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A Circuit Layout Methodology Incorporating Machine Learning
Abstract

We describe the use of a form of machine learning which makes efficient use of time and 
computing resources for developing and optimizing a transistor level IC layout. Our learning 
system abstracts new knowledge from examples it is provided and incorporates this new 
knowledge into a generalized solution graph. This generalized solution graph contains informa­
tion about layout topologies known to the system.
L Introduction

The process of determining a solution to a given circuit layout problem involves: a) 
acquiring knowledge from user-provided examples; b) partitioning the problem into sub-circuits 
for which layout solutions are already known; c) interacting with the system user in those areas 
of the problem for which layout solutions are not known; d) interconnecting the sub-layouts for 
which layout solutions are known to obtain a problem solution graph; and e) mapping the gen­
eralized problem solution graph into a specific technology or application.

To learn, examples are generalized and combined to form a single "Generalized Solution 
Graph" which contains the known topologies for laying out circuits. This generalization allows 
a the graph to be used for circuits which share the same schematic but differ in external connec­
tions.

To partition a problem circuit, the generalized solution graph is compared to the problem 
circuit to find a largest common sub-circuit; this becomes the first partition and its layout is 
already known. The remainder of the problem circuit is a smaller layout problem and is solved 
by recursively subdividing in a similar manner, until either all of the problem circuit’s elements 
have been assigned to a partition or until only elements that cannot be assigned to a partition 
remain. The only elements which will not be assigned to a partition are those that the system 
has not been taught in the examples and the user must be consulted for examples containing 
these elements if the system is to complete the partition.

If the result of the partitioning is only one partition, then a layout for the entire circuit is 
known and is called the "Problem Solution Graph." In the case of a single partition, elements in 
the generalized solution graph which are not in the problem circuit are deleted, leaving the 
problem solution graph. Otherwise, the multiple partitions represent the pieces that will be con­
nected to derive a problem solution graph. As in the case of a single partition, the elements in 
the generalized solution graph which are not in a partition are deleted, leaving a partition layout
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graph for that partition. A layout graph for each partition is determined and these pieces are 
then placed and interconnected. One way to accomplish this is to place and connect the pair of 
partitions that have the greatest number of interconnections between them. This process 
reduces the number of partitions by one and can be recursively applied until only one partition 
remains. The graph for the single partition is a derived problem solution graph.

The effort required by the proposed system to solve a particular problem is directly related 
to the "similarity" of the problem to the user-provided examples and problems it has solved suc­
cessfully. Considerable similarity implies solutions involving minor alterations of the user’s 
examples can be rapidly found. Little similarity causes layouts of relatively small subsets of the 
known circuits to form the units that must be positioned and interconnected.

This methodology has the potential to become the "next generation" circuit-level standard 
cell implementation technique. Current standard cell techniques rely on a limited library of 
gate-level cell libraries to implement a design. The proposed methodology leams to lay out cir­
cuits from past examples and it adds new knowledge to the database whenever a problem which 
has not been solved previously is encountered; thus the database of a known circuit layout solu­
tion grows as the system solves more problems. Floorplanning and interconnection of the sub- 
circuits is example-driven and can be easily biased to favor particular layout styles or technolo­
gies.
H. LearningSystem

We can define a learning system as a system which can solve the same problem "better" 
the second time it is presented the problem. "Better" can be taken to mean the solution is better 
or the time taken to produce the answer is shorter while producing an answer of equal or better 
quality. We have designed our system to meet both of these conditions; if a new solution is 
known and judged to be satisfactory, producing it a second time consumes less time. In order to 
get a better solution a learning system requires feedback on the quality of the solutions it pro­
duces. Without some evaluation of its results, it has no guide for improvements. The process of 
critiquing a layout problem is beyond the scope of this paper, but this task can be performed by 
a layout expert, aided by circuit simulation and/or device processing considerations. We will 
assume that a critique system is available and that at the very least, "bad" or problem areas of 
the layout produced by our system can be identified.
LU. Problem Formulation

One method of looking at the problem of IC layout is to consider it to be a mapping of a 
set of input parameters into a function to get a solution. This mapping may be described by the 
following:
A. PointtoPointM apping

In this scheme, the functional description consists of describing each valid input condition 
and associating a solution to each of these inputs. As an example, consider the following 
definition of a function:
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Valid inputs: CMOS circuits consisting of circuits for which a "good" layout is known.
Functional mapping: Associate a known layout with the given input circuit.

