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Abstract .

A penalty function method approach is proposed to solve the general problem of 

quotient space norms minimization. A new class of penalty functions is introduced 

which allows one to transform constrained optimization problems of quotient space 

norms minimization by unconstrained optimization problems. The sharp bound on the 

weight parameter is given for which constrained and unconstrained problems are 

equivalent. Also a computationally efficient bound on the weight parameter is given. 

Numerical examples and computer simulations illustrate the results obtained.
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I. IN TRO DUC TIO N

In this paper we propose a novel approach to solving a system of consistent linear 

equations Ax = b  while minimizing l|x ||p. Here ||*||p stands for the -norm of IR11 

defined by

Ilxllp =

and

IMIoo =  maX I Xj I1< j < n

The above problem is also known in the literature as the minimum norm or the
, /

quotient space norm problem (see e.g. Luenberger [6]).

Problems of this form arise in various disciplines. Here we give as an example a 

problem in the control of discrete dynamic systems. Consider a dynamic system 

modeled by the difference equation

Ck+1 = F  Ck +  Guk >

where Ck G IRm, uk G IRt , F €  IRmxm, G G IRmxt (m >  t).

K we iteratively apply the previous equation, we obtain the following

Cn  = F n  Co + F n  1 Gu0 +•••+ F G u n _2 + G u ^ 1 .

We assume that our system model is completely controllable. This implies that we can 

drive the system trajectory to an arbitrary desired state Cd regardless of the initial state 

Co (see e.g. [3] for more details). Thus for sufficiently large N, (N >  m) we can find a 

sequence of inputs (uf^u^-jU N -i) such that Cd =  Cn -

Let

A =  [G,FG,...FN-1G] , b =  Cd - F n Co , z =  [ u ^ , . . , U1 jUoIt  .

Then the problem of finding a control sequence transferring the system from the initial

n
E
j=i

I Xj I for I <  p <  CO ,
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state £0 to the desired state ^  is reduced to solving the system of linear equations 

Az =  b. Note that the matrix A is of full rank since we have assumed that the pair 

(F,G) is controllable and N >  m. From the above it is clear that for t  >  I and 

N >: m there is an infinite number of feasible solutions to the problem. Therefore, 

secondary criteria are often imposed on the control law. For example, one may want to 

find an optimal control sequence using the following criteria

subject to

minimize ||z ||p , I <  p <  CO

Az =  b .

The solution corresponding to p — I is often referred to as the minimum fuel, p=2 - 

minimum energy, and p=oo, minimum amplitude. Because of the importance of these 

problems they have been studied extensively (see eg [l], [2], [4], [5]). The cases of p =  l  

and p =  oo are somewhat more complex. There are some algorithms based on results 

from linear programming ([l], [2]) and iterative procedures based on the steepest des­

cent method for constrained optimization problems ([4]) which have been proposed to 

solve these problems. The above proposed algorithms however, are not computationally 

efficient. In applications such as real time control the speed at which a solution can be 

obtained is of the utmost importance. It is for this reason tha t we propose a new 

approach to the problem of quotient space norms minimization.

In this paper we propose to use the penalty function method. We propose a new 

class of penalty functions which allows one to transform constrained optimization prob­

lems of quotient space norms minimization into equivalent unconstrained minimization 

problems.
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H. PRELIMINARIES

Recall that we are concerned with the problem

minimize ||z ||p , I <  p <  cxd ,

subject to

Az =  b ,

where

A E IRmxi1 , m <  n , rank A =  m .

Any z E IRn which minimizes the objective function over the given constraint set is 

called a minimizer. We call two minimization problems equivalent if they have the 

same Tninrmums and minimizers. In this paper, we show that the constrained problem:

min ||zjjp subject to Az =  b

is equivalent to the unconstrained problem

min EPjSiC(z) =  min (||z ||p + c ||A z — b ||s)

for I < s  <  oo and c greater than a constant C0 which depends on p, s, and A. The 

constant Cq will be given explicitly in Theorem I.

