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Abstract

A matrix relationship connecting the Jacobi and the SSOR matrices associated

with a k·cyclic consistently ordered matrix A is presented.. Next the equivalence of the

SSOR method and a certain monoparametric k-srep one for the solution of the linear

algebraic system Ax::;: b is established. The aforementioned. equivalence can be

exploited to derive regions of convergence. optimum parameters involved, etc. of the

two iterative methods above. This is done by studying the simplest of the two methods

that is the monoparametric k·step one. To show how the idea works the case k = 2 is

very briefly discussed.

1980 Malhcmatics Subject Classifications AMS (MOS): Primary 65FlO. C.R. C:J.Legories: 5.14
* Dcparunenl of Mathematics, UniversilY of Ioannina, GR-451 10 Ioanninll, Greece.
+ Visiting, Depanmcnl of Computer Science, Purdue University, West Lafayeue, Indiana
47907. (The work of these two authors was supported in pan by NSF GmnL CCR-8619817.)



1. Introduction

Let

A =1 - T (1.1)

where I is the n x n writ matrix and Tecr:n,n a weakly k-cyclic consistently ordered
(c.o.) (cf. [IOJ, [14] or [2] ) one of the fonn

0 0 0 0 Tu
T21 0 0 0 0

0 Tn 0 0 0

T := (1.2)

and write

o
o

o
o

o
o

T:=L+U ,

o 0
TU - 1 0

0.3)

where L and U are strictly lower and strictly upper (block) triangular matrices. Fonn

then the corresponding block Symmetric Successive Overrelaxation (SSOR) matrix

associated with A as

where

L", = (I - roL)-l ~I ~ ro) I + roU ]

U'" = (I - roUr' [0 -ro) I + roL ]

(1.4)

(1.5a)

(1.5b)

It is known that the sets of the eigenvalues JlE cr(T) (the spectrum of 1") and

o¢:. AE a(S ill) are connected through the relationship

(2 - ro)' rok Jlk[A. + (I - ro)]k-2 A. = [A. - (I - ro)2J' (1.6)

(see [II] and [4]). So, our main objective in this paper is to show that the matrix

analogoe of (1.6) also holds, namely

(2 - ro)2 rok T k [5", + 0 - ro)l]k-2 5", = [5", - (I - ro)2l]k. (1.7)
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The idea of deriving matrix analogues from relationships connecting the eigen

values of the Jacobi and the SOR (l.Sa) matrices for k-cyclic c.o. ones goes back to

Young and Kincaid [15] who dealt with the case k = 2 (cf. [13]). Recently, Galanis,

Hadjidimos and Noutsos [2] have exte·nded the previous result to any k ~ 2, (cf. [2] )

and then in [3] to the case of the (k - 1,1)- generalized c.o. matrices (cf. [12] , [7] or

[14] ).

The proof of the identity (1.7) and the background material for it will be given in

Section 2. The exploitation of (1.7) to show that for the solution of the system

x :;:;; Tx + b the SSOR method is equivalent to a certain monoparamenic k-step one is

discussed in Section 3. The consequences of the aforementioned equivalence with

regard to the determination of regions of convergence, optimal parameters etc. is the
main topic of a forthcoming paper. Here, in Section 4, we restrict ourselves to applying
the theory developed to the case k = 2.

2. The Relationship (2 - 0l)2 Olk Tk [S" + (1- Ol)l]k-2 S" = [S" - (1- 0l)21]k

The statement of our main result is as follows:

THEOREM: Let T, in (1.2), be the block Jacobi matrix, which is k-cyclic and

consisteatly ordered (c.o.), and S", in (1.4) - (1.5), be the associated SSOR matrix.

Then for any OlE Q;', T and S" satisfy the functional relationship (1.7).-

To proceed on to the proof of the Theorem some special cases have to be exam
ined first and some background material has to be developed.

