
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1988 

Algorithms for Planar Geometric Models Algorithms for Planar Geometric Models 

Chanderjit Bajaj 

Myung-Soo Kim 

Report Number: 
88-755 

Bajaj, Chanderjit and Kim, Myung-Soo, "Algorithms for Planar Geometric Models" (1988). Department of 
Computer Science Technical Reports. Paper 649. 
https://docs.lib.purdue.edu/cstech/649 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


ALGORITHMS FOR PLANAR GEOMETRIC MODELS'

Chanderjit Bajaj and Myung-Soo Kim

Computer Sciences Department
Purdue University

CSD-TR-755
March 1988

Abstract

We consider planar geometric models given by an explicit boundary of 0 en) alge­
braic curve segments of maximum degree d. We present an 0 en"dO(l) time algorithm
to compute its convex hull and an 0 (nlog logn +K) . dO(l) time algorithms to com­
pute various decompositions of an object, where K is the characteristic number of this
object. Both operations, besides being solutions to interesting computational geometry
problems, prove useful in motion planning with planar geometric models.
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Abstract

We consider planar geometric models given by an e>...plicit boundary of O(n) algebraic curve
segments of maximum degree d. We present an O(n.dO(l») time algorithm to compute its convex
hull and an O«n log logn +]() . dO(l)) time algorithms to compute various decompositions of
an object, where K is the characteristic number of this object. Both operations, besides being
solutions to interesting computational geometry problems, prove useful in motion planning with
planar geomet.ric models.

1 Introduction

Geometric modeling is the use of a collection of techniques to describe the shape and structure
of physical. objects. Designed with sufficient generality it can also be used in motion planning,
[6]. Such a system finds immediate application in. engineering design and verification, automatic
control machining and proto~yping, [15]. Here we consider applications of planar geometric models
given by an explicit boundary of O(n) algebraic curve segments of maximum degree d. Our goal
is to build a modeling system for these curved planar objects, which allows the testing of various
motion planning strategies amongst fixed geometric obstacles. A powerful technique therein is the
use of configuration space (C-Space) mappings which reduces the planning of collision free paths
for complex objects, to path planning for a point amongst grown C-Space obstacles. To achieve
this goal, we earlier presented algebraic methods for generating the C-Space obstacles, via the
convolution computation of two arbitrary geometric models with algebraic curve boundaries, see
[7]. Now, we consider a few practical. and more robust alternatives of computing these C-Space
obstacles. For gross motion planning, one may compute the C-Space obstacles for the convex hull
of the original planar models. Alternatively, one may first decompose the given models into certain
primitive pieces and then apply C-space obstacle generation on decomposed pieces of object and
obstacle pairs. The convolution of primitive models is free from the complicated singularities that
beset the general non-convex case.

The algorithms presented in this paper are for (1) computing the convex hull of a general (non­
convex) planar geometric model and (2) computing the decomposition of a simllar (non-convex)
geometric model in terms of the unions and differences of convex geometric models and alternatively
as a union of certain primitive geometric models. Further, we also show how this decomposition can

"Research supporled in parl by NSF granl MIP.B5.21356, ARO contract DAAG29-B5-COOIB under Cornell MSI
and a David Ross Fellowship.
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be refined to provide an inner polygon (resp. an outer polygon) which is a simple polygon totally
contained in (resp. totally containing) the geometric model. Both these algorithms, coupled with
the convolution techniques of [6,7] and the path planning strategies of [24] then offer a mechanism
of planning collision free paths for planar geometric models, see [8]. Additionally, convex hull and
decomposition computation are fundamental geometric operations and the algorithms we present
here for planar geometric models extend previously known computational geometry methods for
planar polygons, [20].

1.1 Convex Hull

Several linear-time algorithms for computing the convex hull of simple planar polygons are known,
[11,14,17,19]. These algorithms achieve the more efficient O(n} bound whereas the Q(nlogn)
lower bound applies to general problem of computing the convex hull of n points in the plane,
see [20J. Schaffer and Van Wyk [22] extended these results to a linear-time algorithm for curved
objects bounded by piecewise-smooth Jordan curves. Even though this algorithm gives an O(n·
dO(l») bound for high degree curves with maximal degree d, the practical efficiency is limited to
lower degree algebraic curves because of the ubiquitous computation of common tangents of two
curved edges. To improve the practical efficiency for higher degree algebraic boundary curves, it
is necessary to reduce the time consuming curved edge operations. By generalizing the method of
D.T.Lee [17] to a coordinate-based algorithm we suggest an efficient O(n· dO(l») time algorithm to
compute the convex hull of planar geometric object models bounded by algebraic curve segments
(possibly non-smooth), with maximum degree d. Our algorithm computes the convex hull in a
single pass using a single stack and subdivides the original problem into four subproblems. The
convex hull computation of [22] requires two passes and subdivides the original problem into two
subproblems. Souvaine [25] also suggests a convex hull computation algorithm based on a polygonal
approximation and restricted to a class of curved objects (termed splinegons). Figure 1 shows a
difference between simple polygons and curved objects, where a single edge may intersect two
different pockets. It also shows a difference between our algorithm and other algorithms for the
curved case. Both Schaffer and Van Wyk [22] and Souvaine [25] consider the edge Cj as an event
edge and apply the time-consuming common tangent operation to such edges. Since edges with such
orientation cannot belong to the convex hull boundary, these edges are ignored and not considered
as event edges in our algorithm.

