
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1989 

A Virtual Memory Operating System for a Distributed Workstation A Virtual Memory Operating System for a Distributed Workstation 

Environment Environment 

James Griffioen 

Report Number: 
89-884 

Griffioen, James, "A Virtual Memory Operating System for a Distributed Workstation Environment" (1989). 
Department of Computer Science Technical Reports. Paper 752. 
https://docs.lib.purdue.edu/cstech/752 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


A YmTUAL MEMORY OPERATING SYSTEM FOR
A DISTRmUTED WORKSTATION ENVIRONMENT

James Griffioen

CSD-TR-884
May 1989



Thesis Proposal

A Virtual Memory Operating System For A
Distributed Workstation Environment

James Griffioen

May 22, 1989

Abstract

Recently we have seen an explosive growth in the number of high per
formance, low cost workstations available on the market. An increase in the
usage and popularHy of new applications like windowing systems and object
oriented applications has resulted from this growth. These applications rely
heavily on data sharing. To support these applications, the operating sys
tem must support efficient shared memory and message passing. This paper
proposes an efficient shared memory mechanism that also allows sharing of
location dependent data such as linked lists and tree structures. In addition,
the paper proposes efficient support for persistent objects used in object
oriented applications. Finally, the paper proposes an efficient mechanism
that takes advantage of diskless workstations and high speed LAN's to page
remotely to a dedicated page server machine with performance similar to
systems paging to a local disk.

1 Introduction

Recently we have seen an explosive growth in the number of high performance,

low cost, workstations available on the market. Processing power, as well as

network speeds, continue to increase, while the cost of memory continues to

decrease. As a result, new applications such as windowing systems and object

oriented applications have been increasing in usage and popularity.

Windowing systems and object oriented applications frequently involve a con

siderable amount of message passing and data sharing. An efficient shared mem-



ory mechanism is a useful and necessary component in such a system. Inter·

process communication can be implemented efficiently in a shared memory sys

tem. In addition, many conventional programming languages support pointers

and data structures with embedded addresses. The shared memory mechanism

should be able to efficiently support sharing of location dependent data structures

such as linked lists and tree structures.

Many recent virtual memory systems have implemented shared memory

[Ras86][GMS88][Bac86], however, some pay a high overhead for shared mem

ory and most have, at best, a limited form of location dependent data sharing.

The Mach operating system[Tev87] allows processes to read a region from another

process's address space into its own address space, but actually receives a copy of

the region. It may then wdte into the other process's address space by copying

the entire region into the other process's address space. Because of the copying,

the pages are not physically shared, decreasing efficiency and leaving coherency

problems for the user to deal with. Futhermore, although the user may request

that the shared region be mapped to the same location in both address spaces,

there is no guarantee that it will be, in which case, the system will place it at a

location it finds suitable. System V Unix [Bac86] and SunOS[GMS88] suffer from

the same problem and are not able to guarantee that the region will be placed at

the same address in all the processes desiring to share the memory. Both Mach

and Sprite[NeI86] allow sharing of location dependend data in the heap area, but

only among a parent and its children.

Persistent objects are memory objects (code and/or data) that continue to

exist (persist) after the last active computation on the object has completed. Per

sistent objects are an important part of most object oriented systems [DJA88]

[ABLN85]. Such objects do not map nicely onto processes in most conventional

virtual memory systems because processes are terminated when the computation

has ended. In addition, it has been shown that users tend to use a small set

of programs repeatedly[Kri87). This usage pattern indicates that performance

1



can be improved if the user's small set of programs reside in soft-lock persistent

objects. Soft-lock persistent objects are persistent objects which have a guar

anteed minimum lifetime in memory after the last active computation on the

object has completed. If the object has not been reactivated before the end of

the minimum guaranteed lifetime, the object may be removed from the system.

Soft-lock persistent objects would allow frequently used programs and data to

remain in virtual memory so they can be reactivated more quickly and efficiently

than infrequently used programs.

Both Clouds and Eden are specially designed systems with support for persis

tent objects and object reactivation[DJA88][ABLN85]. However, objects must be

explicity removed, and there is no notion of soft-lock objects. Some implementa

tions of Unix use a sticky bit which allows programs to remain in the swap partion

after they have terminated so they can be restarted quickly[Bac86]. These sys

tems lack mechanisms for creating persistent objects, and they only allow the

code segments to persist (data segments are lost).

Recent changes in technology, together with the economics involved, have

made paging to remote storage, rather than a local disk, a practical and econom

ically desirable goal. Increasing CPU speeds and network speeds, coupled with

decreasing costs of memory and powerful workstations, have made this possible.