A disadvantage to this method of describing a functional mapping is that it consumes a 
large amount of memory. Since knowledge about each particular solution must be retained, 
considerable redundant information may be included in the knowledge-base; for example, a 
"good" layout may contain a "good" solution or "good" relative placement for a sub-problem, 
but no facilities are defined to access this information. If the layout for that sub-problem is 
known, the associated layout will be maintained elsewhere. An additional disadvantage is the 
problem of classifying the input Once the input has been classified, the process of determining 
a solution is trivial; this process can be implemented with a simple set of pointers from the 
inputs to the representation of the answers. Accessing an array of these pointers can be per­
formed in a fixed amount of time. However, if the description of a problem circuit has a form 
which permits multiple equivalent representations of the same circuit, determining the appropri­
ate index for the array of pointers can be difficult. Either time or memory efficiency must be 
sacrificed to select the correct pointer. Allowing each possible representation to access its own 
pointer permits the pointers array to become unmanageably large. The alternative is to perform 
transformations on an input to convert it to a single, recognizable form. Selecting a transforma­
tion is related in time complexity to the number of equivalent representations. Applying the 
transformation is related to the size of the representation. Either time or memory efficiency 
must be sacrificed to select the correct pointer.

B. CompleteGeneralization
This technique involves defining how the solution can be determined for the entire set of 

valid inputs. As a numerical example, consider:
Valid inputs: x, a member of the set of all real numbers
Functional Mapping: 

f(x) = sin (x)
An advantage to this method of description is that the memory space required is related to 

the programming necessary to compute the solutions and not the size of the solution space.
A disadvantage is that the time needed to solve a problem is usually related to the size of 

the input. An additional disadvantage is that a complete generalization may not produce the 
optimal solution to a problem and determining when this non-optimal performance will occur 
may be as complex as solving the problem itself. In the worst case, the solution must be 
obtained by computing and then evaluating the appropriateness of the answer. This results in a 
time complexity to determine appropriateness which is of the same order as the problem itself!

From the learning system standpoint, this approach is difficult to modify because: I) the 
learning portion of the system must contain an understanding of why the algorithm or computa­
tion is performed in the manner that it is used, and 2) the learning system must know how the 
algorithm can be changed and what changes to make.
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C. Partial Generalization
This technique is a middle-ground between the two description techniques examined 

above. The set of valid inputs is divided into subsets and a complete generalization is associ­
ated with each of these subsets. For example:

Valid inputs: x, a member of the set of all real numbers 
Functional mapping:

F(x) = 0 fo rallxcO  
F(x) = I for all x >= 0

This partial generalization partitions the set of all real numbers into two disjoint subsets 
and a mapping for each subset has been defined. A second example is:

Valid inputs: x, a member of the set {1 ,2, 3,4,5,6}
Functional mapping:

F(x) = x/2 for x a member of {2,4, 6}
F(x) = (x+l)/2 for x a member of {1 ,3,5}

Matching a candidate problem to a valid input is generally simple, since it involves a sub­
set operation rather than an exact match. In the first example above, the matching problem is a 
simple comparison. In the second example, the matching problem consists of determining 
membership in one of the two sets. If the sets can be ordered with a heap, this membership 
determination can be performed with a worst case time complexity proportional to the log of the 
size of the set. Using a hashing function technique [1], the expected time complexity is a con­
stant independent of the set size.
IV. Past Approaches using Partial Generalization

Several algorithmic and rule-based approaches to automated layout generation which have 
been proposed to date use a "top-down" approach to partial generalization, as exemplified in 
references [3,14]. These approaches are very efficient at solving a particular subset of prob­
lems, such as CMOS layout and logic which can be described exclusively by boolean equations. 
In some cases, these algorithms will guarantee an optimal solution. They are limited, however, 
in that revisions or even minor alterations in layout priorities may involve drastic changes to the 
basic algorithms. Furthermore, due to the complexity of the algorithms, a designer may not 
have sufficient algorithm generation expertise to alter the algorithm. As technology changes, 
the development of new algorithms becomes a necessity; however, developing these new algo­
rithms is difficult and time consuming.