1.2 Decompositions

A splinegon is a polygon whose edges have been replaced by "well-behaved" curves and the carrier
polygon of a splinegon is the polygon connecting adjacent vertices of a splinegon. Dobkin, Souvaine,
and Van Wyk [13] show that the O(nloglogn) time algorithm for the horizontal-vertex-visibility
partition of a simple polygon [26] can easily be generalized to a simple splinegon, and using this
partition they present an algorithm to decompose a simple spllnegon into a union of monotone
pieces and further into a union of differences of unions of possibly overlapping convex pieces. They
also show that simplifying the carrier polygon can be quite expensive by constructing an n-sided
splinegon whose smallest simple -carrier polygon has Q(n2 ) edges.

In this paper, we present an O((nloglogn +k). dO(l)) algorithm to compute a simple carrier
polygon of planar geometric object model, where n is the number of monotone boundary curve
segments and k is the number of edges in the resulting simple carrier polygon. Further, we show that
the worst case upper bound of k is the optimal O(n2 ). We also present an O((nloglogn+J().dO(l))
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algorithm to construct a simple characteristic carrier polygon of planar curved object, where Ie
is the minimum number of edges for (possibly non-simple) characteristic carrier polygons of the
object. A carrier polygon is characteristic if it differs from the original object by convex regions
each of which is either totally contained in the interior of the object or in its exterior.

By refining this decomposition further and using chords and wedges of decomposed object edges,
we can construct within a similar time bound O«nloglogn + K)· dO(l)), an inner polygon (resp.
an outer polygon) which is a simple polygon totally contained in (resp. totally containing) the
geometric model. In contrast to the simple carrier polygon construction, the worst-case upper
bound for K can be arbitrarily large as the inner angle between two adjacent edges approaches 0
or 21r, however, it is small in practice. K (henceforth called the characteristic number) in some
Sense represents the shape degeneracy of the geometric model. Using the simple inner, outer and
characteristic polygons, we can compute (1) a convex decomposition of the geometric model as a
difference of unions of disjoint convex models, (2) a decomposition of the geometric model as a
union of disjoint certain primitive models.

1.3 Organization of This Paper

The rest of this paper is organized as follows. §2 describes certain preliminary informations of
use in later sections. In §2.1 we describe the boundary representation for a planar geometric
model with algebraic boundary curves. In §2.2 we present a monotone curve segmentation of
boundary curve segments (a pre-processing step of our algorithm) and basic operations on these
monotone curve segments. Algebraic curves are treated in each of two internal representations;
namely, the implicit and the parametric forms, [2,28]' In §3 we present an O(n· d6 log d) (resp.
O(n. (d12 log d + Ted)))) time algorithm to compute the convex hull of geometric models with
parametric (resp. implicit) boundary curves. Here T(d) is the worst case time taken to trace
an algebraic curve segment of degree d, [5]. In §4 we present an O«nloglogn + K)· d3 logd)
(resp. 0« n log log n + Ie) . (d6 10gd +T(d))) time algorithm to compute various decompositions of
geometric models, where K is the characteristic number of the object.

2 Preliminaries

In this section, we describe the algebraic boundary model of the planar curved object, and consider
monotone curve segmentations and other related geometric operations on monotone curve segments.

2.1 Planar Geometric Model

A planar geometric model with algebraic boundary curves has the following boundary representa­
tion.

A single simple oriented cycle of algebraic curve edges, where each edge is directed and incident
to two vertices. Each edge also has curve equations, which are implicit and/or rational parametric
equations of algebraic curves. An algebraic curve is implicitly defined by a single polynomial
equation f(x, y) = 0 and parametrically defined by the pair (x = )~gl, Y = )~f~~), where It, h
and h are polynomials. Further an interior point is also provided on each impliCItly defined edge
which helps remove any geometric ambiguity in the case of vertices which are singularities of the
algebraic curve, [1,21]. Finally, each vertex is exactly specified by Cartesian coordinates.

The curve equations fOI each edge are chosen such that the direction of the normal at each
point of the edge is towards the exterior of the object. For a simple point on the curve the normal
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is defined as the vector of partials to the curve evaluated at tllat point. For a singular point on
the curve we associate a range of normal directions determined by normals to the tangents at the
singular point. Further the orientation of the cycle of edges is such that the interior of the object
is to the left when the edges are traversed.

2.2 COlnputations with Algebraic Curves

We assume some primitive geometric algorithms to manipulate algebraic curve segments, [2,4,5,7,
10,12,16]. Prior work has considered the generation of rational parametric equations for certain
implicitly defined algebraic plane curves, [2J, the generation of implicit equations for parametrically
defined algebraic curves, [4], as well as the robust tracing of algebraic curve segments with correct
connectivity, especially when tracing through complicated singularities, [5]. Tracing for instance is
very useful in determining when a given point lies within a general algebraic curve segment. For
this last problem the method of sorting along the curve [16], also provides an efficient solution for
low degree algebraic curves.

2.2.1 Monotone Segmentation

In [8,9} we consider in some detail the monotone segmentation of a geometric model boundary and
other geometric operations on monotone curve segments. We summarize below the time complexi­
ties of these operations which are of relevance to timing analysis of the algorithms described in later
sections. Our model of computation is the arithmetic model where arithmetic operations have unit
time cost, see [3]. We first define monotone edges. See [8,9] for more details on proofs of Lemmas
below and criteria for detecting singular, extreme, inflection points, and convex, concave, linear
edges.

