
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

On the Effects of Synchronization in Parallel Computing On the Effects of Synchronization in Parallel Computing

Dan C. Marinescu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
88-750

Marinescu, Dan C. and Rice, John R., "On the Effects of Synchronization in Parallel Computing" (1988).
Department of Computer Science Technical Reports. Paper 646.
https://docs.lib.purdue.edu/cstech/646

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ON THE EFFECTS OF SYNCHRONIZATION
IN PARALLEL COMPUTING

Dan C. Marinescu
John R. Rice

CSD TR·7S0
March 1988

ON THE EFFECTS OF SYNCHRONIZATION
IN PARALLEL COMPUTING

Dan C. Marinescu*
John R. Rice'

Computer Science Department
Purdue University

CSD-TR-750
March 15, 1988

Abstract

We present a non-deterministic model of parallel computation that includes the
effects of communication costs, computation control costs and synchronization
effects. Synchronization may be the most important effect in many important
applications. Our model is particularly suited for coarse grain parallelism, as
in Same Program Multiple Data (SPMD) computations. Using this model we
derive exact expressions for synchronization costs, where the parallel tasks
have execution times that are unifonnly or exponentially distributed. We show
that efficient massive parallelism is possible with the unifonn distribution, but
the synchronization costs for exponentially distributed execution times lead to
a logarithmically decayiog efficiency.

1. Introduction

As the number of multiprocessor systems increases, practical questions related to
their efficient use as well as questions of how to design new systems capable of high per
formance stimulate performance related studies in parallel processing. Studies related. to
problem partitioning, [2], [3], [8], [12], [13], [15] investigate methods for decomposing a
large application into smaller subproblems, and for allocation of such subproblems to
processing elements of a multiprocessor system. Mapping of known applications to
existing multiprocessor systems has produced experimental results [2], [7], [13] used to
validate models of parallel execution. System designers use the models of a parallel exe
cution and the empirical data for comparative analysis of different architectural options
for highly concurrent multiprocessor systems [5], [10], [16], [19].

• Work supported. in pan by the SU1llCgie Defense Initiative under Army Rcsea.rch Office COIllnlCl DAAL03-86-K-QI06.

-2-

It is generally recognized that accurate models of parallel execution need to
describe the complex interactions among concurrent activities and to estimate their
corresponding overhead which limits the actual performance of parallel system executing
a given application.

The inefficiency associated with parallel execution usually is attributed to twO

causes: communication among the tasks executed concurrently, [2], [3], [6], [8], and con
trol of parallel activities including scheduling of tasks [2], [9], [14]. Another potential
source of inefficiency which has received less attention is the synchronization among
concurrent tasks. In case of synchronized execution, it is required that all computations
running concurrently complete, before the next set of activities can proceed. Intuitively
we expect that synchronization leads to an increase in the execution time, hence any
model ignoring synchronization is an optimistic one.

In this paper. we present a non-deterministic model for parallel computation and
provide some answers to questions about to the cost of synchronization. We show that in
the general case the overhead associated with synchronization depends upon two factors,
namely, the number of PEs running in parallel, and the actual distribution of the execu
tion time on PEs. For particular distributions the overhead associated with synchroniza
tion is independent of the number of PEs running in parallel when this number is large,
hence massive parallelism does not become prohibitively expensive solely due to syn
chronization. This is the case for the uniform and normal distributions, when only the
coefficient of variation of the distribution detennines the synchronization overhead. For
other distributions, like the exponential one, the synchronization overhead grows loga
rithmically in the number of PEs. It follows that any modeling technique using Marko~

vian models will overestimate the synchronization overhead if there is not strong empiri
cal evidence that execution times are indeed exponentially distributed. But. due to instru
mentation difficulties, studies of empirical distributions of execution times will probably
not be available very soon. For this reason we present upper bounds for the synchroniza
tion costs which can be computed based upon the mean and the variance of the execution
time.

The paper is organized as follows. The next section provides background and
motivation for the model. An important class of applications is reviewed where this
model is appropriate, others are identified. It involves domain decomposition techniques
for physical world simulations in multiprocessor systems with multiple levels of
memory. This provides a concrete example for the unified model introduced in the third
section. This model takes into account communication, control and synchronization
effects in parallel computation. In the last section we develop approximations and
bounds for some performance measures including total execution time, speed-up and
synchronization.