The expert system approach, as presented in references [5,8,13,15] uses rules defined by an 
"expert" to guide the solution search process. It offers solutions to a much wider range of prob­
lems than the algorithmic approach. The trade-off for this broader scope is that an optimal solu­
tion is not always guaranteed. Anotherdifficulty is that to revise the priorities of the search pro­
cess, the set of rules must be revised. As in the algorithmic approach, a designer may not be 
particularly knowledgeable in the techniques for rule revision. The difficulty of interfacing the
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designer’s knowledge with the rule-revisor’s needs is demonstrated by the efforts that have been 
expended just defining how an expert (in this case a designer) should be questioned.
V. OurMethodology

We have chosen a "bottom-up" approach to developing generalizations. "Learning" in this 
methodology involves recognizing similarities. The level of machine learning used by this 
methodology is more sophisticated than rote memorization. A system which just memorizes the 
examples and reproduces them when a problem matches an example’s circuit is little more than 
a solution recording and retrieval system. Our approach allows a large class of problems to be 
solved by matching similar parts of the problem to good solutions contained within the exam­
ples. The result of this process is that problems containing the same circuit elements as the 
examples can be solved and the quality of the resulting solutions is related to the similarity of 
the examples (as summarized in the generalized solution graph) and the problem circuit. A 
basis for our generalization process is contained in references [4,6,11]. The use of searching for 
a solution by starting from the largest common subset is an extension of the concepts contained 
in references [5,8,13,15].

Determining if a problem is a subset of the known layout solutions can be a computation­
ally expensive task. If a technique for defining a circuit can be defined which permits only a 
single, unique way to represent a circuit (such as a canonical form), then a symbol can be asso­
ciated with the circuit and the membership determination can be performed by hashing, as 
described in [1], with an expected case time complexity directly proportional to the number of 
elements in the problem circuit. If a unique representation is not defined, then the problem 
becomes a sub-graph isomorphism determination. Solving isomorphism with association 
graphs and clique-finding is described in [2]. These algorithms have a time complexity of at 
least the square of the number of problem circuit elements.

Before we can use a knowledge-based system, we must define the information we wish to 
operate upon and define how that information will be represented. In a layout, the positional 
information is of primary importance. This includes the positioning of the devices relative to 
each other, significant features of the connecting paths, and the size of the devices in relation to 
each other. The actual size of the various components may be dependent on the process used to 
fabricate the circuit and may not directly affect the choice of layouts. In the ideal case, the lay­
out should be scalable to be of use for a variety of fabrication processes. Based on these con­
siderations, we have chosen to represent the knowledge in the system with the following ele­
ments:

Devices - These elements represent the primitive units used to define the circuit. Hie 
primitive units can be transistors, resistors, capacitors, diodes, etc. or they can be combinations 
of transistors, capacitors, etc. which will be placed as a unit. As such, the information needed 
are the dimensions of the unit and the location of its terminals. Since we wish to be able to 
scale the layout, its dimensions need to be specified relative to some standard. Such a standard 
can be set equal to the minimum-sized feature of a process, and all dimensions can be 
represented as some multiple of that minimum size.
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Junctions - The most significant positional information about an interconnection is the 
number and location of intersections it contains. Since comers and level changes can be con­
sidered the intersection of two paths, we treat them as junctions also. All junctions have a 
minimum area and are defined by the interconnect they join.

Expandable Connectors - These represent the straight line connections between devices 
and junctions. Their significant feature is length. Other parameters, such as width, thickness, 
etc. are functions of the fabrication process, location on the chip, or the circuit in which they are 
used. This means that resistors in an analog circuit layout must be treated as devices rather than 
interconnect. It also implies that length to width ratios for interconnect lines is not considered.
VL AnExampleofOurMethodology

The first step in using a knowledge-base is to provide it an example of a layout. We will 
use the circuit in Figure I to demonstrate the process. Figure 2a shows a corresponding layout. 
The layout graph, in Figure 2b represents a minimal generalization of this layout, and is 
developed by identifying the devices, junctions, and straight interconnect runs in the layout and 
replacing them with the corresponding symbol. If we consider half the width of the minimum- 
width active area runs as a smallest feature size, then all transistor elements except one have a 
width of 6 units and a length of 6 units. Minimum-sized metal to metal junctions measure 4 
units wide by 4 units long. The other devices and junctions can be defined in a similar fashion. 
A straight interconnect is abstracted into a variable length expandable connection.