Definition 2.1 Let C be a directed boundary edge without any inflection or singular point. Then
(1) C is convex,¢:::> the gradient of C turns counter-clockwise along C
(2) C is concave ¢::::::} the gradient of C turns clockwise along C
(3) C is monotone ¢::::::} C is either convex, concave or linear, and the interior ofC doesn't include
any extreme point along the x or y directions.

Lemma 2.1 (1) All the roots of a univariate polynomial equation of degree O(d) can be computed
in O(d3 Iogd) time.
(2) The common solutions of two polynomial equations of degree Oed) in two variables can be
computed in O(d6 log d) time.
(3) The common solutions of three (resp. four) polynomial equations of degree D(d) in three (resp.
four) variables can be computed in D(d12 ) (resp. O(dI6)) time.

Proof (1) The squarefree part of a univariate polynomial can be calculated in D(dlo~d) time
using fast techniques for the required GCD computation and division steps, [3), and further all
roots can be computed using root isolations in O(d3 1ogd) time, see [23J.
(2) We can eliminate one variable from two polynomial equations using the Sylvester resultant
in O(d4 log3 d) time, see [10], and then compute the roots of the resulting univariate polynomial
equation of degree O(cP) in O(d6 Iogd) time. Doing this twice for each variable in turn together
with the pairwise substitutions then allows computing the common solutions in overall O(d6 Iogd)
time.
(3) We can eliminate three (resp. four) variables from three (resp. four) polynomial equations

4



using the u-resultant in O(d9 ) (resp. O(dl2» time, see [12,27], and solve resulting equations of
degree O(d3 ) (resp. O(d4» in one variable in O(d9 1ogd) (resp. O(dl2 1ogd» time. Though the
resultant computation takes naively O(d9) (resp. O(dl2

)) time and solving real root solutions takes
O(d9 log d) (resp. O(dl2 1og d» time, the overall time is bounded by the pairwise substitution which
take' O(d") (resp. O(d16

)) time. 0

Lemma 2.2 For a parametric (resp. implicit) algebraic curve segment C of degree d, a monotone
segmentation can be obtained in O(d3 1ogd) (resp. O(d6 1og d+T(d») time, where T(d) is the time
required for the curve segment tracing.

2.2.2 Basic Operations on Monotone Curve Segments

We consider primitive operations on monotone curve segments C and D, and a line segment L.

1. The intersection of C and L,

2. The containment of C in the upper-left halfplane HUL(L) of L,

3. The point p at which C has a tangent line L." parallel to L,

4. The tangent line L." of C from a point q,

5. The common tangent line L.",q of C and D.

Lemma 2.3 For a parametric (resp. implicit) algebraic curve segment C,

1. the intersection C n L can be computed in O(d3 Iogd) (resp. O(d3 1ogd +T(d») time,

2. the containment C C HUL(L) can be tested in O(d3 log d) (resp. O(d3 1ogd + T(d») time,

3. the tangent point p at C can be computed in O(d3 log d) (resp. 0 (d6 log d + T(d») time, and

4. the tangent line L p of C from q can be computed in O(d3 1ogd) (resp. O(d6 1ogd + T(d»)
time.

Lemma 2.4 The common tangent line Lp,q of C and D can be computed

• in O(d6 Iogd) time if both C and D are parametric,

• in O(d9 Iog d + T(d» time if only one ofC and D is parametric1

• in O(d12 10g d +T(d» time if both C and D are implicit.

Proof: Though the common solutions of three (resp. four) polynomial equations as stated in
Lemma 2.1 take O(d12

) (resp. O(dl6» time, for monotone curve segments and the application of
common tangents, this can be reduced to O(d9 1ogd +T(d» (resp. O(d12 1ogd + T(d») time. D

Now, initially assume there are Oem) algebraic curve segments of maximum degree d on the
model boundary. Then the monotone segmentation preprocessing can be done in O(m· d3 logd)
(resp. O(m· (d6 Iogd + T(d»» time if all the boundary curve segments are parametric (resp.
implicit). Each parametric (resp. implicit) algebraic curve segment of degree d can be segmented
into Oed) (resp. O(cf!) monotone curve segments by adding extra vertices into singular points,
inflection points and extreme points. Mter this preprocessing step of monotone segmentation, we
let the total number of boundary edges be n, which is O(m· d) (resp. O(m. cf!» for parametric
(resp. implicit) curves. In the following, we assume the object boundary is already segmented into
O(n) monotone curve segments and the timing analysis is given in terms of n.
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3 Convex Hull of Geometric Model

In this section we present an algorithm to compute the convex hull of a planar geometric model
bounded by Oen) monotone curve segments. The algorithm TunS in O(n) steps, where each step
takes polynomial time in the degree d. In the following we consider the construction of the lower­
right subpart of the convex hull boundary which lies between the bottommost vertex Po and the
rightmost vertex PM of the original object. The entire convex hull is obtained by applying the same
algorithm to the remaining three subparts. '\iV.I.o.g. we may assume there are unique bottommost
and rightmost vertices.

In the following, let Gl , C21 ••• I eM be a connected sequence of edges from Po to PM, where
each Ci has Pi-l and Pi as its starting and ending vertices resectively. For a point p# (resp. p#) we
denote its x and y-coordinates by x# and y# (resp. x# and y#). We also denote the line segment
connecting two points p and q by L(p, q) and the path from p to q along the boundary curve by
7(P, q). Also let A "" B denote everything in A whlch is not in B.

