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Abstract

For the iterative solution of the nonsingular linear system (1) (I - T)x = c we con
sider the class of monoparametric k-step methods (2) x(m) = roTx(m-l) + (I - ro)
x(m-k) + roc for k = I, 2, 3, .... with CO being a real parameter. The main objectives of
this paper are the following: i) To determine the value of k = I, 2, 3, ... for which the
method in (2) converges asymptotically as fast as possible under the assumption that
aCT) e [ex, J31. - ~ < a'; J3 < 1 and ti) For a giveo aCT). not necessari1y on the real
axis, and for a given k ~ 3 to make an attempt toward the determination of an
"optimal" ro in the sense of (i) above. Finally based on a recent result by Eirmann,
Neithammer and Ruttan for the k-cyclic SOR method. we discuss and suggest possible
ways of extending and improving the results in (i) and (ti) above.
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1. INTRODUCTION AND PRELlMINARIES

Consider the nonsingular linear system

x =Tx + c (1.1)

T E fl"'1I, X, C e a:n. and assume that for its iterative solution the class of mono

parametric k-step methods

x(m) = ooTx(m-l) + (1 - 00) x(m-k) + ooc, m = 1, 2, 3, ... , (1.2)

is considered. In (1.2) x(e), t = 0(-1) - k + 1 are arbitrary and 00 E 1R \ (OJ. As is

known, except in very special cases, knowledge of the spectrum oCT) of T does not

give any information as to the value of ill for which the scheme (1.2) converges asymp

totically as fast as possible for a given k( ~ 3). Even if we assume that for a given

aCT) all the optimal schemes in (1.2) for all k's are known the question of which one is

the best of them all is an open one.

In this paper we develop some background material which enlightens some of the

difficulties one has to overcome before one attacks the two problems posed above. We

then restrict ourselves to the following two main specific objectives: a) For a given
aCT) satisfying

aCT) c 1:= [0:,/3]; - ~ < 0:'; /3 < 1 , (1.3)

only those k's for which (1.2) converges for some m's will be considered. In the case

where convergence is guaranteed the corresponding optimal scheme, that is the one

which converges asymptotically faster, will be selected and out of all optimal schemes

the best one over all k's will be determined and b) It will be assumed that aCT) is

known in some "sense" and an attempt will be made to determine the "optimal" mfor

a given k by means of a simple algorithm.. It is our belief that this effort will provide

us with some of the background material needed in devising an algorithm for the deter

mination of the optimal Ol. It is hoped that this algorithm will be analogous to those by

Hughes-Hallen [13] and Hadjidimos [11] (see also Hadjidimos [12] and Opfer and

Schober [17] for complex oo's) for k = 1 and to that by Avdelas et al [2], which is noth

ing but the one by Young and Eidson [23] (see also Young [22] ) devised for the 2

cyclic SOR method, for k = 2. For k ~ 3 a necessary condition for convergence is

peT) < k I (k - 2) and (optimal) convergence can be achieved whenever aCT) lies in the

interior of a certain hypocycloid In this paper the optima are determined by means of

the "cusped" hypocycloids. The necessary background material can be found in the

papers by Nietharnmer and Varga [16], Galanis et al [7] - [9] and in Wild and Niet

hammer [20], where an excellent account of the hypocycloids in connection with the
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(optimal) convergence of the k-cyclic SOR method is given.

The organization of this paper is as follows: In Section 2 the (optimal) 1-, 2- and

k-step (k <: 3) methods (1.2), under the assumption (1.3), are given and determined.

Especially for k ~ 3 this is done by means of the "cusped" hypocycloids. A com

parison among all optimal methods is made and the best one is given in Table 1.

In Section 3 we present, for a given k, an algorithm to determine the best optimal

k-step method by means of the "cusped" hypocycloids again, under a more general

assumption on the configuration of a(T), than that in (1.3). Finally in Section 4 we dis

cuss an excellent recent result due to Eiennann, Niethammer and Ruttan [23] for the k

cyclic SOR method and "translate" it to its "equivalent" for the k-step methods (1.2),

k ;::; 2. This' 'translation" provided us with tools which could improve and extend the

result of this paper. Suggestions for possible further investigations are also made.