Hierarchical operating systems [Com84] collect each policy (page replacement

policy, memory allocation policy, scheduling policy, etc) together into one place

making the system easier to understand. Experience with the simplicity and

flexibility of hierarchical operating systems convince us that it is desirable to try

to design virtual memory systems in a hierarchical fashion.

1.1 Thesis

OW' thesis is that it is possible to design and implement a hierarchical virtual

memory operating system with efficient support for shared memory and soft-lock

persistent objects. In addition, we argue that it is possible to design a system

2



that pages to remote storage with performance similar to or better than systems

that page to local disk. We propose to study the system design issues, algorithms,

and network protocols needed to build such a system.

1.2 Project Goals

The goals for the project are:

Shared Memory We want a shared memory mechanism that is efficient, mak

ing shared memory access as efficient as non-shared memory access. The

shared memory mechanism should provide limited (as opposed to global)

sharingj protecting the memory being shared from processes without the

right to access it. In addition, we want to be able to share location depen

dent data (data with embedded addresses).

Persistent Objects We would like to have efficient support for objects and,

in particular, soft-lock persistent objects. This includes methods for fast

reactivation of persistent objects.

Remote Paging We would like to use diskless workstations paging to remote

storage and still maintain performance similar to workstations with a local

disk. We hope to reduce the cost of the system (economic cost) and yet

achieve similar or better performance.

Elegant Design The system should be designed in a fashion that is easy to

understand and modify.

1.3 Research Issues

To accomplish the goals listed above, we propose to look at the following research

ISSUes:

• We propose to investigate a shared memory mechanism that will support

location dependent data sharing. We also plan on studying the shared

3



memory operations/interface that the virtual memory system will present

to the user.

• We would like to study methods for separating the lifetime of a process

from the activity of a process. Furthermore, we would like to investigate

methods for fast reactivation of persistent objects.

• Paging over the network to remote storage with performance similar to

systems with a local disk requires efficient protocols. We plan to study

specialized. communication protocols that can yield high throughput and

low delay for remote paging. In order to make the pager server as efficient

as possible, we propose to investigate efficient page lookup and storage

alogithms for the page server.

• Experience with hierarchical operating systems shows that a hierarchical

design makes the system easier to understand and modify[Com84]. We

would like to determine if virtual memory management can be incorporated

into a hierarchical design.

The overall system architecture we envision is pictured in Figure 1. The

system consists of numerous diskless client machines, a page server machine, a

file server machine, and a number of miscellaneous server machines. The client

machines are completely independent of each other, yet they all page to the same

page server.

2 Proposed Research

2.1 Integrating VM management into the Hierarchical
Design

We propose to carefully design the virtual memory management to fit into the

hierarchical design already present in Xinu. We would like to bring all the virtual

memory policies together into one place. In Version 7 Xinu (non-virtual memory),

4



System Components

Disk Disk

T I

Page File Other
Server Server Servers

LAN I I ---< InternetI I
Gateway

Client Client 0 0 0 Client

-,

Figure 1: System Architecture: Many clients, a page server, a file server, and
other servers such as a RARP server, timeserver1 and nameserver

the memory management routines were divided into high and low level memory

management routines. Similarly, we believe that the physical and virtual memory

management routines in a virtual memory system can be divided into high and

low level routines/processes.

We feel the physical memory management routines can be broken into low

level routines used to map (and unmap) virtual pages to physical pages while the

high level routines will implement the page replacement algorithms. Similarly,

the virtual memory management routines can be split into low level routines used

to allocate stack space and kemel memory while the high level routines manage

the shared memory and user's heap.

We would also like to incorporate an architecture interface layer into the

hierarchy to reduce the amount of effort needed to port the system to a different

architecture. The architecture interface layer will present generic page table

entries and methods for accessing them to all upper layers. Upper layers will then

be independent of the virtual memory mechanisms supported by the hardware.

5



2.2 Address Spaces and Threads

The notion of a process in conventional time-sharing systems is defined by an

address space and a point of execution within that address space. When the

computation has been completed, the process (both the point of execution and

the address space) is removed from the system. In order to separate the lifetime of

a process from the activity within a process, we propose to break the conventional

process into multiple points of execution called threads which execute in memory

objects called address spaces.

An address space is simply the virtual memory used to store the data and the

code associated with a particular job. A thread is a point of execution within

an address space. Threads are defined by a program counter, stack pointer, and

stack memory. An address space may be inhabited by a or more threads. This

means that address spaces are independent of threads and may continue to exist

even after the last thread is done. This allows frequently used programs to remain

in memory for fast reactivation. In addition, threads in the same address space

share all the data in that address space.

2.3 Shared Memory

To insure that location dependent data can be shared between threads in different

address spaces as well as with threads in the same address space, we propose to

reserve a portion of the address space for sharing called the shared/private region.