2. Background and Motivation for the Model

There are cases in parallel processing when synchronization cannot be avoided. For
example, in case of domain decomposition techniques for partial differential equations
[2], [12], [17] all subcomputations active in a given sub-domain have to exchange

- 3 -

boundary values. In such a case a large problem is partitioned in a set of subproblems
and all processing elements (PEs) execute the same program on different data (SPMD
Same Program Multiple Data). If the execution times are strictly detenninistic and equal,
then all PEs would complete at the same time and synchronization would have no. effect
upon the performance of the system. But a deterministic and equal time model for pro
gram execution is unrealistic, since, due to data dependences, different PEs may execute
different sequences of instructions. Even when they execute the same sequence of
instructions but on different data, their execution times are slightly different. Real appli
cations will have significant variations in the execution times due to data dependencies.

Modeling and analysis of synchronization in parnllel computing raises difficult
questions. Empirical data are largely unavailable, due to the present state of the art in the
instrumentation of parallel systems. Only measurements related to the aggregate pro
gram behavior as total execution time, processor utilization, etc., can be carried out rou
tinely. while detailed data concerning communication and synchronization costs are usu
ally unavailable. Theoretical results in the analysis of Fork-Join queues which model
synchronized parallel computations are beginning to emerge. Recently Bacelli and his
co-workers [1] have shown that for homogeneous Fork-Join systems, under renewal
assumptions, the moments of the system response time grow logarithmically in the
number of parallel processors. This result is extremely important, since it seems to indi
cate that the cost of synchronization cannot be ignored in case of massively parallel sys
tems independent of the effort to match as closely as possible the execution times of
computations running in parallel.

Among the modeling and analysis techniques used to study the performance of
parallel computations on multiprocessor systems. the ones based upon Stochastic Petri
Nets (SPNs) have become popular in recent years. Their main advantage seems to be
derived from the high descriptive power of Petri net based model description languages
and from their two-dimensional syntax suitable for visual representations. The limitation
of these techniques for the analysis of multiprocessor systems with a large number of
processors is due to the explosion of the state space of the model. A possible way to
overcome this limitation is to carry out a structural analysis of the net representing the
model, rather than to attempt to identify all possible states of the system and then to use
standard queueing methods for the analysis.

The authors have investigated [12], [17] a particular application and a multiproces
sor system described in [16] using a class of SPNs, the Stochastic High Level Petri Nets
(SIll..PNs), which support in a simple way the aggregation of the states of the model, and
in the same time provide a convenient support for modeling of synchronized execution.
The application was the solution of partial differential equations (PDEs) based upon the
Schwartz splitting algorithm using domain decomposition techniques. The results of our
analysis show that models of synchronous execution [17], predict a, considerable lower
average processor utilization than the ones of asynchronous execution [12]. We outline
this application to motivate our investigation of the effects of synchronization in parallel
computing.

- 4-

Most physical phenomena (e.g., heat flows, electromagnetic forces, stresses, air
flows) are modeled by differential equations in 1 to 4 physical dimensions. These
phenomena are inherently local in time and space (only gravity is thought to act instan
taneously_ at a distance). These phenomena are inherently synchronized in time, but
loosely synchronized in space; space synchronization comes through the time for effects
to propagate through space via local interactions.

Computations modeling these phenomena can exploit this loose coupling in space to
achieve parallelism. The principal technique is called domain decomposition, where
physical space is decomposed into a large number of domains. Since interactions
between these domains is local, this allows one to use locally connected computer archi
tectures effectively. See [12], [17] and [18] for previous work of ours, which include
descriptions of this approach at a fairly high level. There is an enormous literature on the
mathematical analysis of specific instances of this general approach, this is currently one
of the most intensively studies areas of numerical computation.

The basic technique is to compute the results in the interior of a particular domain
and then communicate the new state to neighboring domains for their use. Important
characteristics of such computation are as follows:

1. The interior computations and data are usually large compared to data to be
communicated. One of the objectives of algorithm design to be sure this is so,
it follows naturally if one chooses domain shapes that have small "surface"
compared to "volume" (e.g., nearly spheres or cubes).

2. The interior computations are usually similar (use the same program), but
rarely identical (have different data) due to variations in shapes, materials,
intensities of physical effects, etc.

3. Synchronization in time is essential. Some models of the physics may com
pensate for small time asynchronizations locally, and more as domains become
separated. Many algorithms have an artificial time (e.g.• iteration numbering)
which has the same characteristics as real world time.

