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Figure 4.28 Series of (a) incipient and (b) maximum CMAP measured from Bionode 
implanted in wild-type mouse on Day 7 post-surgery. 

 

4.7.4 Voluntary Evoked EMG  

In the course of the validation experiment, voluntary evoked EMG is measured 

periodically from the wild-type mouse while it is freely behaving in the open field of the 

resonant cavity (see Figure 4.25). Figure 4.29 plots representative data from days 0, 2, 

and 5 post-surgery. This is already a marked improvement over the longevity of the 

electrode interface used on the Myonode, which failed within 48 hours of implantation. 

While the timespan is relatively short, this series of data is a promising indication for the 

long-term viability of the packaging and electrode schemes. 

 



178 

 

1
7

8
 

 

Figure 4.29 Samples of voluntary evoked EMG collected from a freely behaving wild-
type mouse using the fully wireless Bionode system. 

 

The intended course of the validation study is to collect voluntary evoked EMG 

as well as threshold and maximum CMAPs (like those shown in Figure 4.28) for as long 

as possible. However, beginning on day 9 the device becomes ostensibly detuned and 

ceases to operate in the cavity. Performance while powered with the small coil for 

stationary experiments is also considerably degraded to the point that only faint 

contractions are observed in response to purportedly large stimuli. This seems to 

suggest that the microelectronics are intact but some change has occurred in either the 

coils or the matching network to significantly drop the PTE to the point that the 

stimulator’s voltage headroom is far below where it should be. Nevertheless the device 

is left implanted for a total of two weeks so that behavioral monitoring could continue 
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and complete healing of the incision wound can occur. This allows for some inferences 

to be made about how well the animal fares with the device as it is positioned and 

whether or not chronic implantation of the Bionode in such a small specimen is realistic.  

It seems that the device is generally tolerated; the mouse is observed eating and 

grooming shortly after surgery and its gait is only marginally affected by the cuff around 

the sciatic nerve: an effect which becomes less noticeable over time. Figure 4.30(a) 

depicts the Bionode next to the animal subject prior to implantation. Figures 4.30(b) and 

4.29(c) depict the animal subject from the top and the side after the device has been 

implanted for two weeks. Full wound closure and healing is achieved and the device is 

still positioned above the hip. These are both promising results since two potentially 

catastrophic events that can occur are that the mouse chews its stitches and they fall 

out prior to wound closure and that the device slips backwards until it rests on top of 

the hind limb flexor muscles. The latter scenario causes impairment of hind limb motion 

and puts hazardous stresses on the electrode leads as they undergo sharp bending 

between the electrode interface on the Bionode and their target nerve or muscle. One 

caveat should be noted here and that is that this implantation is performed in a fairly 

large (25 g) mouse. It remains to be seen how well smaller mice tolerate the implant. 
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Figure 4.30 (a) Bionode device next to mouse immediately prior to implantation (day 0). 
(b) Top view of mouse 2 weeks after device implantation (day 14). (c) Side view of 

mouse two weeks after implantation. 

 

The device is explanted after two weeks so that the point of failure can be 

determined. Careful dissection results in confirmed integrity and continuity of the 

electrode leads. The crimped terminals of the recording and stimulating electrodes as 

well as the entire electrode interface on the Bionode are inspected for displacement, 

breaches, or breakage. The electrode interface is still fully intact following explantation, 

which is yet another promising outcome of the experiment. The source of the failure is 

discovered to be the epoxy around the putty insert which encases the impedance 

matching circuit. This particular segment of epoxy is applied during the second 

deposition phase as described in Section 4.5.1, and is spongy to the touch following 

removal from the animal. When set properly the epoxy should be firm, so the likely 

explanation is that it did not set properly and allowed fluid to leak into the cleft that 

houses the impedance matching circuitry. This conclusion is reinforced by the detection 

of liquid and unset epoxy beneath the putty insert. For this reason care is taken on all 
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future assemblies to be sure that the second epoxy deposition phase which forms the 

barrier around the putty insert is properly set. 

