G (r.r’,E) and r (r,E) have 
been obtamed we can compute the kernel o(r,r’) and ? 
proceed to solve the integral equation (1). First we com- 
pute p(r) everywhere within the device (where I(r)=O), 
assuming the boundary conditions l.t(r) = pi in contact ‘i’. 
Next we compute the external current I(r) within the con- 
tact regions and integrate it over each contact to obtain the 
cortesponding terminal current. The detailed current den- 
sity 6J(r) within the structure (due to electrons near the 
Fermi energy) can also be computed once k(r) has been 
obtained throughout the device. 

6JW = 

f I P(r?--EF 
t dr’- 

r&En) 
Im 

2rcm 
GR(r,r’,EF)* VGR(r,r’;EF) 1 

---$A(r)Idr’e IGR(r,r’;&) I2 (4) 
re(r’;EF) 

Further details can be found in Refs. 16-19. 

3. Numerical Example 

We now present some numerical results for the elec- 
trochemical potential profile and current flow pattern in a 
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along z-direction 

Fig. 1. Calculated R,, and RxY vs. B for a rectangular 
Hall bar geometry shown in inset (after Ref. 19). 

rectangular Hall bar (-3500.‘& x 750.%) obtained by solving 
Eqs. (l-4). Fig. 1 shows the structure simulated. From the 
longitudinal and transverse drops in the electrochemical 
potential across the bar we compute R,, and R,, as a func- 
tion of the magnetic field B (actual probes are not included 
in order to avoid any probe-related artifacts). At low mag- 
netic fields we obtain the usual semiclassical results, 
namely, a constant R,, and a linearly increasing R,,. 
There is no weak localization or conductance fluctuations 
since we do not include any coherent scatterers - the tesis- 
tance arises solely from phase-breaking scatterers. At high 
fields when the cyclotron radius gets comparable to the 
width of the Hall bar (-75OA) we obtain Shubnikov-deHaas 
oscillations in R,, due to the formation of Landau levels. 
At the same time we see the quantum Hall effect with pla- 
teaus in R,. 

Next we look at two values of the magnetic field: 
B=5.6T corresponding to a peak in R,, and B= 1OT 
corresponding to a valley in R, . The potential distributipn 
p(x,y), the current distribution J(x,y) and the local density 
of states Nu(E, y) are shown in Fig. 2. At B = 5.6T the den- 
sity of states at the Fermi energy is evenly spread out 
across the Hall bar while at B = 1OT the density of states is 
peaked near the edges and nearly zero in-between. Conse- 
quently, at B = lOT, the current flows near one edge with 
no coupling to the other edge and the electrochemical 
potential drops abruptly in the middle. But, at B=5.6T, 
the current flow is spread out across the width and the 
potential drop occurs near the edges. This agrees with the 
edge state description of the quantum Hall effect that has 
received much attention lately(*‘). We are not aware of 
any other direct computations of the electrochemical 
potential in the quantum Hall regime though it is believed 
that the electrochemical potential profile plays an 
important role in the accuracy of the quantization of R, . 
We have also calculated the electrostatic potential profire 
and find it to be in good agreement with earlier results. 

The above approach thus provides a tractable 
approach to incorporating phase-breaking processes into 
quantum transport in the linear response regime. Devices 
withup to loo0 nodes can be analyzed in less than an hour 
on a Sun-4 workstation. 

(1) 

(2) 

4. Generalization of Eq. (1) 

Eq. (1) has two main limitations: 
Phase-breaking processes are assumed to be caused by 
point scatterers. Consequently we cannot introduce 
phase relaxation without simultaneously introducing 
momentum relaxation. This is an important limitation 
because at low temperatures the phase breaking time ‘0 
and the momentum relaxation time z, are generally 
unequal. 
Different energies are assumed to be in equilibrium 
with each other. A recent derivation from linear 
response theory(*l) does not make this assumption, but 
zero temperature and elastic scattering are assumed. 
We thus cannot use Eq. (1) at high temperatures. 