The shared/private region is a reserved portion of every address space. The re

gion begins and ends at the same fixed locations in every address space (the start

and end are set by the kernel). To share data with a thread in another address

space, a thread makes a system call requesting memory from the shared/private

area. The thread then makes a system call requesting that the memory it just

received be mapped into the address space of the thread that needs to share the

data. Both threads share the same physical pages. The pages are mapped to the

same virtual address in both thread's address spaces so location dependent data

6



sharing is possible.

Since the shared/private area is part of an address space, it is accessible

to all the threads in an address space. Because threads give away access, the

shared/private region provides an efficient capability based sharing mechanism

with capabilities given to address spaces, not individual threads.

To improve system call times, we also propose to reserve a portion of each

threads kernel stack for passing data to/from the kernel called the reserved shared

area (RSA). The RSA is guaranteed to be mapped to physical memory at all

times, allowing the kernel to access the RSA without the fear of page faulting.

System calls are speeded up because there is no need to copy data between the

user area and the kernel area.

2.4 Paging To Remote Storage

In order for a diskless client paging over the network to remote storage to achieve

performance similar to or better than a system paging to a local disk requires an

efficient protocol and page server. To achieve this goal we propose to investigate a

specialized reliable pa.ging protocol with very low overhead and low delay, and we

propose to investigate page look-up and storage algorithms for the page server.

The paging protocol we are investigating is simple, using only four types of

messages: page read requests, page write requests, address space/thread create

messages, and address space/thread temination messages. It assumes the un

derlying protocol is unreliable, so it uses acknowledgements and timeouts with

retransmissions to guarantee reliability.

Because that paging protocol guarantees reliability, it can be built on any

datagram protocol such as UDP[PosSObJ or VMTP[Che86] (assuming fragmen

tation is done at some level). However, because the page size on many conventinal

computers is larger than the maximum network packet size, store/fetch request

may be broken up into many packet fragments. For example, to send or receive an

8K SUN3/50 page over an ethernet requires a minimum of 6 (1536 byte) packets.

7



UDP/IP fragments are not acknowledged[Pos80a]. If anyone of the 6 packets is

lost, all six must be retransmitted by the paging protocol. VNITP allows selec

tive acknowledgement of fragmentsj however, every message is acknowledged by

VMTP which increases the overhead and reduces the throughput[Che88J. Our

desire is to improve reliability without degrading throughput.

The paging protocol will be built on a specialize transport protocol that does

fragmentation and improves reliability using negative acknowledgements. Each

part of a fragmented page is assigned a sequence number and sent in sequence.

As packets arrive on the receiving end, they are reassembled but are not acknowl

edged. The receiving end remembers the sequence number of the last fragment

for each page that is currently arriving. As soon as a fragment comes in out

of sequence, a negative acknowledgement containing the sequence number of the

missing fragment is sent to the trallBport layer of the sender. The sender then

backs up and begins sending from the missing fragment again. This protocol is

extremely efficient and optimizes for the expected casej the case where very few

packets are lost.

The performance of the entire system hinges a great deal on the performance

of the page server. To achieve maximum performance, we propose to investigate

a page access algorithm that stores and retrieves pages in almost cOllBtant time.

Each store/fetch request the page server receives is uniquely identified by the

machine id, address space or thread id, and page number of the desired page.

By applying a double hashing fWlction to this information, the page server can

locate the page in almost constant time[Knu73]. Even if the hash table is 95%

full, the average number of probes needed to locate a page will be no more than

three.

The page server will also use a two-level backing store to minimize access

time. The first level of the backing store is the memory of the page server and

the second level is the disk(s) connected to the page server. The server caches as

many pages as possible in memory for fast access and writes all remaining pages

8



to disk. By placing additional memory in the page server machine, clients are

able to run jobs requiring a large amount of memory without having that much

memory locally.

Finally, we would like to investigate data structures and algorithms that will

allow the page server to serve heterogeneous clients simultaneously.

3 Research

3.1 Research completed

We currently have a prototype implementation running on a Digital MicroVAX-I

and a Sun Microsystems SUN3/50. The system pages to a remote page server

running on a Digital VAXll/780. The page server is able to serve both architec

tures simultaneously.

The prototype is designed in a hierarchical fashion with an architecture in

terface layer that makes all upper level routines machine independent. Address

spaces and threads as described earlier are supported. Address space may have

o or more threads of control running in them at any given time. The shared

memory region is reserved in every address space and mechanisms for mapping

a page into multiple address address space are in place. However, because the

shared memory allocation/sharing primitives have not been designed, the region

cannot be used. The RSA area is also implemented and is used by dynamically

loaded processes in the UVAX-I version. Virtual memory management is also in

place and uses a global page replacement policy. The remote paging mechanism

uses the paging protocol to store/fetch pages from the page server.