Thus the real world seems well suited to partitioned or hierarchical parallel machines
such as the Butterfly, Cedar [5], hypercubes, Multi-FLEX [13], PASM [16], as well as
the shared memory, '<homogeneous', machines such as the Elexi, RP3 or Sequent.

We have made a detailed analysis [17] of the effects of synchronization for a partic
ular domain decomposition algorithm running on a particular machine. The effect of
synchronization is shown in Figure 1; it is quite substantial, reducing utilization from
nearly 100% to 56%. The effect in Figure 1 is entirely that of synchronization. Utiliza
tion increases with problem size because the ratio of computation to communication
increases. However, this increase does not reduce the effect of synchronization.

Other application areas with similar characteristics include analysis of organiza
tional phenomena, molecular structures and searching schemes.

- 5-

100

95 Asynchronous:

90

85

Average 80
Processor 75Utilization

(%) 70

65

60

55 / Synchronous
50

10 20 30 40 50 60
Problem Size

Figure 1. Processor utilization for synchronous and asynchronous execution of a
particular domain decomposition algorithm on a 63 processor machine.

3. A Unified Model of Parallel Computation

Let us now consider a computation C represented as a graph, each node in the graph
corresponds to a dispatchable unit of work (task) and arcs connecting nodes represent
communication and synchronization among tasks running concurrently. We assume in
the following that C exhibits a certain degree of parallelism, namely subsets of tasks can
be executed in parallel, and that synchronization conditions are imposed.

Such a graph for a computation C is shown in Figure 2. In this figure, we recognize
a sequence of n synchronization epochs, IIi with 1 ::::;; i S; n. each consisting of I j parallel
tasks, tjJ with 1 ~ j ~ I j . In terms of parallel programming constructs a synchronization
epoch corresponds to a Fork-Join pair. Each synchronization epoch llj is preceded by
the execution of a control flow task <l>j. The computations done by <l>j are twofold: (1)
the algorithm related flow of control computation, and (2) the execution environment
related computations setting up the next computations. In case of parallel execution, the
second component reflects the scheduling overhead associated with the Ii tasks tiJ run
ning in parallel in llj.

Let us now examine the execution environment for computation C. We model it by
assuming that the parallel system has P processing elements (PEs) and one or more sys
tem control elements (SCEs). Each SCE controls a group of PEs. Each processing node

- 6-

(FE or SeE) consists of a processor, a local memory and possibly an I/O subsystem.
This model is illustrated in Figure 2.

For simplicity. we consider a system with one SeE, and P PEs, PEl' PE2 ... PEp.
We assume that I j S; P for allIS; i S" n. The mapping of tasks to processors is straight
forward. and the control tasks are executed sequentially by the system control element
and the Ii tasks of the synchronization epoch TI j are assigned such that task tjj is exe
cuted by PE., The model of execution is: SeE executes <1>1 which spawns the computa

tional tasks fu TIl' t1,1 to tUl' When all of them complete their execution, <1>2 is started

on the SeE and in turn it spawns t2,1 to t2J'l and so on.

Note the model of the parallel architecture described here is quite general and it
describes a wide class of parallel machines. At one extreme are machines with identical
processors interconnected some way. The FLEX/32 uses a high speed bus and one pro
cessor acts as the SCE; PASM [19] and the Butterfly use a high speed interconnection
network; the hypercube machines have a separate SCE and a set local connecting busses.
At the other extreme are shared memory machines where the local memory of a proces
sor is merely a cache, and a bus or network connects to the main memory (e.g., Sequent,
RP3 and Elexi). Here one processor acts as the SCE. Also modeled well are machines
with hierarchical forms of control, such as the Multi-FLEX [16], Cedar [5] or a parti
tioned PASM machine. The model illustrated in Figure 2 becomes more complex
through nesting of the epochs (e.g., task t 1,1 may itself be represented by computation as
shown in Figure 2). That is, several synchronization epochs may be active concurrently
on different partitions of a parallel machine. In this case a control task, say <1>1' is exe~

cuted on the system controller and determines the partitioning of the P processing ele-

•ments into q groups with PI' P 2 ' ... , Pq' PEs respectively, such that L Pi ~ P. The
i=1

control tasks <1>11 ' ••• , cI>q,. are then executed on a separate SCE for each group.

The communication model

As noted earlier, several communication models have been discussed in the litera
ture. We base our model on an observation which seems intuitively correct and which is
supported both by empirical evidence [7] and consideration of applications [18]; namely,
that some form of locality of communication is expected as a result of any decomposi
tion.