The technique of transforming a constrained problem into an unconstrained prob­

lem by adding a function of the constraint, called the penalty function, to the objective 

function is known as the Penalty Function Method (see Luenberger [7]). In general, the 

constrained problem and penalized unconstrained problem are not equivalent but are 

related by the fact that as c —► oo, the limit points of the minimizers of the uncon­

strained problem are minimizers of the constrained problem. We first introduce a sim­

ple change of variables which makes the development and the proof of Theorem I nota- 

tionally easier. Let r E IRn be such that Ar =  —b and let x =  z +  r. Note that one such 

r is r =  —At (AAt )-1 b. Then the constrained problem has the form
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min ||x — r ||p subject to Ax =  0

t

and the unconstrained problem has the form

min (I|x — r |Ip +  c||Ax||s) .

Clearly this change of variables does not affect the problem. Let

Ep>s,c(x) =  Ilx — r||p +  c||Ax||s .

When the constrained and unconstrained problems are equivalent for sufficiently large 

c, the penalty function is called an exact penalty function. (See Luenberger [7]).

m , MAIN RESULTS

Before stating our main result precisely, we introduce some notations. For

I < p  <oo, we denote its conjugate exponent by p ', that is, — +  -4- =  I. We adopt
P P

the convention that I ' =  oo and oo' =  1. For any matrix M G H kx<?, I <  k, /  <  oo, we 

define for I <  p, s <  oo:

IiMjIpjs
IIMxllp

sup ■ --- .
xeiR^x^o ||x ||s

Thus, 11 M| |PjS is the operator norm of

M:(IRf , | | . | |s) ^ ( E k, Il-Ilp) .

When p=s, we just write ||M ||p.

We can now state our main result.

T heorem  I .  Let I < p,s <oo. Then for c >  ||At (AAt )-1 ||p s, the constrained prob­

lem

min 11 x—r 11 p subject to Ax =  0 

is equivalent to the unconstrained problem
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min EP;S)C(x) =  min ( | |x - r | |p +  c | |A x ||J .

Furthermore, the bound is sharp in the sense that for each p,s, I ^  p,s <  oo, there 

exist A,b so that the constrained and unconstrained problems are not equivalent if 

c <  ||At (AAt )-1 JIP)S.

The proof of Theorem I will be given in this section after some preliminary results. 

We will also give an upper bound of ||At (AAt )-1 ||PjS which may be useful in practice.

From Theorem I, we see that our original constrained problem can be transformed 

into an unconstrained problem which gives the same solutions. Since EpSjC(x) is convex 

for I < p , s <  oo (strictly convex for I <  p,s <  oo), the unconstrained problem can be 

solved by a number of well-known methods. In this paper we use a continuous gradient 

descent method for the solution of the unconstrained problem. The trajectories of the 

continuous gradient descent are governed by:

£ - - v  E W M .

Note that even though V Ep S)C(x) may not exist everywhere, the set where it is not 

defined has n-dimensional Lebesgue measure zero. We would like to converge to a 

minimizer of ||x—r ||p subject to Ax=O starting from an arbitrary x GIR11. Note that 

any x G IRn can be orthogonally decomposed as

x =  (In — At (AAt )-1 A)x +  At (AAt )- 1Ax .

Thus the Euclidean distance from x to {x | Ax =  0} is ||AT(AAT)- 1Ax||2. Therefore, for 

dxthe trajectories of —— =  — V Ep S)C(x) to converge to the feasible set {x |A x= 0} it is

sufficient that
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IIAt (AAt ) 1Axil I)

=  Xt A t ( A A t ) - 1 A x

= —xtAt (AAt )-1A V Epsc <  O V x ^  {x |A x= 0} .

If the above condition is satisfied then a trajectory is guaranteed to hit the feasible 

region and stay there thereafter searching for a minimizer of [|x—r ||p. It turns out that 

this is the case when c >  ||AT(AAT)-1 ||ps as will become evident from the proof of 

Theorem I. In the proof of Theorem I we need the following technical lemma. The 

proof is included for the convenience of the reader.