Our preliminary results indicate that the average page store/fetch times be·

tween the UVAX I and the VAXll/780 are on the order of 40-50ms. This seems

reasonable since ICMP echo requests, which are small packets handled at the

kernel level, take 23ms between the UVAX I and the VAXll/780. Paging re~

quests are usually much large packets than ICMP echo packets and are handled

by a user level page server process which may have to go to disk for the needed

9



data. We are just beginning to gather results from the SUN3/50 (a much faster

machine than the UVAX I) that appear to be much better than the UVAX I

results.

3.2 Proposed Research

I propose to continue researching the design of address spaces/threads and shared

memory. I plan to develop efficient shared memory primitives for allocating,

dellocating, protecting and sharing memory, and also the kernel data structures

and algorithms need to support these primitives. I then plan to implement them

in the prototype and compare them to existing shared memory systems to show

the efficiency and ftu1ctionality differences. I also plan on investigating methods

for managing soft~lock persistent objects. The issues involved are the kernel

data structures used as well as the methods for creating/removing/reactivating

persistent objects. I then hope to show the efficiency advantages of using the

soft-lock mechanism over the conventional approach of inunediately terminated

objects or permanent objects.

4 Summary

We propose to study the system design issues, algorithms, and network proto

cols needed to build a virtual memory system with efficient support for shared

memory, persistent objects, and remote paging.

The main contribution of our work will be an increased tulderstanding of the

issues involved in designing efficient mechanisms that support shared memory.

In particular, it will result in an increased knowledge of the issues involved in

location dependent data sharing. Our work's second contribution will be an

understanding of how soft-lock persistent objects can be integrated into the hi

erarchical design of a virtual memory system. A third contribution of this work

will be to develop a remote paging system with better performance than current

remote paging systems.

10



We expect the thesis work will be completed when the following steps are

finished:

• We complete the design of a virtual memory system with mechanisms for ef

ficient shared memory, persistent objects, remote paging, and virtual mem

ory management.

• We implement a prototype based on the design and test its viability and

efficiency.

• We compare our shared memory to other existing shared memory systems

to show the functionality advantages and the efficiency advantages or our

system.

5 Acknowledgement

We wish to thank Guoben Li for his suggestions and all the effort he devoted to
the implementation of the prototype.

References

[ABLN85] Guy T. Almes, Andrew P. Black, Edward D. Lazawska, and Jerre D.
Noe. The Eden System: A Techincal Review. IEEE Transactions on
Software Engineering, SE-ll:43-58, January 1985.

[BacS6]

[CheS6]

[CheSS)

Maurice J. Bach. The Design Of The Unix Operating System. Pren
tice Hall, 1986.

David R. Cheriton. VMTP: a transport protocol for the next gen
eration of communication systems. In SIGCOMM '86 Symposium,
pages 406-415, ACM, August 19S6.

David Cheriton. Vmtp: versatile message transaction protocol.
ARPANET Working Group Requests For Comments, Febuary 1988.
RFC 1045.

[Com84] Douglas Comer. Operating System Design the XINU Approach.
Prentice-Hall, 1984.

11



[DJA88] Parha Dasgupta, Richard J. LeBlanc Jr., and William F. Appelbe.
The Clouds Distributed Operating System. In Proceedings of the 8th
International Conference on Distributed Computing Systems, pages 2
9, IEEE, June 1988.

[GMS88] Robert A. Gingell, Joseph P. Moran, and William A. Shannon. Vir
tual Memory Architecture in SunDS. 1988.

[Knu73] Donald E. Knuth. Sorting and Searching. Addison Wesley Publishing
Company, 1973.

[Kri87] Balachander Krishnamurthy. A Uniform Model of Interaction In In
teractive Systems. PhD thesis, Purdue University, West Lafayette,
Indiana, December 1987.

[NeI86] Michael N. Nelson. Virtual Memory for the Sprite Operating Sys
tem. Technical Report UCB/CSD 83/30In, University of California
Berkeley, June 1986.

[Pos80a] J. Postel. DOD Standard Internet Protocol. January 1980. RFC 760.

[Pos80b] J. Postel. User Datagram Protocol. August 1980. RFC 768.

[Ras86]

[Tev87]

Rick Rashid. Threads Of A New System. Unix Review, 4:37-49)
August 1986.

Avadis Tevanian. Architecture Independent Virtual Memory Man
agement for Parallel and DilJtributed EnvironmenttJ: The Mach Ap
proach. Technical Report CMU-CS-88-106n, CMU, December 1987.
Ph.d. Thesis.

12


	A Virtual Memory Operating System for a Distributed Workstation Environment
	Report Number:
	

	tmp.1307986960.pdf.mMGbg