2. OPfIMAL k-STEP METHODS

2.1. 1- and 2·Step Methods

As is known the i-step method (1.2) converges for any I defined in (1.3) for

infinitely many values of co belonging to "a certain interval (see e.g., Isaacson and Keller

[14J Young [22J, de Pii1is and Neumann [3J and Hadjidimos [11]). The corresponding

optimal valoes for &1 and the spectral radius ~, of the iteration matrix &, T + (1 -1),1)1

(that is the optimal asymptotic convergence factor) are given by

& - 2 A _ ---.Jl- a (2 1)
'-2-~+~)' PI-2_~+~) .

which can also be obtained from the results of Young [21J (see also [22, pp. 364-365])

in connection with the cyclic Chebyshev acceleration by considering only one parame
ter (co) in each cycle.

Remark: The optimal I-step method (1.2) exists and is unique even for
I := [a,~], 1 < a S ~ < +~, in which case all other k-step methods (k <: 2) fail 10 con

verge for any real 00. The optimal parameters are again giveo by (2.1), with the only

difference being that the denominator in the expression for ~l in (2.1) is (0: +~) - 2
(see e.g., [IIJ ).0

For the 2-step method. (1.2) a necessary and sufficient condition for convergence

for some co's is that I c(- 1,1) and the corresponding optimal parameters are then given
by
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(J" 2 ~2 ; «(J" - 1)112,
; I + (I - if 2 '

(2.2)

(2.3)

where y; max( Ia I, I~ I) (see e.g., Golub and Varga [10], Varga [19], Niethammer

[15] and Young [22]).
A ASince the 2-step method (1.2) converges only for - 1 < 0: we compare PI and pz

under the assumption that IcC-I,I). A straightforward comparison distinguishing the

two cases lal $ I~I « I) and I~I $-a« I) reveals that:

i) Ia I $ ~ ~l $ ~2 iff I - (I - ~2)112 $ a ,

ii) I~ I $ -<t ~l $ ~2 iff - I < a $ I - (I _ ~2)"2

Note: Some of the results (2.3), in a special case, were obtained in Avdelas et a1 [1].0

2.2. The k.Step Method (k ;, 3)

2.2.1. Background Material

We begin out analysis by giving a Lemma and a Theorem in connection with
schemes (1.2) (see e.g., Galanis et al [7] - [9] ) which are to be used in the sequel:

Lemma 1: a) The circle ~ ;Tje i., Tj > 0, eE [0,21t) in the complex plane is

transformed through

I - (1- ro)<P~z :; pC$):; ~ , ro E (0,2) \ (I), k;, 3 , (2.4)

into a closed curve Ck (hypocycloid) consisting of k arcs symmetric W.f.t the lines

through the origin with arguments 2m / k, t; O(I)k - I. Rotations of the complex

plane through angles of 21t / k but through no smaller angles carry C. into itself. b) For

s :; sign(ro- I) and a given p; Ip(ftllt exp «I - s)ilt/(Zk»)) I E (O,k / (k - s + I))

(the case p;°is trivial) and for every Tj E (O,il], with il; (s(k - 1)(&. - 1))-11t and

only for these values of 11. C/c is a simple curve, where flJk is the unique positive real

root in (min (I, (k + s - I) / (k - I)}, max (l,(k + S - I) / (k - I)} ) of the equation

(rop)'; sk' (k - 1)1-< (ro- I). 0 (2.5)

A -A A A
Theorem 1: Let Rt := intet of Lemma 1 (Ck is the CJc corresponding to COk)'

A
Then if aCT) c Ric the method (1.2) converges and has an asymptotic convergence fac-

tor (ac!) ~. $ I / ft. ; (s (k - I) (&. - 1))1It with equality holding iff at least one ele
A

ment of <J(T) lies on Ck . 0

Note 1: The graphs of 8. for k ; 3,4 (&. > I) and k ; 3,4 (&. < I) are given in

Figures I, 2, 3 and 4 respectively.o
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Figure 3.