 

4.7.5 Ongoing Study in CMT and ALS Disease Models 

The experiments for evaluating voluntary evoked nerve activity in the CMT type 

2D disease model and stimulus evoked CMAP from the hereditary ALS disease model are 

ongoing. However, some preliminary findings and data are discussed here. Figure 4.31 

illustrates recurrent bursts of sciatic nerve activity resulting from forced walking inside 

the wheel shown in Figure 4.25. These data are collected from a GARSC201R mouse: a 

model for CMT Type 2D. There is no clear precedent within the literature for collecting 

and quantifying voluntary peripheral nerve activity in awake and behaving mice. These 

data comprise the first reported voluntary NAP to be collected by a fully implantable 

measurement system. 

 

 

Figure 4.31 Voluntary nerve action potentials (NAPs) collected from an awake and 
behaving mouse while performing forced walking within a wheel. 

 

This new instrumentation and methodology may be used to track changes in 

amplitude and frequency composition of the data shown in Figure 4.31 over time. 
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Additionally, they can be used to test the effects of pharmacological agents on nerve 

activity. For example, sodium channel blockers introduced into the extracellular 

environment around the nerve might disparately impact nerve behavior in the CMT 

Type 2D disease model compared to its control, which might implicate sodium channel 

deficiencies as playing a role in the disease mechanism. This is just one of many 

potential experimental protocols which would be easy to carry out once the Bionode is 

implanted and stabilized in its environment. 

Another early result of the GARSC201R mouse study is the observation of 

intermittent, low-amplitude potentials which occur while the animal is at rest. Three 

examples of such activity as well as the baseline signal measured while the animal is 

under anesthesia are compiled in Figure 4.32. The sampling rate and ADC resolution 

used while collecting these data are 2.5 kHz and 8-bit, respectively. It may be that this 

activity is the result of nerve injury or irritation by the cuff electrode. However, one of 

the established phenotypes of this model is a visible tremor in the hind limb and tail. 

Another explanation for the observed spontaneous nerve activity might be that it 

correlates with this tremor. If this is the case, then these data are the first of their kind 

measured from this model. However, more instances of this activity will need to be 

recorded in the disease model and an absence of comparable activity in the wild-type 

control will need to be proven before other possible explanations can be ruled out. 
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Figure 4.32 Sciatic nerve activity recorded from a disease model for CMT type 2D during 
stationary periods within the open field of the resonant cavity. Baseline data represents 

nerve activity while the animal is anesthetized. Examples 1, 2, and 3 represent 
intermittent, low-level potentials measured while the animal is at rest. 

 

The ability to both elicit stimuli and record the response allows the Bionode to 

collected stimulus evoked CMAP from awake and freely behaving animals. The change 

in amplitude of the CMAP response to a fixed stimuli over time can indicate changes in 

muscle mass (resulting from growth or atrophy) or impairments of somatic signal 

transduction. Figure 4.33(a) illustrates a series of CMAPs recorded from an awake and 

freely behaving Tg.SODG93A mouse the day after implantation of the Bionode using a 

stimulus pulse width of 100 μs. The threshold current needed to elicit a CMAP is 450 μA 
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and the CMAP amplitude plateaus near 700 μA. This gives the minimum and 

supramaximal conditions for this pulse width, which can be tracked over time.  

In order to confirm that the observed response is a CMAP and not an artifact, the 

pulse width is doubled to 200 μs and the current amplitude is gradually increased once 

again. Figure 4.33(b) plots the result of this second sweep. In this instance the threshold 

current needed to elicit a CMAP is 400 μA and the CMAP amplitude plateaus near 650 

μA. The consistent and appropriate duration of the muscle response in both cases 

(approximately 2 ms) as well as the observation that the stimulus intensity needed to 

trigger a measurable response is smaller when the stimulus duration is longer (which is 

consistent with the known behavior of strength-duration curves for excitable tissues) 

suggest that the implanted instrumentation is effectively collecting the signal of interest.  

 

 

Figure 4.33 Evoked compound muscle action potential (CMAP) measured from the 
biceps femoris of a Tg.SODG93A mouse in response to a stimulus pulse with a duration of 
(a) 100 μs and (b) 200 μs. All waveforms shown are averages of ten successive CMAPs 

recorded at each level of stimulus intensity. 