An obvious question to ask is whether Eq. (1) can be - . 
generalized to remove these assumptions. Kecently we 
have derived a generalized linear response equation free 
from these restrictions(22-24). Here we will just state the 
results. When we linearize the kinetic equation without 
making any assumptions regarding energy equilibration we 
obtain the following equation (assuming point phase- 
breaking scatterers): 

I(r,E)=+ jdr’jdE’T(r,E;r’,E’) [p(r,E)-p(r’,E’)] (5) 

where the ‘potential’ p(r,E) is defined by 

n(r,E) - = f(r,E) = 1 
No(r,E) e(E-ep(r.E))/k.T+l (6) 

n(r,E) being the electron density per unit energy and 
Nu(r,E), the local density of states. Note that any function 
f(r,E) lying between 0 and 1 can be written in the form 
shown in Eq. (6) so that this involves no loss of generality. 
If f(r,E) is a Fermi-Dirac function then p(r,E) is indepen- 
dent of energy (E) and Eq. (5) reduces to our earlier result, 
Eq. (1). 
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No(YB 

Fig. 2 Electrochemical potential (p), current density (J) 
and local density of states (NO) at (a) B = 5.6T and 
(b) B = 1OT. The density of states Nu(E,y) is plot- 
ted using a gray-scale - a lighter shade 
corresponds to a higher value. The Fermi energy 
EF is indicated with an arrow. 

An important insight due to Biittiker(25) is the 
equivalence of floating probes and phase-breaking scatter- 
ers. From this pers 
Biittiker formula(26 ?e 

ctive, one could view Eq. (1) as the 
apblied to a structure with a continu- 

ous distribution of probes correspondin to a continuous 
distribution of phase-breaking scatters c*P, Eq. (5) shows 
that in general one needs a conceptual probe connected at 
each noint r to every energy E. We recover Ea. (1) if the 
prol~& at different energie& (at the same poinir) all float 
to the same potential p(r). This could happen if there is a 
lot of inelastic scattering which effectively ‘short’ together 
probes as different energies. However, even if there are no 
inelastic processes, k(r,E) can be nearly independent of 
energy over the energy range (knT) where transport takes 
place. This is true if knTcrc where l-c is the range of 
energies over which the transmission characteristics are 
nearly constant. Low temperature mesoscopic experiments 
possibly belong to this category so llrat we can use Eq. (1) 
rather than Eq. (5). However, as we go to smaller struc- 
tures, it is likely that more and more interesting quantum 
effects will arise in the transport regime with knT > I-c. In 

this regime transport will occur largely through coherent 
and incoherent hopping between localized states with 
differing energies. To describe transport accurately in this 
regime it will be necessary to include the energy coordi- 
nate explicitly as in Eq. (5). 

When we allow for extended scatterers, Eq. (5) is 
modified t0(23*24) 

I(p,E)= ; jdp jdET(p,E;p’,E’) [~(p,EtP(P’E’)] (7) 

where p represents a pair of points (rt ,r2). The ‘potential’ 
p(p,E) is defined as in Eq. (6) in terms of the ratio f(p,E) 
of the correlation function -iG<(o.E) to the soectral den- .,, I  1 

sity Au(p,E). Thus, Biittiker’s probe model for phase- 
breaking scatterers in its original form is accurate if we 
have both (1) point scatterers and (2) equilibration among 
energy channels. But with suitable extension the basic 
nhvsical picture can be anlied more generally with a vol- 
@e probe connected to-each point-(rt,rzE) in ‘phase’ 
space. This is an interesting result that follows rigorously 
from the quantum kinetic formalism and would be difficult 
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to foresee on purely phenomenological grounds. It will be 
noted that it is only for point-scatterers that the transmis- 
sion from one ‘probe’ to another is real and can be inter- 
preted as a probability function. With extended scatterers 
the function is complex and cannot be viewed as a 
transmission probability. 

Finally, we would like to mention that each of these 

~~;f&6~ 
5) and (7) can be shown to obey the recipro- 
thus proving its general vali$@&l the way 

from phase-coherent to incoherent transport . 
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