The sample layout can actually be connected to other circuits in more ways than those sup­
plied by the sample. Each active area, polysilicon, or metal junction can have connections to 
each of their four sides and contact windows can have as many as eight connections. Figure 3 , 
which shows the additional connections, is called a generalized solution graph and can be used 
to derive circuits with differing external connections.

Now that we have a knowledge-base, we can begin to solve problems. Consider the circuit 
in Figure 4. We will use the established knowledge-base to attempt a layout of this problem. 
To do this, we compare the problem circuit to the generalized solution graph. If we find a 
match, then no layout needs to be determined - we just need to apply the parameters of the 
fabrication process to determine the specific locations and sizing of the various components. If 
as in this case, we do not find a complete match, we must derive a layout. To derive a layout, 
we consider the portions of the problem circuit for which we already know a layout Figure 5a 
shows the largest sub-circuit for which we already know a layout. The unmatched portion of 
the problem circuit, shown in Figure 5b, is again compared to the knowledge-base to find lay­
outs for the remainder of the circuit. In this case, the database contains a layout for the 
remainder of the circuit; thus our problem becomes merely one of positioning and interconnect­
ing these two sub-layouts. The placement and interconnection of the two sub-layouts we have 
chosen is simple, and can be performed by conventional placement and routing algorithms or by 
a knowledge-based scheme. The two sub-graphs to be connected are shown in Figure 6. The 
resulting problem solution graph is shown in Figure 7.
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The next step of the methodology involves the elimination of unnecessary external connec­
tions and the application of process specific parameters to obtain a specific solution. The result 
of this process for a particular set of external connections is shown in Figure 8.

The final step is to include the information gained by solving this problem into the data­
base. If the derived solution is judged to be satisfactory, then it becomes an example to be 
incorporated. If deficiencies in the solution are identified, then the improved solution is incor­
porated into the database. A layout compaction tool could be applied to the derived layout, and 
would supplement the critique process. When compaction is applied to the example layout, a 
smaller-area layout results, as shown in Figure 9a. It is very similar to the derived layout and 
the differences, which correspond to improvements, can be provided as a critique to the system. 
This critique is generalized into a problem solution graph, shown in Figure 9b, for incorporation 
into the database.

When incorporating the new information into the database, we search for the largest set of 
elements which have the same positional relationships in both the generalized solution and 
problem layout graphs. The parts of the problem solution graph which are not in this common 
sub-graph are added to the database graph. If adding these parts uses the same connection 
points on a junction, device, or expandable connector, then the parts are added as an "or" option. 
This signifies that only one of the parts could appear in a layout. The largest sub-graph com­
mon to the example problem and critique is shown in Figure 10. The results of including the 
critique’s features are shown in the expanded generalized solution graph in Figure 11. Note that 
the "or" branches reside in overlapping positions. Some of the expandable connectors in the 
figure have been "bent" to add readability to the picture and these bent connectors are the parts 
of the critique which were not contained in the largest common sub-graph.
VIL Evaluation of the Solution Layout

The layout produced by our system is near-optimal. The transistor controlled by signal L 
could be moved in and the active area to metal connection at the top could be rotated to produce 
a slightly smaller layout, as shown in Figure 9. These changes could be performed by existing 
compaction techniques. The positioning of the transistor is a function of the partitioning pro­
cess. If we had chosen to partition by another criteria, such as fewest number of partitions 
rather than largest partitions, the positioning of this transistor could have been different, con­
nection, allowing this to be used in future layouts.

Our system incorporates learning as part of its make-up and performs it automatically. A 
reasonable question to ask is why we would want to have a system solve the same problem 
again? The answer is two-fold: I) multiple users could use the same system, and without com­
munications between them, effort could be spent by both of them solving the same problem; 2) 
the developed layout could comprise a large portion of a larger problem to be solved at another 
time. Re-deriving this layout is unnecessary if the knowledge can be retained.
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VIIL QuaIityofResults
This knowledge-based system derives its answers from the samples it is provided. There­

fore, the quality of its solutions is dependent on the infoimation it is provided. If the samples 
provided are "poor" then the solutions it produces will generally be poor, since the solutions 
will be either generalizations of the samples or generalizations of parts of the samples. On the 
other hand, if the samples are of "excellent" layouts, then parts of these excellent layouts will be 
used to derive layouts which are not already known.