L em m a I .  Let v G and M €  IRkx^. Suppose I <  p,s <  oo.

(a) If s <  p, then

A --L
Ht IIp =s ||y||, < { ‘ » IIvIIp .

(b) For I <  Po, s0 ^  oo, we have

Iim Ilvllp =  ||v ||Po
P-*-Po

and

Iim ||M ||P)S =  ||M ||Po)So.
P-*-Po 
S—*-s0

P roof, (a) It is elementary that if /?> I and a,b >: 0, then (a+b)^ >  a^ +  b^. By 

induction we have
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E I vj Ip
i-1

S ( ITj Is)
j- i

E W I
j- i

ML .

p_ J_
S P

For the second inequality, we use Holder’s inequality ([8] p. 21):

IMIs s  w  I
j- i

/

S - S

f t
' E W11 5

P

i__
__

__
__

__
_ I--------
P

j-1
V /

J_-J-
= € 5 p IMHp .

(b) The first equality involving v follows from the continuity of the exponential func­

tion.

To verify the second equality, observe that by compactness, there exists x* £ IR/ so 

that 11 x* 11 So — I and | |M| | PojSo =  ||Mx*||Po. Then by part (a) and the definition of

IIMII p,s>



- 9 -

IIMIIpo, So =||M x*

| J - . - i - l
<  k Po P IlM xllp

I J_ .-JL I
<  k Po P 11 M| I P|S ||x*||s

I J_ .-J-I IJ - - i-l
<  k Po P l|M ||p>s € So s

I I .Li I - - i - li
=  k Po p •<S

_ S CO I IP Io

, I i I . I - A l

By symmetry, we also have

| — -  — I I
l|M ||p s < k  Po p /  So S llM||Po,So

It is immediate then

Iim IIMILb =  IIMII
P P̂o 
s->s0

Po, S0

P ro o f  of T heorem  I .  For I <  p, s <  oo and c >  0, let

E p ,s ,c (x )  =  ||x —r ||p +  c||Ax||s

We first study the case of I <C p, s <C oo. In this case, V Ep s c exists except at x =  r and 

Ax=O. For j= l,...,m , let aj be the j-th  row of A. Where it is defined,

-| sSn(X1 - r i )  Ix1 - T 1 | p 1
 ̂aT

sgn(axx) I axx | s 1

V Ep s c(x) = ------------- —
P”  l lx - r l l? -1

sgn(xn - r n) I xn - r n | P_1

cA
IiA xiir1 sgn(amx) I amx | 5-1

We will now show that V Ep,s,c(x)t̂ 0 for c >  || At (AAt ) 1Hpj8. Consider the second

term in the product JxtAt (AAt ) 1AjV Ep,s,c(x):
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cxtAt (AAt ) 1AAt

IiA xiir1

CXTAT
IiA xiir1

sgn(a1x) I axx I s 1 

sgn(amx) I amx | 8-1 

sgn(ajx) I axx | S_1 

sgn(amx) I amx | 5-1

i=r S I ajx IIIAxll- j=1 

— c 11 Ax|ls •

We now estimate the first term in the product [xTAt (AAt )-1 A] V Ep SjC(x). By- 

Holder’s inequality:

Ul XtAt (AAt ) 1A
S g n ( X 1 - T 1 ) Ix1 - T 1 Ip 1

llx -rllg - 1
S g n ( X n - T n ) |x n - r n Ip-1

11 xtAt (AAt )-1 A| IP Il

S g n ( X 1 - T 1 ) Ix1 - T 1 I :

Ilx- Tllp- 1
S g n ( X n - T n )  Ixn -T n I

Ip'

Obserre that

Sgn(X1 - ^ ) I x 1 - T 1 | p 1 

sgn(xn - r n) I xn - r n I p-1
Up '



-1 1  -

since-----1— - =  I.
P P

Thus

S  I Xj —rj I Cp-D p’
J = I

Jl
P1

S
j-1

Xj - P j I P

P-I
P

IIx r (Ip - l
P

| l |  <  HxtAt (AAt ) 1AHp 

=  IIAt (AAt ) - 1Ax IIp 

<  IlAt (AAt )-1 ||PjS IIAxIIs

by the definition of || At (AAt )-1 ||p s . Therefore when x+r and Ax+O, V E p s c is 

defined and

[XtAt (AAt )-1 A] V EP)S,c(x)

=  I +  11

>  c||Ax||s -  I |At (AAt )-1 11 PjS IIAxII8 

=  (c -  ||At (AAt )-1 | |P)S)||Ax||s .