3.1 Sequences of Event Edge and Current Hull

We give a constructive definition of a sequence of event edges {Ci,Jf=l with CiN = CM and a
sequence of current hulls {CHdf=l. Further, we show that the N·th current hull GnN is the
lower-right subpart of the convex hull boundary between Po and PM.

3.1.1 Definition of Gik and CHk

Let i o = 0 and CR0 = {Po}. Assume that the index ik and the k-th current hull CHk (0 ~ k < N)
have been defined. We define the (k+l)-th event edge Cij,H and the (k+l)-th event component
Eek+! c Cij,+l in terms of i k and CHk as follows, see also Figures 2-3.

1. If Xij,+l ~ XiI. and the inner angle of Pi", < 'iT, then ik +1 = min {j I J. > ik and Xj > Xk}.

(a) ECk+! = Cik+1 if Yi"'H-l < Yik+1 and Cik+1 is convex,

(b) ECk+1 = Pik+1 otherwise.

2. If XiI. < Xik +1 and Yik < Yik+1, then ik+I = ik + 1.

(a) ECk+! = Cik+1 if Gij,+l is convex,

(b) ECk+l = Pik +1 otherwise.

3. Otherwise, let jo be the smallest j such that j > ik + 1, and either (Pj-l is not inside of any
pocket of CHk with Yj-l < Yj) or (Cj intersects with a lid L(y,y') at a point p",,,,, but it is
not totally inside of the pocket implied by L(p','jI'), and further Xj_l < xj, Yj-l < y;, and
y•• < min{y. I p. E ,(Pi"p;-l) n L(P',p")}.

(a) If P;o-1 is not inside of any pocket of CHk and the inner angle of Pio-l > 1i", then
ik+l = jo - 1 and ECk+l = Pik+l.

(b) Otherwise, ik+l = jo and

i. ECk+1 = C i j,+l if Cik+l is convex, and

ii. EGk+! = L(Pi"'+l-I,Pik+J otherwise.

6



Next we inductively define the (k+1)-th current hull CHk+l' It is easy to show there is a
unique common tangent line Lp',p" of CHk and ECk+l (with x' < x" and y' < yfl) such that
CHk U ECk+1 c HUL(L). IT there is more than one choice of p' (resp. p"), we choose p' (resp. p")
so that the distance between pi and p'l is minimal. Further, let FRONT_CHk+1 denote the front
subarc of CHk between the points Po and p', and REAR_Cnk+l denote the rear subarc of ECk+l
between the points p" and Pik+l' The (k+1)-th current hull CHk+1 is defined as the connected
union FRONT_CHk+l U L(p',p") U REAR_CHk+l, see Figure 4. CHk+l is a convex arc along
which both x and y-coordinates are strictly increasing. L(p',p") is called the lid determined by pi
and p". Let l' be the closed path given as ,(p',p") followed by a path from p" to pi along L(p',p").
If l' has no self-intersection, the region bounded by l' is called the pocket determined by the lid
L(p',p"). Otherwise, ,(p',p") has an even number of intersections with the lid L(p',p") counting
intersections with multiplicities and l' divides the plane into a finite number of connected regions.
The union of all the regions which are to the right of l' is the pocket implied by L(p',z/'), see
Figures 5-6.

3.1.2 Properties of CHk

We prove two important properties of CHk in the following Lemmas 3.1-3.2.

Lemma 3.1 If a point p E Cj (1 .::; i .::; ik) is on the convex hull boundary, then p E cnk.

Proof: Using induction we can easily show that the interior of the path ,(Pik ,Pik+1-1), the
arc Cik +1 ...... ECk+I, and (CH k U Cik+1) ...... CHk+l are in the convex hull interior. D

Lemma 3.2 If a point P E CHk is on the convex hull boundary, then the front subarc of CHk

between Po and p is contained entirely in the convex hull boundary.

Proof: The case k = 1 is easy to show. By induction, we assume for k (1 .::; k < N) and consider
k + 1. Suppose a point P E CHk+1 is on the convex hull boundary. (a) If p E FRONT_CHk+1 C
CHk, then the statement follows by induction. (b) If p E L(p',p"), then L(p',p") is also on the
convex hull boundary. Further, FRONT_CHk+l is on the convex hull boundary by induction. (c) If
p E REAR_CHk+ll then there is a supporting line Lp at p. We now prove that the lid L(p',p") is on
the convex hull boundary. Suppose there is a boundary point q in the region R 1 , see Figure region.
We may assume q is extreme to the outward normal direction of the lid and thus on the convex
hull boundary. (i) If q E Cj (1'::; j'::; ik+d, then Lemma 4.1.2 implies q E CHk+l, however, this is
impossible since CHk+l is convex. (ii) Otherwise, there is a continuous path from Pik+l to q. This
path should pass through either the region R2 or R 3, however, both are impossible. Hence the lid
L(y,p") is on the convex hull boundary, and by induction FRONT_CHk+1 is also on the convex
hull boundary. Similarly one can show that the subarc of REAR_CHk+l betweenp" and p is on
the convex hull boundary. D

Since PM is on the convex hull boundary and it is the end point of CHH, Theorem 3.1 below
follows easily from Lemmas 3.1-3.2.

Theorem 3.1 CHH is the lower-right part of the convex hull boundary between Po and PM.
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3.2 Description of Algorithm

\Ve describe an algorithm to compute the sequences of event edges {Cik }£{=l and current hulls
{CIIdt'=l by using a single stack Cll. GIl contains segments of the k-th current hull Gll1: which
are subarcs of some convex edges, some linear edges and the lids of pockets. Adjacent elements
on the stack share a common end point and the connected sequence of elements on the stack GIl
generate the current hull GIlk (we say then that "the stack cn implies the current hull GIl k ").