 



185 

 

1
8

5
 

Another measurement of interest in the Tg.SODG93A mouse is the trend in 

stimulus evoked CMAP amplitude in response to higher frequency (3 to 50 Hz) stimulus 

pulse trains. Figure 4.34 plots the average amplitude of successive CMAPs resulting from 

RNS at 20 Hz. These data are collected the day after surgery using a pulse width of 100 

μs and a resting period of at least 10 seconds between subsequent pulse trains. This 

creates an RNS response signature which can be used to detect deficits of the 

neuromuscular junction or the muscles themselves over time [18, 191]. 

 

 

Figure 4.34 Peak-to-peak compound muscle action potential (CMAP) response to 
repetitive nerve stimulation (RNS) measured as a percentage of the amplitude of the 

first pulse in a 20 Hz pulse train. The stimulus pulse train uses supramaximal conditions 
Error bars at each pulse number reflect standard deviation (n = 7). 

 

4.8 Conclusion 

The Bionode represents the state-of-the-art in fully wireless and implantable 

biosensors for mice. Its capabilities far exceed those of any battery operated system and, 
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furthermore, allow anesthesia and tethering to be removed entirely from experimental 

protocols for long-term bioelectric data collection. This offers significant gains in 

efficiency as well as data resolution and consistency compared to many established, 

long-term electrophysiology protocols for mice. The fully implantable recording device 

developed in this work is able to collect two crucial target signals useful in studying 

neuromuscular disease progression–CMAP and voluntary nerve activity—that have 

never before been measured in a mouse by a fully wireless system.  

The Bionode follows the same design principle as the Myonode—that is, all the 

microelectronic elements integrated on the Bionode’s power and core modules are 

commercially available. This offers flexibility and consistency in the finished product (not 

to mention faster turnaround on design iterations) which would have been 

impracticable had the systems been designed all or partially in CMOS technology. 

Despite the added volume and power consumption that come with compiling 

individually packaged and standalone ICs, the Bionode maintains a form factor that is 

tolerable for subcutaneous implantation in mice and effectively powered by the 

resonant cavity WPT environment.  

The demonstrated performance of each of the Bionode’s functionalities while 

implanted in freely behaving mice supports its capacity to serve as an implement for 

finding new electrophysiological information about neuromuscular disease mechanisms. 

Two possible applications for this novel instrumentation are presently underway, which 

examine bioelectric markers of CMT and ALS. However, this system can be feasibly 

adapted for dozens of interesting electrophysiological studies. This work has resulted in 
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the collection of CMAP waveforms as well as voluntary muscle and nerve activity from 

devices implanted chronically in mice, but other useful metrics such as NCV, single fiber 

EMG, and CNAPs could certainly be targeted as well through appropriate AFE 

configuration paired with clever electrode design and placement. 

An added benefit of having two recording channels is the capability to measure 

both the input to and output from muscles, which can degenerate for a variety of 

reasons in different neuromuscular disease models. This pairing of measurements might 

paint a more complete picture of disease progression by, as an example, allowing the 

user to identify which part of the neuromuscular system is affected first (nerve, 

neuromuscular junction, or muscle) and then monitor the temporal changes in each 

location relative to one another. This is yet another nod to the appreciable adaptability 

of the device, which implies that this work only scratches the surface of possible 

utilizations for longitudinal electrophysiology or behavioral monitoring in rodents. 

 



188 

 

1
8

8
 

CHAPTER 5. CONCLUSION 

This work describes the development of a fully wireless and implantable device 

capable of recording both spontaneous and stimulus evoked bioelectric activity in mice. 

These efforts are driven by a need for improved instrumentation to study the 

electrophysiological mechanism by which neuromuscular and motoneuron diseases 

manifest and progress in mouse models. The finished device, which is termed the 

Bionode, improves on current technologies outlined in Table 1.1 by offering more 

capabilities and better performance in a comparably small volume (less than 1 cm3). 

Moreover, the Bionode is designed for compatibility with a resonant cavity, which is the 

largest (by volume) reported WPT environment for rodents. 