More specifically. we expect a temporal locality of communication, only tasks
active in a given synchronization epoch communicate among themselves. In addition, a
spatial locality ofcommunication exists with two properties:

PI: During the synchronization epoch TIi with Ii tasks running in parallel, the j -th task
liJ communicates only with the tasks ti,k with k in the range

[j -w) modI,';k'; [j +w) modI,.

-7 -

P2: The number of messages exchanged by tij and tj,k is proportional with the distance
between the two of them defined as Ij - k I. Figure 3 presents the number of mes
sages exchanged by a given task with other tasks in its synchronization epoch func
tion of the distance between them.

<1>2

9,~, 9II2 2J '1J,

<1>,

•
•
•

¢<1>.

II. 9'." 2J tnJ~

I
t

II,

Figure 2. Graphical representations of a computation with sets of parallel
subcomputations plus synchronization conditions.

- 8-

the number of messages exchanged by PE j

_....J::..- I- .:1",_th:;;.e distance (I - j)
-W +W

Figure 3. The spatial locality of communication. Any task in a synchronization
epoch IIi communicates only with tasks in a window of size 2W (mod Ii)'

In this case the total number of messages exchanged by task tj J is

+w
Nm =4:E (W-i)=2W(W-I)

i = 1

with W S; Ii. We assume that the communication between any pair of tasks involves
messages of equal length, / and that the total time em for transmission of a message is the
same for all pairs of communicating tasks.

A good model for em is

with

Cs = the start-up time of the transmission,

Cc = communication time per message of unit length.

Finally, the total time spent by task tj j for communication is:

~iJ = Nm cm = 2W(W - I)(c, + Ixc,)

In our analysis the communication costs are assumed independent of the task numbering,
the synchronization epoch and to have a common value

lSiSn,

We note that the model presented here is a pessimistic model, it does not take into
account possible overlapping of different activities. In particular, the communication
between PE. and PE:Jc may overlap with execution of tasks t jJ and ti.t on the two PEs. A
similar oveAapping may exist between the synchronization epoch TIi and its associated
control task c:I>j.

- 9-

Quantitative mndel analysis

The qualitative analysis of the parallel execution model discussed in the previous
section points out that the expected execution time of a parallel computation C on a sys
tem -with P processing elements will have the components of control, communication
and PE runtime, including synchronization. The expected total execution time T* may
be expressed as

with

T,

T*

T a
p

TP
p

TY
p

a random variable representing the actual execution time of C •

the expected value ofTe ,

the expected execution time attributed to control,

the expected execution time attributed to communication,

the expected execution time attributed to PE runtime including synchronization.

By examining the program graph (Figure 2), we can express the total execution time as

"T, = L (11, +$,)
i=1

with

1ti the duration (a random variable) of the synchronization epoch I1 j •

1 ~ i S; n. consisting of parallel tasks tj J with 1 ~ j S Ii' Ii is the
number of active tasks in IIi and I j $; P ,

Qlj the execution time (a random variable) of the control task, <Pi'

n the number of synchronization epochs.

Based upon the previous discussion, we recognize the execution time <Pi is the sum of the
time of the algorithmic flow of control, <pr, and the execution time related to the architec
ture dependent flow of control, CPi, that is

CPi = cpr + CP{ .

We will investigate a simple model for the flow of control with two properties, first the
total flow of control computation time is independent of the parallelism. Thus we have

(Pi)

with a 1 the execution time required for the flow of control in case of serial execution.

-10 -

Second, it is assumed that the architecture dependent flow of control associated with each
synchronization epoch depends only upon the number of parallel tasks in the epoch

$[= CY-z Ii for all i "n . (P2)

With these two assumptions the expected execution time attributed to control becomes

We model, 1til the actual duration of a synchronization epoch n j • by

1t,. = MAX (XiJ" + Y'"J)
1 < " < ["-J - I

with

XjJ the execution time (a random time) of task tjj on PEj •

Yij the communication time (a random time) for task tjJo

This model overestimates the total execution time since it does not take into account the
possible overlapping of communication and control activities with execution of computa
tions. For the simple communication model introduced earlier we have

YjJ = 13 for all i ~ j ~ Ii

and hence

1t" = B+ MAX (X·")
I i '5. j '5. 11 IJ

We introduce Yi' the average duration ofa synchronization epoch excluding communica
tion,

'Yi=E(1t"-B)=E[MAX (x"-l]
" 1<"<['J-J - I

which can be expressed as

with

~j the expected value of XiJ' 1 .s;; j S; I I" Note that in case of identical deterministic
execution times we have Yi = ~j since all tasks running in parallel finish their
execution in the same time.