3.2.1 Computing Event Edges

We start with pushing a single point interval (PO, Po] into an empty stack GIl. The stack GIl implies
the current hull CIla = {Po}. Assume ik is detected and the stack GIl implies the k-th current
hull cnk (0 ~ k < N). We consider how to detect i kH using the stack GIl. Since the cases 1 and
2 of §3.1.1 are easy, we consider only case 3. We detect jo = min Uk by using a loop variable j
initialized to ik and maintaining the following invariant for j at the beginning of each loop:

"Pi is outside (including the boundary) of any pocket of GIlk and TOP( CIl) is not strictly below
the horizontal line V = Vi'"

In each loop, j is first incremented by 1. Then, (1) IfVi-l ~ Vi, then J·o = j. (2) If Vj-l > Vi, then
pop all the stack elements until (a) TOP( CR) which does not intersect with Cj and is not strictly
above the line V = Vi, or (b) TOP( GB) which is a lid intersecting with Gi' In the case (a), repeat
the j-Ioop. In the case (b), initially let p.. be the first intersection of Ci with L(p') rJl). Next, walk
along the path i(Pi-l, PM) and count the number ofleft-to-right cuts and right-to--Ieft cuts this
path makes with the lid L(p')y'). At each intersection point, say p•• ) make p. = p•• if V•• ~ V•.
While the number ofleft-to--right cuts is larger than right-to·left cuts) we are inside of the pocket
implied by L(p/,p"). In Figure ??, a path i(P.,Pi) is totally contained in a self-intersecting pocket
and has its first interior intersection with a lid L(p',pfI

) in a right-to--Ieft direction. \¥hen i(P.,Pi)
comes out of a pocket through a point p... , the total cuts in both directions are equal. If these two
numbers become equal at a point p•• E Cjl, compare V•• with V... If y... > y.. , then continue the
walking along the path i(P•• , PM). IfV... ~ y.. , then (i) let jo = j' if Vj'-l ~ Vi', and (ii) otherwise,
let j = ;"' and further treat p... as Pi and repeat the j·loop. It is easy to show that the j-Ioop
invariant holds everytime the loop is repeated and jo is detected correctly.

3.2.2 Computing Current Hulls

We consider next how to construct CHktl from GIlk and EGkH by using the stack CIl. Though
we have popped some stack elements from CH, the elements on the stack CH imply a con­
vex arc r which contains FRONT_CHk+l as its front subarc. To remove redundant elements
r tv FRONT_CHkH from GIl, we consider the top stack element TOP(CH). We check whether
TOP( CIl) contains the common tangent point p' for the new lid L(pl,p") of CIlk+l' Since ECkH is
not strictly below y = vs, we have (1) p' = PE if and only if ECk+l C HUL(L pE ) and ECktl is not
strictly below the horizontal line V = YE, (2) pi E TOP( CH) if and only i(ECk+l C H U£(Lps )' and
(3) p' rt TOP( CIl) otherwise. Here ps and PE are the starting and ending points ofTOP( CH), and
Lps and L PE are the tangent lines of TOP( CH) at PS and PE respectively. In the cases (a) and (b),
P' and p" can be computed by using Lemmas 2.3-2.4. In the case (c)) we pop TOP( GIl) and repeat
the same procedure. Once we have computed rI and p", we can adjust the stack appropriately to
imply CHkH'
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3.3 Timing Analysis

There are basically two t}'pes of operations in this algorithm. Operations to manipulate the edge
sequence itself or operations to manipulate the stack. Each edge as input is processed within a
constant number of steps before it is determined whether it is an event edge or not. If it is an event
edge, a segment of this edge is pushed on the stack. While an edge is on the stack, it may be used
to process other edges and/or be changed into a shorter subsegment. Finally, it is popped if it is
not on the convex hull boundary or it appears in the final output as an edge of the convex hull
boundary.

Before an edge is determined to be an event edge or not, we apply to this edge such computations
like coordinate comparisons, an inner angle computation, and intersections with stack elements. If
a stack element is popped after certain computations, we charge the cost of these computations
to this popped stack element. Since the popping occurs at most once to an edge, the cost at the
popping time will be charged at most once to each edge. Further, there is at most one stack element
which is involved in the operation with the input edge and still remains on the stack. We can charge
this cost and other trivial computation costs to the input edge. The most expensive computation
cost here is line-curve segment intersection which is D(d3 log d) (resp. O(d3 10g d+T(d))) time for
a parametric (resp. implicit) curve segment. Since there are totally D(n) input edges and popped
edges, the total cost for event edge detections is O(n. d3 10g d) (resp. O(n· (d3 10g d +T(d)))) time.

Mter an event edge is detected, the stack is modified to imply the new current hull. The
stack elements are popped after two halfplane containment testings which cost 0(d3 1ogd) (resp.
0(d3 10g d+T(d))) time. The new stack is constructed by computing the lid L(p', pll) and modifying
itself appropriately, which costs at most O(£l6logd) (resp. O(d12 log d +T(d))) time for common
tangent computations. Note that this last operation takes 0(1) time if both p' and p" are known,
and 0(d310gd) (0(d6 10gd + T(d))) time if one of p' and pll is known. We charge this cost to
the event edge. Thus, the total cost for the current hull computation is O(n . d6 logd) (resp.
O(n·(d12 log d+T(d)))) time, which is also the overall time complexity of the convex hull algorithm.