Remark 1: First we observe that for ro = 0 and 2 (1.7) is trivially satisfied. Next
for Ol = I, (1.7) becomes

T' sf-1 = sf . (2.1)

From the special forms of T in (1.2) - (1.3) we have

uj = 0, j > I, Lj = 0, j > k - I, ULjU = 0, j < k - I

Consequently

T' S 1 = (L + U)' (I - U)-1 L(I - Lr1 U =

k-l k-l
= ( :E L' U L '-1-' )(l + U) L ( :E L ') U =

i=O i=l

k-l k-l
= ( :E L' U L '-1-' )( :E L' U + U L '-1 U ) =

i=O i=l
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,-1
=:E L' UL·-1 U+UL·-1 UL·-1 U

i=l

and

,-1
Sf = ( :E L i U + U Lk-l U)2 =

i=l

,-1
=:E L i UL·-1 U+UL·-1 UL·-1 U

i=l

from which (2.1) follows. So we restrict to roe (f \ (O, 1, 2).-

Since the analysis leading to the proof of the Theorem will he based on elementary

graph theory, as this was done in [3], we adopt some simplifications in Ihe notations to
facilitate our study. Thus:

Remark 2: IT in (1.7) instead of S" we had S'" = L" U" the analysis would be
much easier. That (1.7) can be recovered from

(2 - ro)2 ro< T' [S'" + (1 - ro)I]·-2 S'" = [S'" - (1 - ro)21]' (2.2)

is proven by using the matrix U" (1.5b) and simple similarity ttansformarions. (2.2)

becomes

(2 - ro)2 rot U" T' [S'" + (I - ro)I]·-2 S'" U;;,' = U"[S',, - (I - ro)21]' U;;,'

or equivalently

(2 _ro)2 rot U" T' U;;,' [S" + (l-ro)I]'-2 S" = [S" - (l-ro)21]' (2.3)

In view of the known identity

rok Tk U" = [U" + (ro - l)l)'

(cf. [2] and [3] ) one has

rot T k = [U" + (ro - l)l]k U;;,' = U;;,' [U" + (ro - 1)1)'

or

rok U" T' = [U" + (ro - l)l]k ,

meaning that

(2.4)

Using (2.4) into (2.3), (1.7) follows.-

The material needed from graph theory is very elementary. Thus we consider the

graph G (X) of a block matrix X to be defined in the usual way (cf. Varga [10] and



- 4-

Harary [6] ) and adopt the notations

T=roT,L=roL, U=roU

In G (i'), for a given i = 2 (I) k, we have

t
V (i, j) = (i, i-I) as in Figure I
j=l

(2.5)

I
I: •

while for i = 1

2• i-I i--.....
Figare 1

t
V (i, j) = (I, k) as in Figure 2
j=l

k-I• k•

II:
2•

i-I

•
1

•
k-I

•
k

U

Figare 2

In the case of a type II edge we shall say that we have a "folding" (edge). Edges of

type I are associate with the matrix l while those of type U with D, Consequently

..... k ..... ..............
G(L) = V (i, i-I), G(U) =(I, k), G(T) =G(L) V G(U)

i=2
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Obviously G{'fk) consists of oniy one cycle (closed path from any node to itself) of

length k. This cycle contains preciseiy one folding.

Here we consider the •'multipl~-arrowed" paths that is paths associated with

nonidentically zero products of l and fj matrix factors having different scalar
~

coefficients. More specifically: A path Pi Pj will be considered as a single-, double- or
-+ -+ -+-+ -+-+ -+-+-+

triple-arrowed path and will be denoted by (I, J) or Pi Pj , (i, j) or (Pi Pj) or ( I, j ) or
~-~

(Pi Pj ), iff it is associated with a product of the aforementioned form whose scalar

coefficient is (I - 00)(2 - 00), (2 - 00) or (I - 00)2 respectively.

Let us now examine how G (S' 0) is derived. It is

S'm = £0) U (/J = (I - 'ir! [(1 - m)! + U](f - uri ((1 - w)/ +L] =
--2 _t_l __= (l+L+L + +L )[(I-Ol)l+(2-Ol)U][(I-Ol)/+L]~

~ (I +l+l' + +l'-')[(I-Ol)'1 + (I-Ol)[ + (I-Ol)(2-Ol)U + (2-Ol)U[] =(2.6)

= (1 - (0)21 + (1 - m)(2 _ (0)(£ + £2 + ... + .rl:-l) +
- -2 -.t-I - _ _.1::_1 __

+ (1 - m)(2 - 00)(1 + L + L + ... + L )U + (2 - ro)(J + L + ... + L )UL .