(P,O) (1,0)

- 6-

(-p,0)

Figure 2.

Figure 4.

(p,O)(I,O)

A

Note 2: C. is a cusped hypocycloid (see Wild and Niethammer [20] ) with cusps

on the rays, emanating from the origin, with arguments 2m! k, t = 0(2)k - I, iff (J,. > 1

and (21 + I),,! k. t = 1(2)k - I, iff &. < 1. 0
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A
Note 3: From now on we shall refer to Ck's as being of type I or II iff f1Jk > 1 or

CJk < I respectively. 0

2.2.2. [et,I3] c (- 1,1)

Before we go on with our analysis we make two points: i) The analysis can be

restricted to intervals I := [a.131 such that a'; 0,; l3(a +13" 0) since as we shall see ali

other possible cases are subcases of the ones which will be examined here. and ii) One

should have in mind that in principle four categories of optimal k-step methods (1.2)
A

can be considered depending on the way the cusped hypocycloid Ck associated with
A

(1.2) is constructed. Thus we can have: A) Ck. of type I with one cusp at the point f3 in
A k-2 1\

the compiex piane. B) Ck of type I with one cusp at - a~. C) Ck of type II with
A

one cusp at - a exp (in: I k) and D) Ck of type Il with· one cusp at

J} k ~ 2 exp (itt I k). It is understood that in each case only those ~k 's for which

[a.b] c intC:k will give ~kS which should be compared against ~2 based on [a.131.
Two cases are then examined: I) a + 13 > 0 and 11) a + 13 < O.

1. a+I3>O.
A

Consider all C,f;'S, k ~ 2, of the category A above. Because of Lemma 1 and

Theorem 1 the optimal parameters for each k ~ 2. ignoring for the moment whether
_h

a e intCk will satisfy

[ ]
/k

(CJkl3)k = kk(k - l)l-k(CJk - I), ~k = (k - 1)(CJk - I) .

Setting y =y(k) =Sk and considering it, by following the reasoning in the proof of

Tbm 4 of [7], which was also used successfully in [8], [9] and [18], as a (differentiable)

function of the real k ~ 2, one obtains from (2.6) that

13 = Icy
yk + k - 1

Differentiating (2.7) w.r.t k and rearranging terms we take

!:.. (I - yk)(1 _ k)y' = yk _ yk Inyk - I '" Y (2.8)
y

that is (2.8) in [7]. Putting yk=6e(O.I) and 0=y/8=1-1118-1/8 and

de / d8 = (I - 8) / 82 > O. Hence 0 increases with y and because 0= 0 at 8 = I it is

implied that e is negative. So is "( and from (2.8) we have that y increases with k. Here
A

we observe that for k = 2. C2 := the doubie line segment [-13,131 contains [a.I3]. Also
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there exists a unique value t= min (k :=-P(k-2)/ k Sa}. Therefore for
k:3.4,S, ...

-./\ 1\ I\.
k = ~t + l.t + 2, ... [a,p] C IDtC•. Consequently P2 < P.. k = t.t + l,t + 2.....

Consider all C. 's, k 2: 3, of the category B such that - a k ~ 2 < 1 (if they exist)

and let t be the smallest value of k such that ~ S; - ex k k . Following an analysis
-2

similar to the one before except that p is replaced by - a k ~ 2 and k 2: ~ (2.7)

becomes

-ex:;: (k - 2)y

y' + k - 1

Therefore, instead of (2.8), we now have

(2.7')

(k - 2) (1 _ y') (1 - k) y' = y' - y' /ny' - 1 + 2y' /ny (2.8')
y

Because of the previous analysis and the fact that 2y k fny < 0, Y increases with k, so