4 Decomposition of Planar Geometric Models

4.1 Decomposition of Monotone Boundary Edges

In this section, we consider how to construct a simple carrier polygon of a geometric model object
with at most 0(n2 ) edges, which is optimal since this number is shown to be n(n2) in [13J. Further,
we consider how to construct a simple characteristic carrier polygon, an inner polygon and an outer
polygon of the geometric modef We assume the model boundary has been decomposed into O(n)
monotone edges in a preprocessing step as discussed in §2.

4.1.1 Simple Carrier Polygon

Consider the horizontal vertex visibility partition of both the interior and exterior of a geometric
model, see [13,26], where the exterior is partitioned within a. box enclosing the object, see Figure 10.
Let H be a visibility cell of the partition, and the right and left sides of H be bounded by the edges
C and D respectively, see Figure 9. Note that each side of H may be a proper subsegment of Cor
D. Let us assume H is in the interior of the geometric model and C is a convex edge. The cases of
H being in the exterior and/or C being a concave edge can be handled in similar ways. Let PB and
PT be the bottom and top points of the right side of H, and C be the subsegment of C between PB
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and PT. Further, let qB and qT be the bottom and top points of the left side of II, and iJ be the
subsegment of D between qS and qT. To make the construction ea:;ier, we add PS and PT (resp.
qB and qT) as extra vertices to C (resp. D). Since there are only O(n) such extra vertices, the total
number of edges after this decomposition is still D(n).

We can add extra vertices PI, Pl, ... , Pkc to the edge (; so that the carrier polygonal arc Po
connecting the vertices PS, PI, "', Pkc' PT does not intersect with any other part of the carrier
polygon except at PB and PT and also with the extra vertices the carrier polygon has at most O(n2)
edges. This is achieved by the following construction. At each vertex p, construct a horizontal line
L containing P and parallel to the x-axis. Let Pl., P2, ... , PkC (resp. qt, q2, "', qk~) be the
intersection points of (; (resp. D) with these horizontal lines. Then the corresponding carrier
polygonal arcs Pc and Pj) do not intersect except at the end points and further it follows that the
carrier polygon UPo is simple. Since there are D(n) such horizontal lines and boundary edges, and
ke = O(n), the carrier polygon has O(n2

) edges. Though O(n2
) is optimal asymptotically, the

above construction does not generate the minimal number of extra vertices. Steps can be taken
to reduce the number of extra vertices added. For example, when the chord L(PB, PI') of (; does
not intersect with D except at PB and PT, we do not need to add any extra vertices. Thus Pc is
L(PB,PT) with ke = o. Further, when L(PB,PT) intersects with D at a point other than PS and
PT, we construct Pc so that Pc does not intersect with Pi) except at PS and PT though Pc may
intersect with the edge D. Thus, we construct PD recursively. Assume we have constructed PD by
adding a small number of extra vertices to D. Then by scanning H from the top to the bottom, we
can add at most kD extra vertices to the edge (; to make the corresponding carrier polygonal arc
Pc simple. Thus we have the relation kc ::::; kfJ. Though for simplicity we assume each boundary
edge is segmented into monotone edges and each monotone edge is further decomposed so that
each side of H is an edge, we can easily modify the above construction so that we may need to add
extra vertices only to y-extreme points and apply the same recursive construction.to add a minlmal
number of extra vertices to each y-monotone edge.

Theorem 4.1 Assume all the monotone edges are parametric (resp. implicit) algebraic curve
segments. A simple carrier polygon of an object with at most O(n2) edges can be constructed in
O((nloglogn+k)·d'logd) (resp. O((nloglogn+k)·(d'logd+T(d»)} ';me, where k is 'he number
of edges in the simple carrier polygon.

Proof: The horizontal vertex visibility partition of both the interior and exterjor of an object can
be constructed in O(nloglogn. d3 logd) (resp. O(nloglogn· (d3 log d +T(d)))) time. A simple
carrier polygon can be constructed in O(k·d3 Iog d) (resp. O(k.(d3 10g d+T(d)))) time by computing
O(k) line-curve segment intersections. 0

4.1.2 Simple Characteristic Carrier Polygon

A carrier polygon is characteristic if, for each edge E, SeE) is totally contained either in the interior
of the geometric model or in the exterior of the model, where SeE) is the convex region bounded
by the edge E and its chord. IfE is a convex (resp. a concave) edge, then SeE) is totally contained
in the interior (resp. in the exterior) of the model and is called an additive (resp. a subtractive)
convex region. Assume C and D are the same as (; and jj of §3.1 respectively. We can add extra
vertices Pl., 1>2, •.. ,Pkr; to the edge C so that the convex regions of the decomposed subsegments of
C are additive convex regions. The case of C being a concave edge can be handled in a similar way
and the convex regions of the decomposed subsegments of C become subtractive convex regions in
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this case. This decomposition is achieved as follows. If S(C) and SeD) do not intersect, we do
not add any extra vertex to C and S(C) is an additive convex region, thus kc = O. Otherwise,
let L I be the tangent line from PB to D, PI be the intersection point of L I with C, an~ Cl be
the subsegment of C between PB and Pl. Then, S(Cl ) is an additive convex region. Let C be the
subsegment of C between PI and PT- If S(C) intersects with SeD), then we compute a tangent
line L2 from PI to D and the intersection point P2 of L2 and C, and repeat the same procedure.
Otherwise, S(C) is an additive convex: region. Now, we prove the decomposition of C terminates
within a finite number of steps.