We conclude that for x # r ,  Ax+ 0, and c >  ||At (AAt )-1 | |P|S, the gradient V EP)SjC(x) is 

defined and is nonzero. Since

„ Iim Ep s c (x) =  oo ,

the minimum of EpS|C(x) must be achieved at x =  r or Ax=O. Let 

r =  (I— At (AAt )-1 A)r. Then r G (Ax=O) and Ep s c(F) =  ||At (AAT)- 1A r ||p. If
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c >  ||At (AAt ) 1Hpjs, then

Ep,s,c(r) = cIIArIIs

>  UAt (AAt )-1 A r||p

“  Ep,s,c(?) •

Thus the minimum is not achieved at x=r. The only remaining possibility is that the 

minimum is achieved on {A x=0}. The proof for the case I <  p,s <  oo is complete.

The technique we used above does not apply directly when at least one of p and s 

is I or oo. The main difficulty being that x = r  is no longer the only critical point off 

{A x=0}. We use what we have proved above and a limiting argument to avoid this 

difficulty.

We will prove the case of p =  l  and s =  oo. The other cases are very similar. For 

I < p ,s  <  oo, let IHpjSjC be minimizers of Ep s c(x). Suppose c >  ||At (AAt )-1 | | l oo. 

Then by Lemma I, there exist a ,/3 >  0 so that for I <  p <  1+ a  and s >  0, we have 

c >  ||At (AAt )-1 11 P)S. Let us now assume I <  p <  I + a  and oo >  s >  /3. Then 

mPj Sj c 6  {A x=0} and is independent of c and s. We can therefore write mp =  mp SjC. 

By Lemma I and the fact that mp is a minimizer of Ep SjC(x), we have

IIrHp r IIp 1111EpjSjc(rrIp)

— E p j s> c (m l,o o ,c )
C"

~  IIm I , oo,c r IIp ”1” Cll-A“m l,00,c l l s

Jl

^ I I m I 7OOjC “  r IIi + C  m s I l A m l j 00j c II00 

j_
— m  E i j00jC (m i,oo,c)
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— m E ij00 c (nip)

lm p “  Till

A l - - !
— in n 15 11 nip r|| p .

Since mp is independent of s, we can let s—*00 and then p—KL to see that Iim ||mp — r|
P-+1

exists and

Iim ||m p -  r ||p =  ||m lj0OjC -T H 1 +  c ||A m lj00jC H00 .
p-i-i

We conclude that l|mlj00jC — r| | x -f- CHAmlj00jcII00 is independent of 

c >  HAt (AAt )-1 | | lj0O. To see that this forces mlj00jC G {A x=0}, choose c so that 

c >  c >  IIAt (AAt )- 1H1j00. If A m lj00 cT=̂O, then

E lj OOj C (rn I j OOj c) =  IIl n I jOOjC r IIl "h ClI-A-r n I , OOjdloO

<  IIr n I 1OOjC - r II1 +  C l I A m l j 0 0 j c Ij0 0  

=  IIr n I jOOjC r IIi +  C l I A m l j 0 0 j c II0 0

=  E l j OOjC(rn I 1OOjC) •

This contradicts the fact that ml 00 3 is a minimizer of E l cc c(x). Thus we must have 

A m l oo c =  O for c >  ||At (AAt )-1 || 1;00. The proof for the case p = l and s=oo is com­

plete. The proofs of the other cases are similar and will be omitted.