One of the early efforts of this work explores the feasibility of far field RF power 

transfer to bioelectric sensors embedded in tissue. The theoretical and numerical 

analyses of the power link budget between an electromagnetic field source and a 

receiving antenna inside mammalian tissue show conclusively that this WPT strategy is 

unsuitable for continuous operation of bioelectric sensors. This type of WPT link is more 

suitable for passive systems or those with much lower average power consumption that 

can leverage trickle charging and power cycling. 
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The Myonode—the precursor to the Bionode—serves to establish and debug build 

procedures, optimize the implant’s functional protocol, and fine-tune the AFE topology 

and configuration. The Myonode is limited by only a single channel of recording, but is 

able to collect voluntary evoked EMG from mice, including some interesting disease-

related aberrant muscle activity. The Myonode is also replicated and powered in an 

array for the purpose of relaying EMG for myoelectric-controlled prostheses. This offers 

some improvements to the versatility of wireless neural interfaces for upper-limb 

amputees. 

The design procedures for both the Myonode and Bionode are predicated on the 

assumption that CMOS design and fabrication are not suitable for the development 

phase of new instrumentation. This is especially true considering the evolution of the 

WPT strategy in parallel with the evolution of the implantable device, which brings with 

it a handful of unanticipated issues. The dozen PCB design iterations used in this work is 

the best evidence in support of the decision to avoid an ASIC implementation until the 

system’s topology is solidified. The use of only commercially available ICs and passives 

to build the Bionode did greatly improve yield and reliability compared to the CMOS 

tape-out described in Chapter 3. The end result is a batteryless implant which is capable 

of one channel of stimulating, two channels of recording, thermal sensing, and 

bidirectional telemetry. It is possible at this point to consider the benefits of condensing 

large blocks of this system on CMOS in order to further miniaturize and improve the 

efficiency of the end product. 
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A few limitations of the Bionode should be noted. First, owing to its volume and 

mass, there is a limitation on the size of the mouse in which the device can be implanted. 

An estimate of this limitation can be inferred from the reported device volume to 

minimum mouse size reported in Table 1.1.Being approximately 1 cm3, the Bionode may 

be theoretically placed in animals as small as about 16 g. This does preclude the study of 

some neuromuscular diseases with prominent musclular atrophy or reduced body mass, 

but it should be suitable for most adult mice without such severe degenerative 

phenotypes. Second, the rate of data lost from fully wireless powering and 

communication will never be better than what one can expected from a tethered setup. 

The combination of powering and data fidelity—both of which are less than 100%—

means that some data will invariably be lost when using the Bionode in an animal within 

the WPT environment. This should not pose a serious problem unless extremely rare, 

transient behaviors are the target. This particular scenario has been anticipated and 

partially addressed by the construction of a smaller testing environment (mouse wheel) 

placed in the optimal position within the cavity and close to the base station antenna.  

One of the things that makes this device such a powerful tool is the fact that it 

addresses with very little compromise the limitations of tethered headstages, wireless 

headstages, and battery powered implants all at the same time. The Bionode has been 

used to collect both voluntary and stimulus evoked bioelectric signals in freely behaving 

animals. It is the first fully implantable system to collect voluntary nerve activity and 

CMAP in mice and the first one capable of recording its own evoked potentials. Also, on 

account of it dual, high-bandwidth recording channels, it is the only implantable system 
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that can record both the input and the output of muscles, which might allow it to 

pinpoint important pathological information like disease origin and clocked, directional 

progression. 

This project’s criteria for success should be revisited at this point. Recall that the 

main objective is to create novel instrumentation for chronic electrophysiology that is 1) 

small enough to be fully implanted in a mouse, 2) given sufficient functionality to be 

used in a variety of electrophysiological experiments, 3) able to function in the living 

environment once implanted, and 4) compatible with a WPT environment that enables 

the continuous collection of bioelectric activity from freely behaving mice. The chronic 

animal experiments described in Chapter 4 serve as the final indication that each of 

these criteria has been fulfilled. Furthermore, the applications of this novel 

instrumentation to the study of neuromuscular and motoneuron diseases underscores 

its immediate utility within the scientific community and newly supported capabilities 

for future experiments.  
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