(2.6) gives

k -+-+-+ i-I -+ -+ -+-+
G(S'",) = U [( i,1 ) u (U (i, j)) U (i, k) U (I, k-l)] (2.7)

i=l j=l

~

where (I, 0) ="'. The subgraph of G (S'",) which contains the edges whose origin is

the node i is illustrated in Figure 3. We notice that in view of (2.6) and (2.7)

2• i-I.....~
Figure 3

1 k-I k

4L. ----
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5'" - (I - ro)21 = (I - ro)(2 _ ro)([ + [2 + ... + [H) +

- -2 _.1:;_1 _ _ -2 -k-1 -_
+(I-oo)(2-oo)(I+L+L + ... +L )U+(2-.»(I+L+L + ... +L jUL (2.8)

and

k j -1 --+ --+ --Jo-+
G (5'" - (I - ro)21) = u[( U (i, l))U(i, k)U(i, k-I)] (2.9)

i=l j=l

Its subgraph corresponding to the previous i is illustrated in Figure 4. In the same way

we have that

2• i-I

•
k-I k

~ . -----

Figure 4

5'" + (l-ro)l = (l-ro)(2-ro)(1 +[ +[2 + ... +[H) +

- -2+(I-ro)(2-ro)(1+L+L + ... + (2.10)

+ [k-I)V + (2 - ro)(l + [ + [2 + ... + [H)V[

and

k j --+ --+ --+--+
G (5'" + (I - ro)1) = U [( U (i, 1)) U(i, k) u (i, k-I)] (2.11)

i=l j=l

whose subgraph corresponding to the same i is illustrated in Figure 5.
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i-I.---- 1 k-I k

~. ----
Figure 5

To be able to go on with our analysis we ddefine the matrices

B := [S'", - (I - ro)2I]k , C := (2 - ro)2 fk [S'", + (I - ro)I]k-2 S'", . (2.12)

Our main effon will be put in the sratement and proof of the following two lemmas

from which the proof of the Theorem is immediately obtainedd.

Lemma 1: Let G(B) and G(C) be the graphs of the k x k block matrices defined

in (2.12). If in G (B) there exists a path from i to j containing m + I foldings then

there exists an identical path in G (C) and vice versa

Proof: The present lemma can be proved in a way quite analogous to the one in

the first part of Lemma 4 in [3], where a similar case is [feated. So, to avoid duplica·

tion we refer the interested. reader to the reference just given.-

Lemma 2: Consider the expansions of B and C in (2.12) in terms of products of

L and fi by using (2.5), (2.6), (2.8) and (2.10). Then the path in Lemma I comes from

the graphs of identical terms of B and C whose scalar coefficients (s.co's), after all like

terms are summed up. are identical products of integer numbers and powers of (1 - 00)

and (2 - ro).

Proof: Assume that there exists a path from i to j conraining m + 1 foldings.

identically the same, in both graphs G (B) and G (C). This path corresponds to the



- 8 -

matrix proddllct

li-I fj lk-I fj lk-I ... fj lk-j (2.13)

(2.14)

which contains m+ I irs. We compare the s.c.'s of (2.13) in both matrices in (2.12).

By considering three cases:

Case I: j < k - I: We begin with the matrix B. It is noted that anyone of the

possible paths connecting i with j and containing m + 1 foldings is a sequence of k

paths of G (5'" - (I - OJ )21). Let r be all the nodes which are passed on the way from i

to j after m + 1 foldIngs not counting i. It is checked that r = k(m + 1) + i - j. The

m + 1 foldIngs are taken from the single-arrowed foldIngs endIng at k or from the

double-arrowed foldIngs endIng at k - 1 (see (2.7)). Let m2 be the number of the

d[O~b~-:=]wed foldIngs. Obviously the different paths with m + 1 foldIngs are

m 2 • The other k - m - 2 paths (in fact k - m - 1 except the last path ending at

the given J) will be taken as single-arrowed paths ending at t - m - 1 - m2 nodes (lba!

is r nod[~s:~e~~~e_~ +] 1 nodes k except the m2 nodes k - 1 and the node J). This

gives k _ m _ 2 different paths. After the previous obeservations and taking

into consideration the arrowed nature of all different paths we have that the s.c. of the
matrix in (2.13) will be

'0+1 [r -m - m2 - 2] [m + 1]
(2 - OJ)k 'O~ k _ m _ 2 m2 (1 - OJ)k~, .