We now show that for any I <  p,s <  CO, there exist A and r so that the minimizers 

of Ep SjC(x) are not on (Ax=O) for c <  ||At (AAt )-1 ||p s. Suppose I < p ,s  < 00. Let

A =  [0 l] and r 0
1 . Then
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Epf8,c(x) =  ( I Xi I p +  I x2 -  I I P) p +  c I x2 I .

Clearly the minimum of Ep s c(x) on {A x=0} is I and is achieved at We have

HAt (AAt ) 1IIpjg

For c <  ||At (AAt ) 1IIpis =  I 5 we have

Jp,s,c c <  I .

Thus the minimizers of Ep s c(x) are not on (Ax=O}. The proof of Theorem I is now

complete.

R em ark . The technique used in the proof of the case p =  I and s =  oo can be used to 

show the continuity of the minimums and the minimizers for I <  p,s <  oo.

We next give a bound for ||AT(AAT)- 1||pjS which involves only the dimensions of 

A and the least eigenvalue of AA . The least eigenvalue of AA may be easier to com­

pute them ||At (AAt )-1 Ilp s which involves an inverse and an operator norm.

Proposition I. Suppose A G IRmxn, m <  n, is a full rank matrix. Let I < p ,s  <  oo. 

Then

IIAt (AAt ) 1 IIp1S
V w a a t )

where
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P 2

S for p >  2, s >  2
I

I I
for p >  2, s <  2

m 2 s for P < 2 ,

Alcn

2 for P < 2 , s <  2

Here XmJa (AAt ) denotes the least eigenvalue of the positive definite matrix AAt .

Proof. Suppose I <  p,s < 2. By compactness, there exists z GJRm so that ||z ||s =  I 

and HAt (AAt ) - 1IIpjs =  ||AT(AAT)- 1z||p. By Lemma I,

HAt (AAt ) 1Ilpj3 =  ||At (AAt ) 1Zl

- I - - I
< n p 2 IIAt (AAt ) - 1 ZII2

. ! - I  I
P 2 [Zt (AAt ) - 1AAt (AAt ) - 1 Z] 2

_L_i_ ±-
P 2 [Zt ( A A t ) - 1 Ẑ  2

I I
: n P 2 V ^m ax (AAt ) 1 ||zj

_L_I  
.P 2 IIzI

V w a a t )

A - A
n P 2

V W a a t )

The proofs for the other cases are similar with the only difference being how Lemma I is 

applied.
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IV. CASE STUDY

In order to test the ideas presented in this paper simulations of the proposed imple­

mentations were performed on a digital computer. The simulation was based on the 

following differential equations:

dxk
dt

- I
T

C ( x )

3xk
k =  l,...,n  ,

where r  is the scaling factor or time constant and Ep s c(x) is as defined earlier. The 

benchmark problem which we choose to solve was taken from [2] (see also [4]):

minimize ||x ||p 
subject to Ax =  b ,

where p =  1,2, or oo, and

2 - 1  4 0 3 l" 2
5 1 - 3  I 2 0 b = I
I - 2  I -5  - I  4 - 4

The function Ep SjC(x) was constructed for all possible combinations of s =  1,2, and oo 

and p =  1,2, and oo. The value of c was computed according to the method given in 

Proposition I, that is

K

V w a a t ) '

For the problem of interest the value of XmJn (AAt ) was found to be 24.945. The result­

ing values of c for each of the nine cases was computed and is shown in the table below
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S

I 2 OO

I .490 .490 .849

P 2 .200 .200 .347

OO .200 .200 .347

Table I. Values of the constant c for different values of p and s.

For each case we assumed an initial condition x(0) = 0. The results of the simulations 

for p =  1,2 and co norms are shown in Figs. 1-9.

For p =  I, regardless of the value of s, the trajectory converged to the point (see Fig. 

i-S)

x =  [0.000, 0.000, 0.192, 0.756, 0.410, 0.000]T , 

which gives Ilxll1 =  1.36.

For p =  2, regardless of the value of s, the trajectory converged to the point (see 

Fig. 4-6)

x =  [0.088, 0.108, 0.273, 0.505, 0.383, -0.310]T , 

which gives ||x | |2 =0.769.