~, < ~., k = t + 1, t + 2,.... This value should be compared against ~2 of type I whose

cusp is at 13. For this we consider the equation

ICY) :=aY' + (t-:2)y +a(t-1) = 0 , (2.9)

which has a unique root y E (0,1). Since 1(0) = aCt - 1) < 0 and

1(1) =at + (/- 2) =(/- 2) (1 + a---.L.) > 0 it is concluded that if 1(~2) < O. with
1-2

~ = 2/ (1 + (1 - p2)112), then ~2 < ~t otherwise the situation is reversed.
A

Consider now all Cleo k ::=: 3. of the category C. As is readily seen none of these
-A

curves can have J3 E intC,t since their point of intersection with the positive real
. .. k-2( n)

sCmJaxJS IS at - CI k < I-' •

A A
Finally consider all Cit k ~ 3, of the category D. It is apparent that for k even Ck

contains [a,P] and therefore based on Thm 16 of [6] or Thm 6 of [4] it is concluded

that the ~2 found before is smaller than any ~.. k = 4. 6, 8,.... A further point should

be made in case k is odd In such a case - J3-kk is a cusp of Ck and by virtue of the
-2

previous Thms in [6] and [4] ~•• k = 3,5.7, ... can not be all good as ~2 of type I with
cusps at - p and p.
II. a+p <0.

A
In this case it is obvous that the C/c's of the category A can not contain a.
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A A
Consider then all Ck '5, k ~ 3, of the category B. For k even, Pi can not be better

than f3l. based on C2 with cusps at a and - n. For k odd consider only those k's for

which - a_k
_ < 1 and let l be the smallest k satisfying the inequality in question.

k-2
Following an analysis identical to that in IB before we have that ~l < ~b

k = 1+ 2. 1+ 4•.... But since [a.~j c [a, - a] c inti;' it is concluded that ~z based on

[a,-aj is better than ~,.

Consider now all Ck's, k ~ 3, of the category C. For k even again ~2 based on
A -A

[a,-a] is better than any P. because [-a.a] c inlC•. For k odd let 1 be the smallest k

such that [a.,Pl c int Ct > TIrls time P2 must be compared against Pt which is the unique
root in (0.1) of

which give

A •• 1-' h A h 11'(- ro.a) =k (k - I) (I - ro.). P. =«k - 1)(1 - ro.)) • (2.10)

(2.12)

- a = ky (2.11)
-y'+k-I

where y = y (k) = Pi is considered a (differentiable) function of the real variable k ;:: 3.
(2.11) is analogous to (2.7) and gives in tum

! (I + y')(1 - k)y' = - y' - y' /ny' - I < 0 .
y

Hence y' > 0 and y increases with k meaning that Pt < Pb k = t + 2, t + 4..... Since

I (y) := ay' -I)' - a(l- I) = 0 (2.13)

and 1(0) =-a(I-I) > 0 and 1(1) =-a(l- 2) -1=-1(1 +a (1-2)) < 0, I(~z) < 0
1

. Ii A A d f(A) 0 . I"ed A Attnp es pz > Pt an P2 > ttnp 1 pz < Pt.
A _A

Finally consider all Ck's • k ;;::: 3, of the category D. For k even, a f/. intet . For k

odd let 1 be the largest k = 3, 5. 7.... such that - ~~ ,; a. if such an 1 exists. For
k-2

k=~1-2....,3itwillbe

[ fiJ. k ~ 2 ~r= e(k - 1)'-'(1 - fiJ.)

which gives

_....!(.;.k~-.::,2)'l._
~=

- y' + k - I
(2.14)

where again y = y (k) = ~k is a function of the real 3::;: k ::;: t. Following a similar
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analysis we get

(k - 2) (I +y')(1 _ k)y' = _ y' +y' /ny' + I - 2y'/ny > O. (2.15)
Y

This is because it can be proved that the minimum value of - yk + yk enyk + 1 is 0 and

is attained for yk = 1. and also - 2y k tny > O. So y' < 0, implying that $, < $b
k = t - 2(- 2)3. Even in this case ~2 corresponding to [a, - a] has to be compared

. h A
WIt Pt-

This analysis concludes the case [a,p] c (-1,1).