The use of parts of the layout examples can be compared to a standard cell system. The 
"sub-layouts" which this methodology employs are defined by the generalized solution graph. 
This "library" of sub-layouts can be expanded whenever our system is supplied a sample or a 
problem (for which it does not already know a layout). Since the interconnection of the sub- 
layouts is not limited to routing areas and sub-layout placement is not limited to specific loca­
tions, the knowledge-based approach will produce layouts which more closely approach custom 
"hand-crafted" designs. Once a successful layout for a problem has been derived, the time 
necessary to reproduce that circuit layout is unnecessary - knowledge of that layout is retained. 
If a problem circuit contains a large subcircuit for which a layout is known, that layout may be 
selected as one of the sub-layouts and the computational complexity is related to connecting 
sub-layouts, rather than placing and interconnecting all of the individual devices. By com­
parison, a standard cell system re-detives the same solution if it is used to solve the same prob­
lem a second time.
IX. LimitationsofMethodology

Computationally, the hardest task in this methodology is sub-graph isomorphism. A time 
complexity of at least the square of the size of the graphs to be compared may seriously limit 
the maximum size of the database. By incorporating all of the knowledge into a single general­
ized solution graph, we have reduced the number of isomorphism determinations that must be 
made. The trade-off is that the generalized solution graph could become very large. We argue 
that, although the sub-graph isomorphism algorithms do not perform well on large problems, 
eliminating the examination of redundant information more than makes up for their poor perfor­
mance in a large graph.

Partitioning of a previously unsolved layout is heavily dependent on the process which 
selects the sub-layouts. There is no guarantee that the sub-layouts selected from outstanding 
samples can be combined to produce an optimum layout. Heuristically, good layouts should be 
composed of good sub-layouts and choosing good sub-layouts as a starting point should lead to 
an acceptable solution if the heuristic is valid.

Similarity between the generalized solution graph and problem circuits directly affects the 
size and number of sub-layouts which are considered for connection to produce a solution. If 
the generalized solution graph contains only small subcircuits common to the problem circuit, 
then the size of the sub-layouts which can be chosen is small and the number of these sub­
layouts which must be connected is large. If the generalized solution graph contains a large 
subcircuit which is common to the problem circuit, then the layout of the subcircuit can be
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considered for inclusion in the sub-layouts used to derive a solution.
The derivation of a solution is admissible (a solution can be eventually found) if the sam­

ples contain the same types of devices and a complete set of the connection primitives. How­
ever, in the worst case, derivation will consist of placing and routing individual devices and the 
knowledge-based approach guarantees neither the most efficient layout nor reasonable time 
complexity. This case implies the samples provide only the most minimal information on lay­
out, which is (hopefully) not a common event. This lack of information also handicaps the 
other approaches also; if little is known, applicability of a particular algorithm is unknown and 
few rales can be defined for an expert system based approach.

X. Conclusions
Use of a learning system implies the system’s performance improves with experience. 

With few good examples to draw upon, the scope and quality of the solutions produced will be 
limited. If the examples do not contain the minimum information necessary to solve the prob­
lem, then a solution derivation may not be possible. However, as experience is gained, the 
quality and time needed to solve a problem will decrease. With enough information, the perfor­
mance of a learning system will exceed that of either the algorithm based or expert system 
approaches.

The rate of improvement of our learning system is directly tied to the quality of the cri­
tique of solutions. Minimal feedback on solution quality will limit changes in how problems 
are solved. Suggestions for a "better" layout cause the changes in how a problem is solved, so 
improvement is directly related to the quality an applicability of the critique.

Our learning system incorporates changes much more easily than the algorithmic or expert 
system approaches. The user communicates with the knowledge-base by means of examples 
which should be familiar to the user and within his realm of expertise. Distilling the important 
information out of these examples, such as relative placement and significant features of the 
interconnections, is the task of the system, not the user.

Re-derivation of a solution is not necessary with this methodology. The ability to retain 
the results of a solution search is included to ensure solving redundant problems consumes little 
more that the resources necessary to recognize that redundancy. Experience gained individually 
by multiple users of the same system is available to all.
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