For p =  oo, regardless of the value of s, the trajectory converged to the point (see 

Fig. 7-9)

x =  [0.113, 0.372, 0.351, 0.372, 0.372, -0.372]T , 

which gives Ilxll00 =  0.372.
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Thus, for each case the result of the simulations agreed with the analytical solu­

tions to the problem (see eg. [2]).

From the following plots of the trajectories of the variables for the nine cases we 

can see that the trajectories converged to the solution points within a few time con­

stants.
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P=IzS=I.1162-1

.0 8 6 6

.0591

.0 2 9 5

.0000

t im e  C t im e  c o n s ta n ts  )

p = l Z s = l
.1 9 2 3

.0961

.0480 -

0.000

t im e  < t im e  c o n s ta n ts  >

P=I Z s = l
.4 7 2 6  n

3545  -

.2 3 6 3  -

0.000
t im e  ( t im e  c o n s ta n ts  )

.0050 -

OJ oooo ---------------------------------------------------------------

- .0 0 5 0  -
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0 .0  .50  1 .0  1 .5  2 .0
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p = l Z s = l
.0000

.08 9 6

.1 3 4 5

.1 7 9 4

t im e  C t im e  c o n s ta n ts  )

Figure I. Trajectories corresponding to the case p =  I , s =  I.
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Figure 2. Trajectories corresponding to  the case p =  I , s =  2.
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Figure 3. Trajectories corresponding to  the case p =  I, s =  oo.



- 22 -

.1195-1

.0896  -

.0 5 9 ?  -

.0298 -

0.000
t im e  C t im e  c o n s ta n ts  >

.1083  -I

.0812  -

.0541 *

0.000
t im e  < t im e  c o n s ta n ts  )

.2733-1

.2050 -

.1366 -

.0683  -

0.000

t im e  C t im e  c o n s ta n ts  >

.5047  -I

.3 7 8 5  -

.2523  -

0.000
t im e  < t im e  c o n s ta n ts  >

.3828

.2871 -

.1914 -

.0 9 5 ?  -

0.000
t im e  ( t im e  c o n s ta n ts  )

0 .0 0 0  -I

- .0 7 7 4  -

- .1 5 4 9  ’

- .3 0 9 7

t im e  C t im e  c o n s ta n ts  >

Figure 4. Trajectories corresponding to the case p =  2, s =  I .



- 23 -

.1 0 8 3  -i

.0 8 1 2  *

.0541 *

.0270  -

0.000
t im e  C t im e  c o n s ta n ts  >

.0661 -

.0441

0.000
t im e  ( t im e  c o n s ta n ts  )

.5047  -I

.3 7 8 5  -

0.000
t im e  C t im e  c o n s ta n ts  >

.2733  -j

.2049 -

.1366  -

0.000
t im e  C t im e  c o n s ta n ts  >

.2871 -

1Q .1 9 1 4 -

.0 9 5 7  -

0.000
t im e  C t im e  c o n s ta n ts  )

.0000 -I

- .0 7 7 4  -

- .2 3 2 3  -

- .3 0 9 7

t im e  < t im e  c o n s ta n ts  )

Figure 5. Trajectories corresponding to  the  case p =  2, s =  2.
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Figure 6. Trajectories corresponding to  the case p =  2, s =  oo.
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Figure 7. Trajectories corresponding to  the case p =  oo, s =  I .
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Figure 8. Trajectories corresponding to the  case p =  oo, s =  2.
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Figure 9. Trajectories corresponding to the case p =  oo, s =  oo.
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V. CONCLUSIONS
•:

A new class of penalty functions has been proposed which enables one to transform 

constrained optimization problems of quotient space norms minimization to equivalent 

unconstrained minimization problems. A sharp bound on the weight parameter of the 

penalty functions has been derived. It has been shown that if the weight parameter is 

smaller than the derived bound than the constrained and unconstrained problems may 

not be equivalent. A computationally efficient estimate of the parameter bound has also 

been given.
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