2.2.3. [a,P] c (-3,1), a';; - 1

Ill) In this case matters are a little simpler for two reasons. First (1.2), diverges
A

for k = 2 and second the categories A and B of the Ck (cusped hypocycloids) do not
exist any more.

A
Consider then all C, 's, k ;, 3 of the category C. Obviously k must be odd. Let t

be the smallest odd integer k such that - a k : 2 ;, p. It will be

(2.10')

that is (2.10). Hence the best ~, is ~, as in 2.2.2 lIe.
A

Finally consider all C, 's, k ;, 3, of the category D. Again, as in the case 2.2.2.00

the results are the same except that $, does not have to be compared with ~2 any more.

t is given as the largest integer such that - ~ k ~ 2 S" a.

2.3. Comparison of the Optimal k.Step Methods

Having in mind the results of the various cases examined so far one may give

Table I in which the best of all the optimal methods (1.2) is presented. To give an idea

as to how the Table is easily constructed we have to make three points: i) The various

subcases for a,p E (1-1.1) are defined by the relationships (2.3) taken together with

a + p > 0 and a + p < 0 in subsections 2.2.2.1 and 2.2.21I respectively. ti) Whenever

an e( :2: 3) can not be defined in one of the subcases considered through the correspond

ing relationship this simplly means that there is no optimal t-step method with t ~ 3 and

therefore the best out of the 1- and 2-step methods is to be considered. and iii) When

ever an optimal t-method exists and if to be compared with either the 1- or the 2-step

method then the sign of the function f (~,) of the left hand side of the equation from
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which ~t is detennined (with the right hand side being zero as for example in (2.9) or

(2.13) ) gives the relative position of either ~1 or ~2 w.r.t. ~t.

Table 1

a(7') e I := [a,W acf of the best optimal k- Section in the text where

step method (1.2). the index in ~ in the pre-

vious column is defined

(if it exists).

l<a<fl<oo A 2.1P,

-oo<a,S-3<J}<1 ~. 2.1

-3<a::o-l<p<1 ~I'~"~' 2.1. 2.2.3C. 2.2.3D
respecLively

-l<a<p:s:O ~" ~.. ~. 2.1. 222llB. 22.2.IlC

»

-l<a:::-p A A A 2.1. 2.22.IlC. 2.2.2IlDPI. P",. P!:z
»

O<P<l -p < as; 1_(l_p2)'r.t ilz. ~•. ~•. ~. 2.1. 222.IA, 22.2.m.
22.2.lD »

1-(1- p2)1f2::; a < a A A A
2.1. 222IA, 222lD »Ph P~. P;.

... It is always assumed that a < abecause:
Fo,a=~= I: None of the k-step methods converges.

For a = p'* 0,1: The optimal I-step method is the best, PI = O.
Fora=p=O: All optimal melhods have &j: == 1. because a(T) = O.

so the oplimal method (1.2) is simply x(",j = TX(ItI-I) + c.

3. THE OPTIMAL k·STEP METHOD FOR A GIVEN k

As has already been mentioned in principle for a given k = 1. 2, 3•... an optimal

k-step methcxl can be found whenever aCT) is given and lies in a certain region. Thus

for k = 1 an optimal I-step method can be found whenever a(T) lies strictly to the left

(or strictly to the right) of the line Rez =1 and for k =2 whenever <reT) lies within the

strip IRez I < 1. However, for k ~ 3 an optimal k-step method can be found whenever,.,
a(T) lies strictly in the interior of the k-cusped hypocycloid Ck,II whole k cusps are at

the points k: 2 exp((U + 1) lti I k), t = O(2)k - 1. This is an immediate consequence
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of the Lemma 1 and Theorem 1 (see also [20]). So, for some configurations of spectra