- 11 -

I:1j - represents the cost of synchronization. In the SPMD case /:i. j is a random variable
due to data dependency effects in the computation t;j.

The final expression for the expected execution time. when control, communication and
synchronization are taken into account, becomes

n n
T* =E(Te) = (J.l +"'- LIi +n ~+ L ~i (1 + IIi)

i=l i=l
(3.1)

In case of serial execution, the tenns corresponding to architecture dependent con
trol, communication and synchronization are zero, that is, Ctz = 0, B= a and D.j = 0 for
all i and the J.Li times are summed in each epoch.

Thus the expected serial execution lime of C is

n
Ts = (J., + L ~i Ii

i=l

Consequently, the speedup factor for our model of parallel computation becomes

n

(J., + L ~i Ii
Sp = ~ ~--"j=~l _

[(J.l+"'-~Ii +n ~+i~~i (l+lIi)

(3.2)

When all synchronization epochs IIi. 1 SiS n exhibit identical behavior, namely

~i =~ and IIi =11

and when the number of parallel tasks in each IIi is equal to the number of processing
elements p. namely I j = p. for 1 ~ i ~ n then previous expressions for T*. Ts and Sp
become

T* = (J., + ",-nP + n ~ + n~(l + II),

Ts = (J., + nP~,

(J.l +nP~
Sp = ---~'----~'------

(J.l + ",-nP + n ~ + n~(1 + II)·

- 12-

Using our model, we can compare the costs of synchronization, communication and
control related to parallel execution. By rewriting (3.1) as

n

1'* = "'I + n B+ :E (~i + "",Ii + Lli)
i=l

we see that the cost of synchronization in IIj can be neglected when

This corresponds to the case when the average execution time of t jJ is large and when
the overhead associated with dispatching of all tasks in IIj is relatively significant.

A model of parallel computation which takes into account the cost of communica
tion, but ignores synchronization, is accurate only when

n

:E Lli
j=lB» --=-

n

In conclusion, to construct an accurate model of the parallel execution of a compu
tation on a multiprocessor system it is necessary to estimate the cost of synchronization,
and only after comparing it with the overhead associated with communication, and con
trol it is possible to decide which effects can be ignored.

4. Approximations and Bounds For Performance Measures

In this section we examine the effects of synchronization upon the expected execu
tion time and upon processor utilization. From our previous qualitative analysis and
experience with domain decomposition algorithms, we know that synchronization can
lead to a substantial increase in the execution time of a parallel computation. We now
give exact expression and bounds on I:1j , the quantitative measure of the synchronization

cost.

A standard assumption in the analysis [1], [8] is that the random variables Xjj for

1 s:; j S; I j , representing the execution times of the parallel tasks tj j are independent and
identically distributed. Under these assumptions we are able to use results from [11] to
derive exact expressions for I:1j in the cases of uniform, normal and exponential distribu
tions of the execution times Xij . For other distributions we develop bounds for l:1i . We

then compare these bounds with the actual values for the previous cases in order to illus
trate how accurate the bounds are. Finally we relax the independence assumption and
derive additional upper bounds on the I:1j •

We expect 1:1.. to be a function of the distribution of Xij and of the number of tasks

running in parallel in TI j , Ii' A related analysis without synchronization has been given

-13 -

by Kruskal and Weiss [9] for the simpler case of allocating independent tasks to proces
sors.

Unifonn distribution

In [11] we have examined the case when the Xij are unifonnly distributed in raj,
h j] with Qj s: h j and we have derived the following expression for 'Yi. the expected dura

tion of the synchronization epoch IIi with Ii tasks running in parallel

1
"Ii = bi - (bi - ai) I. + 1,

In this case, the expected value Ili and its variance (Ij are given by

aj + hi

Hence Yi can be expressed as:

Ili = 2

(bi - ai)2

12

'Yi = Ili [
,J3(Ii - 1)]

1 + C· -;-'---;--, [. + 1,

(bi - ai)(Ii - 1)