Now we work in exactly the same ·way on the matrix C. The path which corresponds to

G(Tk) is a cycle connecting i with itself and containing one folding. The correspond

ing s.c. here is 1. Any path connecting i with j and containing now m foldings can be

obtained from k - 2 successive paths of G (5'" + (I - OJ)I) followed by one path of

G(S'0). All the nodes which are passed on the way from i to j after m foldings are

t - k. We have to distinguish two subcases: a) The last path corresponding to G (S'ro)

is not a triple-arrowed path: Let then m2 be the number of the double-arrowed fold-

ings. So the number of different paths is [::2]' Let p be the number of the single-

~

arrowed paths of the fonn U, I). From (2.12) these paths can be obtained from the

k - 1 - p nodes (k - 2 except the p paths plus the first node). The "distribution" of

the above p paths to k - 1 - p nodes can be made in as many ways as the number of

combinations with repetitions of k - 1 - P chosen p. This equals
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[ (k -1-p) +p - 1] [k - 2] .
P = p . Fmally the k - 1 - P - m - 1 single-arrowed

(2.16)

(2.17)

paths (the above k - 1 - P paths except the m foldings, which are given, and the first

node i) will be obtained from the t - k - m - m2 - 1 nodes (t - k nodes except the m

nodes k except the m2 nodes k - 1 except the last node which corresponds to G (5'OJ)).

This gives [t --:_-:_-pm~2- 1 ] different paths. By combining the results so far and

having always in mind the arrowed nature of the paths involved the s.c. of (2.13)

corresponding to the present subcase is

(2 _ ro)2 ~ k-~m, [t -:_:_~~22- 1] [k; 2] [::2] (2 _ ro)k-t (1 _ ro)'-I~,
mz=O p=O

= (2 _ ro),+1 ; [ t - m - m2 - 3] [ m ] (1 _ ro)'-I-m,. (2.15)
.... k-m-p-2 m2

mrO

b) The last path corresponding to 'G(S'",) is a triple-arrowed one: The previous

analysis is applied with the difference that p = O(l)k - m - 3. (In fact k - m - 2

except the path ending at the last node J). Hence the s.c. is given by

m [ t - m - m2 - 3] [m ]
(2 - ro)k m~ k _ m _ 3 m2 (1 - ro)k-m,

Obviously the s.c. in (2.13) is the sum of the two quantities in (2.15) and (2.16) which

after a lenglhy manipulation involving properties of sums and combinatorics can be

proved it is equal to the quantity _in (2.14). This concludes the proof of the lemma in

this case.
....

Case IT: j = k - 1: a) If we assume that the last path is of the form (k, k-1)

then the theory of the previous Case I applies and gives the s.c. (2.14) for (2.13) for

both matrices Band C. b) If the last path is a double-arrowed folding then the previous

theory applies. The only difference is that in (2.14) m foldings are considered instead

of m + 1. This is because the last folding is given. However, the nodes at which a

folding ends can be taken as being m + 1. Thus (2.14) gives

m [t-m-m2-2] [m]
(2 - ro)k m~=o k _ m _ 1 m2 (I - ro/-

m
,-1 .

Of course the s.c. of (2.13) in both matrices B and C is the sum of the two expressions

in (2.14) and (2.17).
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Case ill: i = k: In this case the last path is a single-arrowed folding and the pre
vious analysis holds with m replacing m + 1. Thus. from (2.14) the s.c. of (2.13) in

both matrices B and C is given by

k m [ , - m - m2 - I ]
(2-00) L k-m-I

m,=O

TIlls concludes the proof of the present lemma.

We come now to the proof of the Theorem

PROOF OF THE THEOREM: Lemmas I and 2 effectively prove that B ~ C in

(2.12) or equivalently that (2.2) holds for any 0lE<J:\ (O. I, 2). However, as was

proved in Remark 2, (2.2) is equivalent to (1.7) except perhaps for 00 ~ 1. Since this is

covered by Remark I the validity of (1.7) is established and the Theorem is proved.-

3. Equivalence of the SSOR to a Monoparametric k-Step Method.

To show that the SSOR method

:c(m) ~S.,:c(m-l) +00(2-00)([ -oour' ([ -ooLr' b (3.1)

used for the solution of (I - T)x = b, is equivalent to a cenain monparametric k-step

method we proceed in a way analogous to that in [2] and [3J. Let then :c(m-k) be the

(m - k)'" iteration of (3.1) with m ~ 1,2, .... From (1.7) we have

[S", - (I - 00)2l]k :c(m-k) ~ (2 - 00)200kT k [S w + (I - 00)l]k-2 S .,:c(m-k)

or equivalently

± [k] (-I)i (I _ 00)2j s~-j :c(m-k) ~
.~ J
J-v

~ (2 - 00)2 00kTk L [k ~ 2] (I _ oo)i S~-I-j :c(m-k)
.~ J

J"V

(3.2)