Theorem 4.2 Assume no vertex has its inner angle as 0 or 2". Each edge C can be decomposed
into a finite number of subedges CI, C2,"" Cke so that the convex regions are additive.

Proof Suppose there is an irrfinite sequence of Ci'S (i = 1, 2, ... ) constructed as above. Let Pi be
the end point of Gi, then Xs < Xi < Xi+! < XE for all i. Since Xi is a strictly increasing sequence
bounded above, Xi -lo X for some X ~ XE. Let PL E C be such that XL = x, then Pi -+ PL. In an
arbitrary small neighborhood U of PL, there is an integer N such that Pi E U and Ci C U for all
i ~ N. Let qi be the tangent point of L(Pi_I,Pi) with D, then qi E U for all i 2: N. Since qi'S are
on D and in the interior of S(C), this means that PL is a limit point of D which are in the interior
of S(G). We can easily show that D is a concave edge and PL is a common vertex of C and D,
and further the inner angle at PL > 3,,/2 (resp. < ,,/2). Since L(Pi_l,Pi) is tangent to D at qi
with Pi -lo PL and qi -+ PL, C and D have the same tangent line at PL. Hence, the inner angle of
the model at PL is 2" (resp. 0). It is impossible since we assume no such vertex on the geometric
model boundary. D

We call the polygonal arc Pa connecting the vertices Ps, PI,· .. ,Pke , PE as the first characteristic
polygonal arc of C, the union UPa as the first characteristic polygon of the geometric model, and
I( = L;(kc + 1) as the characteristic number of the object. It is easy to show that the edges
of characteristic polygon do not intersect each other transversally and two different vertices do
not overlap. However, a vertex may lie on the interior of some characteristic polygon edge. By
decomposing each edge with a vertex on its chord interior into two subedges, we can make the
carrier polygon simple. Thus, using at most 2K edges we can construct a simple characteristic
carrier polygon.

Theorem 4.3 Assume all the monotone edges are parametric (resp. implicit). A simple charac­
teristic carrier polygon of an object with at most 2]( edges can be computed in 0« nlog logn +]().
d'log d) (resp. 0((n log log n + K) . (d' . log d+ T(d)))) ';me.

Proof: After the horizontal vertex visibility partition is computed, a simple characteristic carrier
polygon can be constructed in O(K· d'logd) (resp. O(K· (d'logd + T(d)))) time by computing
O(l() tangent lines from given points. D

4.1.3 Inner and Outer Polygons

Let C be a monotone edge with PS as its starting point and PE as its ending point. For any two
different points p and q on C, L(p, q) denotes the line segment connecting P and q, and Lp denotes
the tangent line of C at p. Let p. be the intersection point of two tangent lines Lps and LpE • We
call the line segment L(PS,PE) as the chord arC and the polygonal arc A(C) = L(ps,p·)UL(p·,PE)
as the wedge of C. Let PS, PI, P2, ... , Pk, PE be a sequence of points on C in the order they appear
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along C I then the polygonal arc Pbhord(pS'Pl,]J2, . .. ,pI;, PE) ::::: L(ps, pd UL(PL, Pl) U... UL(pk. PE)
is called as the chordal polygonal arc of C determined by the sequence PS, PI, P2, ... , Pk, PE· Let pi
be the intersection point of L Pi _ l and L pi (i = 1, ... , k+ 1), where Po = PS and Pk+I = PE. Then the
polygonal arc pgngent(ps,PJ.,P2, ... ,PJ,;,PE) = L(ps,pi) UL(pi,p;;) u ... UL(Pk' Pk+l)UL(Pk+l,PE)
is called as the tangential polygonal arc of C determined by the sequence PS, PI, :fJ2, ... , Pb PE,
see Figure II.

If we decompose the geometric model boundary so that the chords of convex Crespo concave)
decomposed edges and the wedges of concave Crespo convex) decomposed edges are totally contained
in the interior Crespo the exterior) of the model, then the union of these chords and wedges defines
an inner (resp. outer) polygon which is totally contained in the intedor (resp. the exterior) of the
model. In the following, we will consider the construction of inner polygonal arcs Pahord of edges
C. The outer polygonal arcs pi:r·ngent of edges C can be constructed in a similar way.

We first consider the case of C being a convex edge. Let Pa be the first characteristic polygonal
arc of C, then C is to the right of Pa and D is to the left of Pa. We may assume PS '# qs or
PT t:- qT· If D is a convex edge, then Pa is the chord L(ps,PT) of C and the chords of C and D do
not intersect except at an end point. Further, the chords of C and D are contained in the intedor
of the object. We call L(ps,PT) and L(qs, qT) as the inner polygonal arcs of C and D respectively.
Now, if D is a concave edge, there are points qlo q2, ... , qkc on D which are tangent to some lines
segments on Pa. Let Ps, PI, Pl, ... , Pkc' PT be the vertices of Pa in the order they appear along
C. Note that ql = qs jf PB = qB, and kc = 0 if D n pJ = 0. Further, qi is the tangent point
of L(Pi-l,Pi) on D (i = 1, ... , kc), where Po = PS and PkcH = PT. We add an extra vertex
P'i to each subedge of C between Pi-l and Pi (i = 1, "', kG + 1). We call the polygon Pbnner

connecting ps, P'l' PI,· .. ,Pkc ,P'kc+l,PT as the inner polygonal arc of C. pbnner is strictly to the
right of PJ except the points PB,P1,1'2, ,Pke ,PT. Further, we add an extra vertex q/i to each
subedge of D between qi-l and qi (i = 1, , kG +I), where go = qS and qkc+l = qT. We choose
q'kcH so that the tangent line of D at this point is parallel to the line segment L(Pkc-l,Pkc )' Note
that qs = q'l = ql if PS = qs, and qT = q'kcH if PT = qT· vVe call the tangential polygonal arc
Ptllngent(, ') th· I al pinner f DD qS,ql,ql, .. ·,qkc,qkcH,qT as emnerpoygon arc DO.