(bi + ai)(Ii + 1)

with C j the coefficient a/variation of the distribution given by

cr· (b· - a·)G-=_I= I j

t Ili ..J3(hi + ad
The expression for 8.j for the uniform case is

I· - 1
{).. = C·,J3 , =

I t J- + 1, (4.1)

For large values of Ii' Li.j depends only upon the coefficient of variation of the distribu

tion and is

Exponentia/d~tribution

In the case of exponential distribution with parameter A, we have derived in [11]

"Ii = ~ (log Ii + C + 0(Ii-
1»

with C = 0.577 the Euler's constant. In this case

1
Ili = 1: and C i = 1 .

Hence "(i can be expressed as

- 14-

with

8 i ~ log Ii + C - 1 + 0(/i-
1
)

Standard normal distribution

As shown in [9], tlj for the standard Donnal distribution has the value

(4.2)

8 i ~ (2 . log li)'h - ; (2 log lir'h (log log Ii + log 4" - 2c) + O(log Ii-I) (4.3)

Upper bounds for 8 i

The distribution functions Fj(x) of the random variables Xjj for 1 :5: j :5 Ii are sel
dom available. More often the first two moments of the distribution can be estimated. In
the followings we present upper bounds for 8j in terms of the mean value of the execu
tion time, ~i and the variance of the execution time (Ji'

A first upper bound is derived under the assumption that Fx,(x) is a continuous,

strictly increasing cumulative distribution function. In this case we have

I· - 1
A· < C· -p'ir==i',- ',p.1i 1

with

Cj, the coefficient of variation of the distribution = a/~j.

Ii the number of parallel tasks in the synchronization epoch 1t;.

The derivation follows immediately from the results presented in David [4].

A sharper bound exists for symmetric distributions. In this case

For large values of Ii' the Stirling approximation can be used to obtain

It follows that

(4.4)

(4.5)

(4.6)

- 15-

The accuracy of these bounds decreases when I j increases. Table 1 (see also [4]) shows
!!..

the exact values _I for the uniform and the normal case compared with the values
C,

obtained using the two bounds presented above.

100

90

80

70

60
Upper
bounds 50

for Aj/Cj

40

30

20

10

- - - - dependent I

...........independenl, any distribution /
__independent, symmetric distribution ",

I,,,
I,,,,,,,,,

/, ., ..,,
/, ..

/~/
,, .., ..

"",""-~- .
-:-.-::':"".';'.-:....

I
1

I
1.5

I I I
2 2.5 3

log (Ii)

I
3.5

I
4

Figure 4. The cost of synchronization as function of the number of processors
active in a synchronization epoch. Three upper bounds for 8.j /Cj are shown: (a)
dependent random variables case (4.7), (b) independent random variables with an
arbitrary distribution (4.4), and (c) independent random variables with symmetric
distribution (4.6). C j is the coefficient of variation of the distribution.

When XjJ • 1 '!:. j '!. Ii are dependent random variables, then a yet weaker upper
bound exists for IJ. j , namely

The dependency of the synchronization costs upon the number of processors active
in a synchronization epoch is summarized in Figure 4. The values IJ.;lCj are plotted
versus log(li) for the three bounds presented above.

(4.7)

- 16-

Uniform Normal First Upper Upper Bound for
Ii Distribution Distribution Bound Symmetric Distribution

(4.1) (4.3) (4.4) (4.6)

5 1.1547 1.1630 1.3333 1.1701
10 1.4171 1.5388 2.0647 1.6222
20 1.5671 1.8673 3.0424 2.2645
50 1.6641 2.2491 4.9247 3.5533

100 1.6978 2.2491 7.0179 5.0125

l!..
Table 1. Comparison of the bounds with the exact values for -'.

Ci

Processor Utilization

The average processor utilization in the the synchronization epoch IIi with Ii PEs
active can be computed using the method described in detail in reference [9]. We present
here only the results for two cases, the uniform distribution and the exponential distribu
tion.

The average processor utilization in the case of the uniform distribution is

Ii + 1
Ui = "'"(I;-i--:+--:I'"')-+-'-C::;-i',j3"'(:;Ii-----,-I)'"

with Cj the coefficient of variation of the distribution of the execution time. From (4.1) it
follows that:

1
Ui = ..,--,''-;-

1 + 8j

The results are ploned in Figure 5 for several values of Cj . They support the previous
observation that for uniform distribution the synchronization overhead does not prevent
massive parallelism and only the coefficient of variation of lhe distribution is important.