By successively applying (3.1) it can be obtained that

Si.:c (m-k) ~:c (m-k+j) - 00(2 - 00) [ji! Sf" ] (I - ooUr1(I - ooL)-1 b
p=O

Substituting into (3.2) we take after some manipulation

x(m) ~ :~: (I - oo)i-l [[ ~=~](2 _ oo)'rokTk + [~ ] (00- l)i+lI] x(m-j) +
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+00(2-00) [1: [;] HY(I-00)2j [ kt' Sf.]-
J=O p=fJ

- ki [k~2] (I _ roy (2 _ 00)2 ookTk [ kt
2

Sf. ] ] (I _ooUr
'

(I .. ooL)-l b
)=0 J p=O

The constant term of the right hand side above can be simplified after some algebra

takes place and under the assumption I f; (J (T k ). The scheme obtained is the following

x(m) = :f (I - ooy-1 [[;=n(2 - 00)2ookT k + [; ] (00- Iy+1 I ]x<m-j ) +

[

k-1 ] (3.3)
+ (_l)k+1 (I - oo)2kx(m-k) + ook(2 - oo)k j~ Tj b, m = I, 2, 3, ... ,

where X(j)E ([", j = 0(-1) - k + I arbitrary.

In the sense explained, (3.1) and (3.3) are equivalent and the study of (3.1) can be

made by studying (3.3) and vice versa.

Ooe may also observe that because of the special cyclic nature of T in (1.2), (3.3)

can be split into k simpler and of smaller dimensions k-step iterative methods provided

that all the vectors involved are partitioned in accordance with T. Each of these k k

step methods has the same convergence rates as (3.3). So the solution of anyone of

these simpler methods provides us with the corresponding vector component of the

solution x of x = Tx + b and from the latter equation all the other components of x and
therefore x itself are readily obtained.

4. Tbe Case k = 2

In this section the convergence properties of the 2-cyclic SSOR method (3.1) are

studied by means of its equivalent 2-step method. (3.3). It should be said that some of
them are already known.

Restricting ourselves to real 0) and therefore to coe(O,2), which is a necessary con
dition for the SSOR method to converge, assuming that I f; (J (T2 ), and setting

00' = (2 - 00)00 E (0, 1] , (4.1)

(3.3) becomes

x(m) = [002T 2 + 2(1 .. oo)]x(m-l) .. (I .. 00)2x (m-2) + 002(l + T)b (4.2)

where to simplify the notation primes have been dropped from 00. Following Parsons

[9], who was able to get rid of the univalence restriction required in [11], we have that

the gen~mting function of (4.2) is given by
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h(z) = (I - (I - co)d
co2z

Consequently (4.2) converges iff ,,(T2)d;\ Q(6), where 6 is the unit disc and Q(z) the

mapping defined by (4.3). On the oth~r hand ,,(T2)c<l:'\ Q(~) and has at least one of

its elements on the boundary of Q(~), with ~ being the open disc of radius 11 > I,

implies optimum convergence for one member of the family of schemes (4.2) or

equivalently for the SSOR method with p(Sm) = 1111.

By writing z =l1(cose+ isine), 11 > I and ee[O, 21f), (4.3) gives

Reh(z) = + [(I + (I - co)2112) case - 2(1 - CO)l1],
co 11

Imh(z) = - + [I - (I - CO>'112] sine
co 11

Obviously the point (x,y) = (Reh(z),Imh(z» lies on an ellipse symmetric about the real

axis

(4.5)

whose center c, "real" semiaxis a and "imaginary" semiaxis b are given by the
expressions

c=-
2(1 - co)

co2
1+(l-co)'T\2

a=
C0211

b = I I - (I - co)2 112 I
C0211

(4.6)

We fix the right vertex of the above ellipse in such a way as [0 have

a+c=Reh(z) le=o=+(I-(I-CO)T\)'=pe [0,1) (4.7)
CO 11

Then a simple analysis shows that for a given p and co decreasing continuously in

(0, I], 1111 increases continuously in [p, I), c decreases continuously in (-~, 0] and

a, b increase continuously in [p, +(0). Thus one obtains a family of ellipses ep.ro .

eilch member of which is tangent to the line x = p at (p,O) and is strictly contained