We consider the case of C being a concave edge. Since the case of D being convex can be
handled. in a similar way as above, we assume D is concave. There are two common tangent lines
L 1 and L 2 of C and D. Let p" be the intersection point of L1 and L 2, and L be a line containing
the point p" and having its slope strictly between the slopes of L1 and L 2. Let p' (resp. q') be a
point on C (resp. D) at which C (resp. D) has a tangent line parallel to the line L. We call the
tangential polygonal arc pgngent(PB, P',PI') (resp. p.f)ngent(qB, q', qT» as the inner polygonal arc
pbnner of C (resp. phnner of D). Since Pbnner (resp. pbnner ) is strictly to the right (resp. to the
left) of L, PlJ""ner n PiJmer = 0.

Theorem 4.4 Assume all the monotone edges are parametric (resp. implicit). Both inner and
outer carrier polygons of an object with at most 2K edges can be computed in 0((n log logn + K) .
d3 log d) (resp. 0((nloglogn +K) . (d" . log d +T(d)))) !;me.

Proof: Similar to Theorem 4.3. D

4.2 Object Decompositions

We consider various applications of the polygons px and pinner constructed in §3 to the object
decompositions. Dobkin, Souvaine, and Van Wyk [13] shows an O(nloglogn) algorithm to de·
compose a simple splinegon into a union of differences of unions of possibly overlapping convex
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pieces. Our decomposition may involve G(l() where ]( is often linear in practice. Further, the
decomposition structure in terms of unions and differences is simpler than that of [13]. However,
when the simple characteristic polygon has small number of edges like I( is almost linear, then our
decomposition method may be more useful since this decompDsition has nicer structure.

4.2.1 Convex Decomposition

'We can decompose the simple characteristic polygon px into unions of disjoint convex polygons
UiPil (see [18J for a survey on convex decomposition algorithms for simple polygons). Let UjUj
(resp. UkVk) be the union of all the additive (resp. subtractive) convex regions. Then, the original
object can be represented as (U,-Pi) U (UjUj) f'V (UkVk ). Further, the interiors of Pi'S and Ui's are
disjoint, and the interiors of Ui's and Vk'S are disjoint, however, the interiors of Pi'S and 11k'S may
have non-empty intersections. Thus the orders of union operations in the unions (UiPi) U (UjUj)
and UkVk are interchangeable. Further, as long as U,.Pi has been computed first, the order of adding
each Uj and subtracting each Vk is interchangeable. The construction of px is highly parallel and
would be useful in a parallel implementation of the model decomposition algorithm.

4.2.2 Primitive Decomposition

The main purpose of geometric model decomposition is to simplify a problem for complex geometric
model into a number of simpler subproblems dealing with "nice" boundary. In most of the cases a
decomposit.ion in terms of a union Df disjoint convex pieces is useful and this is always possible for
simple polygons. However, this fact is certainly not true for planar geometric models. In $4.1 we
thus considered an alternative way, namely in decomposing an object into unions and differences Df
cDnvex objects. However, in some applications involving a Minkowski operation (i.e. convolution)
which commutes with union we may consider decomposing a geometric model into a disjoint union
of certain primitive objects.

We can decompose an inner polygon pinner into a union of disjoint convex polygons UiP/nner.
The difference between the model and the inner polygon pinner is the union (UjUjnner)U(UkVrner),
where each utner is an additive convex region bounded by a conve.,\: edge and its chord and each
Vfnner js a region bounded by a concave edge and its wedge. We can thus represent the original
model as a disjoint union (UiP/nner) U (Ujutner) U (UkVJnner).

Now, consider the application of this simple decomposition to Minkowski operation. For objects
A and B, the Minkowski addition AmB = {a+b I a E A and bE B} and the Minkowski subtraction
A e B = {a - y I a E A and b E B}. Let A = U,.Sj and B = U;,S'j', where Si and Sl il are simple
objects. Then A Ell B = U(S, Ell S!') and A e B = U(S, e S!,).

5 Conclusion

In this paper, we presented an O(n· (d12 log d + T(d))) algorithm to compute the convex hull of
planar geometric model, bounded by G(n) algebraic monotone curve segments of maximal degree
d. We also presented an G((nloglogn +J(). (d6 1ogd + T(d))) time algorithm to compute variDus
decomposition of geometric models, where J( is a number which captures the shape degeneracy
of the geometric model. It should be noted that this worst case time bound in computing the
exponent of the dO(l) is for implicitly defined algebraic curves. This e>..-ponent is considerably
less for curves in their parametric representation. Also in practice essentially all planar geometric
models considered are those bounded by curves of maximal degree d ~ 4 of which all d = 2 and
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most d = 3 curves are parametrizable. Furthermore, our algorithms rely on simple data structures
and are implementable.
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