(J(T) only a 1- or a 2- or a k-step, with a specific k " 3, method can be applied 10 pro-
- _A _

duce an optimal one. Since n intCk,ll = D 1 is the unit disc (centered at the origin) it
.=3

is concluded that iff (J(T) cD, all k-step methods, k = I, 2, 3, ... can be applied to pro

duce an optimal one.
A

Let us assume that a k is given and that aCT) c int Ck,/l- Assume further that we

consider the images of all elements of aCT) in the following way: i) By rotating them

about the origin by a multiple of 21t I k so thaI their images have argument in (0,21t I k)

and, Ii) By taking the mirror images of them all whose argument is in (1t I k,21t I k)

w.r.t. the line through the origin with argument in [O,7t I k]. Obviously, due to the rota

tional symmetry, if one determines the optimal cusped hypocycloid taking into con

sideration only the images (of all points) with arguments in [O,1t I k] the problem of

detennining the optimal k-step method (1.2» will have been solved. Assume that the

images in question lie in a known line L consisting of all possible consecutive straight

line segments. Let Pso s = l(l)n, be the vertices of this line in increasing order of their

arguments. The solution will be given by using cusped hypocycloids of type I and type
A A

IT only. For this consider the two limiting hypocycloids of type I and IT (C~l, C~ll)
A

respectively which pass through the point 1. Obviously, if all vertices Ps E int Ck,ll.

S = l(l)n. there exists a unique optimal solution to our problem determined by a type II
A

hypocycloid iff Ps 4iintCk,J for at least one s. while the unique optimal solution is
A

determined by a hypocycloid of either type I or IT iff P, E int C~l for all s = 1(I)n.

Let P,(rl''V')' in polar coordinates, be the first venex of L. The unique optimal

hypocycloid of type I passing through P, is determined as follows: Find the unique
8, E [-1t I k,O] by solving

-{k - l)sin8, + sin(k - 1)8,
= tan'll, (3 I)(k - l)cos8, + cos(k - 1)8, .

for 8, and then the unique ~~, E (0, I) through

rl~t, - [(k _1)2 + I + 2(k - l)cosk8Illf2~~, + (k - I)r, = a
Equations (3.1) - (3.2) are obtained from

i) rcos'V = x = L, (p'sin8 + (OJ - I)cos(k - 1)8)
P

ii) rsin'V = y = - L, (p'sin8 - (OJ - I)sin(k - 1)8)
P

(see equations (3.2) of [20], and take into consideration
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~~ 1 =_1_ =«k - 1)(Clk - l))'lk from Theorem I and that Clk satisfies (2.5».
flk

In the same way one applies (3.1) - (3.2) with I being replaced by s = 2(1). suc

cessively. Obviously from Lemma 1 and Theorem lone has ~J:.,$ = ~L /(k - 1) + 1
and therefore from (2.5)

(3.4)

(3.1')

(3.4')

where Ps is the unique real root in (0,1) of equation (3.4). One then takes

PI = max P, . (3.5)
s =1(1)T)

Of course to the latter PI there correspond a unique pair IDKl and a ~f;.

In a similar way one determines the optimal hypocycloid of type II passing

through P" s = 1(1)•. The correspondiog equations to (3.1) - (3.2) are now

(k - l)sin81 + sin(k - 1)81
= tan'l'l- (k - I) cos81 + cos(k - 1)8,

and

rl~t 1 + [(k - 1)2 + I - 2(k - l)cosk8Il1l2~~ 1 - (k - I)rl = 0, (3.2')

where of course (8,,~~ I) of (3.1') - (3.2') are different from (81'~~ 1) of (3.1) - (3.2).

Equations (3.1') - (3.2') are obtained from (3.3) and the fact that

~~ 1 = ~k = «k - 1)(1 - Clk »lIk from Theorem I and that Clk satisfies (2.5)). Equa-

tions (3.1') - (3.2') are applied for all s =2(1). and from Cl~, = I - ~L / (k - I) and
(2.5)

(Cl~,p,)k = kk(k - I)I-k(l - Cl~,) ,

where P, is the unique real root in (O,k / (k - 2» of (3.4'). Then

k-2
PII = -k max P, (3.5')

5=1(1)1'1

is determined. To that specific Pll there corresponds a unique pair &f~) and a pf~).

where the index s here is, in general, different from that corresponding to PI previously.