(except for the aforementioned point) within any other member of the same family

corresponding to a smaller 00. The limiting ellipse lim ep (r) is easily found out to be
m-->O' •

the parabola

P p :=y2=_4px+4p2 ; (4.8)

which has its vertex at (p,D) and passes through the points (0, ± 2p). In the very spe

cial case p = O. b = 0, the ellipses eo,w degenerate into straight-line segments whose
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end-points are (- 4(i ~OJ) ,0) and (0,0), while the degenerate paraboia Po is the left
OJ

real semi-line with origin (0,0). Conseqnendy if it so happens and cr(T2) c int (P p)

for a given pE [0,1), then there exists -a unique ellipse ep,o> corresponding to a unique

OlE (0, i] such that cr(T2
) c ep." with at ieast one eiement of cr(T2 ) on the boundary of

ep,Q)' The smallest of the two 11'5 from (4.7) provides us with the "optimum" scheme

(4.2) and therefore with the "optimum" SSOR method for which p(S,,) = i/1].

Allowing now p in (4.7) 10 vary in [0, i) it is obvious thai the family of ellipses

discussed in the previous paragraph becomes a two-parametric one and the limiting par
abola in (4.8) as p -; r becomes

P, :=y2=-4x+4 (4.9)

It is easy for one to conclude that if a(T2 )e int (P 1) then and only then one can find

convergent SSOR methods. In addition it becomes obvious, from the previous analysis,

that in such a case there will exist infinitely many "optimum" ellipses ep,Q)' with the

property "cr(T2)cep,,, and has atieast one eiement on the boundary of ep,m", which

correspond to all the values of pe (~, i). ~ is the unique value of p for which cr(T2) is

contained in the closure of the interior of P p and has at least one element on it. The

determination of that co which corresponds to the smallest "optimum" 1/11 and which

in turn corresponds to the overall optimum 00 is given in [5].

Based on the analysis so far one may tackle and solve a number of problems, the

solutions to some of which are known, in connection with the convergence of the 2

cyclic SSOR method (3.i) (p(S",) < i). For exampie: i) Determine in a (p(T),OJ)

plane the region R 2 so that the SSOR converges for any (p(T),OJ)eR 2 • il) For cr(T2 )

real nonnegative detennine as in (i) the corresponding region R1: as well as the optimal

SSOR parameter Cl. iii) For cr(T2 ) nonpositive determine as in (ii) R;: and Cl.
i) Since convergence is guaranteed iff a(y2)cP 1 and no other information on

cr(T2 ) is given il suffices to bave, for all possible T, p(T2) < i or p(T) < 1. On the

other hand as was proved before for each p = p (y2)« 1), in (4.7), convergence is

ensured for all roe (0,1]. Since the latter value for (0 is in fact (0', from (4.1), the values

for Q) for which convergence is guaranteed are those satifsying 0 < (2 - co)co ~ 1.

Therefore

R 2 := (p(T),OJ): 0 ,; p(T) < i, 0 < OJ < 2) . (4.10)

ii) From the requirement a(y2)cP 1 and in view of our further assumption it is

now sufficient and necessary [Q have p(T2 ) < 1 leading to the same conclusion as

before. Consequently
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(4.11)

Going back to the original <0 for the SSOR method one obtains

To determine the optimum CO for a given peT) we observe that since p = p(T2 ) is given,

only one family of ellipses em,p2(T) is ,associated with the specific p. So, the optimum

<0 corresponds to the smallest of them and hence <0 = I. This gives [}, = I for the SSOR

method as well.

iii) Now we are in the degenerate case of the straight-line segments em,o, So,

convergence is guaranteed for all (- p2(T), O)e?, that is for any peT). Obvionsly for

a given peT) < I we have convergence provided c, in (4.6), satisfies c ,,0 or roe (0,11,

leading to the conclusion above. For pen ~ 1 convergence is guaranteed for any

pe (0,1) provided c satsifies, from (4.6), c = - 2(12- (0) < 1- p2(T) or
<0 2

p2(T) < (2 - (0)2

<02

1+(1-<0)2 Th
peT) < <0(2 _ (0). us

R'i := {(p(T),<o) : roe (0,2),0 ,; peT) < 1+(I-<o)2
j

<0(2-<0)
(4.12)

(see [4]). Again for a given peT) the optimum <0 corresponds to the smallest degen

erate ellipse that is to the straight-line segment [- p2(T),O]. It is

c=- p2y) =_ 2(I<o~<O) or <0=2/(1 +(I+p2(T))'I2). From the laner two

optimum values [}, for the SSOR are obtained, namely
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