The "best" of the two optimal hypocycloids corresponding to (3.5) and (3.5') is
obviously the one for which

~k = min{~f;, ~f~)} . (3.6)

Depending on which of pl~, pg~) provides the minimum the optimal &k,s is determined
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through ~, = «k - I)«(J" - I»I/k or «k - 1)(1 - tlM>' respectively. Obviously in case
A

at least one vertex P, otint C~l one has to work only with the formulas (3.1'), (3.2')
1\ I\(ll) 1\ 1\and therefore (3.4') and (3.5'). Then p, = p~, and Ol, = I - p, I (k - I).

4, EXTENSIONS AND IMPROVEMENTS

The analysis in the previous two sections was based on the optimal cusped hypo

cycIoids. However, in a very recent paper EieImann. Niethammer and Ruttan [5] gave

among others Thm 5 (due to Wild and Niethanuuer [20] ) coucerned with cusped hypo

cycloids and Thm 6 (an excellent result indeed) concerned with shonened ones (see

[20]) in connection with the optimal SOR method for k-cyclic matrices. However, if

one has in mind how a k-ste method is related to a certain k-cyclic SOR one (see the

theory develped in [7]) then one can give the equivalent forms of the aforementioned

two Thms in connection with the k-step methods (1.2). k ~ 3. Thus we can have the

following valid statement as an extension to our Theorem 1.

Theorem 2: Assume that for a giveu k(? 2), a(T) c V [O,pexp(21litl k)]
t=O(2)k-l

V [O,aexp«21 + l)llilk)], where a e [O,k«k - 2» and p e [0,1). Then for the
"",<2)k-1

optimal k-step method (1.2), (J" is the unique real positive root of

[ fu.Ol]' _fu. (Ol - I) = 0
2 il-II

contained in

and there holds

~,= [.~ ~: «(J" - I)r=~; II (J"

where a and J3 are given by the expressions

(4.2)

i) 11
k-2 p=p a<p(k-2)= -k- P , iff

- k

ii) 11 p=p iff
(k -2) k

, (4.3)= a, ae [P k ,P(k-2)]

iii) 11 = a, il =....!...- a iff a> P k
k-2 - (k -2)
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Remark 1: The corresponding optimal curves 8J: associated with fAk of Theorem
. (k-2) k

1 are cusped hypocycloids of type I or II In case II'; ~ k or ~ (k _ 2) ,; II respec-

tively and shortened hypocycloids in case II E [~(k ~ 2) , ~ (k ~ 2) ].0
~-~ k .

Remark 2: In case II <i (~ k ' ~ (k _ 2»' Theorem 1 IS recovered. This is

(k - 2) A k
because for a. ~ ~ k one obtains OOk E (I, k _ 1 ) and

where

~k = «k - 1)«(},k - 1))1Ik

k A k -2
while for II;;' ~ (k 2)' "'k E (k _1,1) and

(},flIk= kk(k - 1)I-k(1 _ (J,k)

where

~k = «k - 1)(1 _ (J,k»'Ik . o

(4.4)

(4.5)

(4.6)

(4.7)

One may explore further the result above. First in connection with OUT discussion

in Section 3 where it is almost "obvious" that through a vertex P of the line L pass

infinitely many "optimal" shortened (and onc or at most two CllSped) hypocycloids and

the "best" of them all must be a unique one which "could be determined". If this, as

is believed is the case, then through any two vertices there must pass a unique hypocy

cloid (which may lead to a convergent or a divergent k-step method) and so the

development of an algorithm determining the optimal co should be a complete analogue

of the Young-Eidson one [23]. Secondly the previous ideas could be used to extend

and improve the results of Section 2. In both these directions an investigation is being
made.
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