In case of exponential distribution the average processor utilization is given by

1 (-K·U, = K- 1 - e '),
with

Ki = log (Ii) + C + 0(n-1) = l!.i - 1

Figure 6 presents the average processor utilization as function of the number of PEs for
the exponential distribution. For a large number of PEs the synchronization costs
become prohibitive.

- 17 -

99 ----96

k
C,=O.04

93

90 C,=O.05

87 Ci =O·08
84

Average
81 C,=O.12Processor

Utilization 78
(%)

Ci =O·1775

72

69
Ci=O·22

66 Ci =O·28
63

60 Ci=O·35

0 0.5 I 1.5 2 2.5 3
log(!,)

Figure 5. The average utilization of a processor versus the number of processors
for uniform distribution of processing time.

A comparison of Figures 5 and 6 shows the impact of the distribution of the execu
tion time upon the actual cost of synchronization reflected in this case by the utilization
of the PEs. At one extreme the unifonn distribution allows massive parallelism, since by
carefully matching the PE execution time inside a ForkwJoin pair one can theoretically
achieve any level of performance desired, while at the other extreme, such as the case of
exponential distribution, the performance depends solely upon the number of PEs run
ning in parallel.

The results of [11] can be used. to show that massive parallelism is also efficient for
the nonnal distribution, processor utilization again depends only on the variance of the
distribution.

- 18 -

65

60

55

50

Processor 45
Utilization

(%) 40

35

30

25

20

o 0.5 1 1.5 2 2.5 3 3.5 4
log(Ii)

Figure 6. The average utilization of a processor versus the number of processors for
the exponential distribution of processing time.

5. Conclusions

Comparisons of synchronous and asynchronous models of solutions of PDEs on a
multiprocessor system with multiple levels of memory show that synchronization cost
cannot be ignored in the analysis of parallel computations.

In this paper we develop a unified model of a computation to take into account the
overhead associated with communication, control and synchronization. Based upon this
model we derive exact expressions for the actual synchronization costs for uniform, nor
mal and exponential distributions. Then we compute bounds for the actual cost of syn
chronization for dependent and independent execution times of the computations carried
out in parallel in terms of the mean value of the execution time and of its variance.

Empirical studies of the distribution of the execution times inside a Fork-Join pair
are necessary in order to establish whether the actual distribution can be approximated by
uniform distributions. so that massive parallelism is still possible with a low synchroniza
tion overhead.

- 19-

Literature

[1] F. Bacelli, A.M. Makowski and A. Schwanz, "The fork-join queue and related sys
tems with synchronization constraints, stochastic ordering, approximations and
computable bounds", preprint, January 1986.

[2] L. Brochard, "Communication and control costs of domain decomposition on
loosely coupled multiprocessors", Proceedings a/the 7th International Conference
on Distributed Computing Systems, Berlin, pp. 200--205, 1984.

[3] Z. Cveranovic, •'The effects of problem partitioning allocation and granularity on
the performance of multiple-processor systems", IEEE Trans. Computers, Vol. C
36,pp.421-432,1987.

[4] H.A. David, Order statistics, Second Edition, Wiley, 1981.

[5] D. Gajski, D. Kuck, D. Lawrie and A. Sameh, "Cedar", in Supercomputers: Design
and Applications (K. Hwang, ed.) IEEE EH0219-6, pp. 251-275, 1984.

[6] n.B. Gannon and J. van Rosendale, "On the impact of the communication com
plexity on the design of parallel numerical algorithms", IEEE Trans. Computers,
Vol. C-33, pp. 1180-1194,1984.

[7] D.C. Grunwald and D.A. Reed, "Benchmarking hypercube hardware and
software", Report No. U1UCDCS-R-86-1303, University of minois, 1986.

[8] B. lndurkhaya, H.S. Stone and L. Xi-Cheng, "Optimal partitioning of randomly
generated distributed programs", IEEE Trans. Software Engineering, Vol. SE-12,
pp. 483-495, 1986.

[9] C.P. Kruskal and A. Weiss, "Allocating independent subtasks on parallel proces
sors, in Inti. Can! Parallel Processing, IEEE, pp. 236-240, 1984.

[10] S.L. Lundstrom, "Applications considerations in the system design of highly con
current multiprocessors", IEEE Trans. Computers, Vol. C-36, pp. 1292-1309,
1987.

[11] D.C. Marinescu and lR. Rice, "Synchronization of nonhomogeneous parallel com
putations", Proceedings of the SIAM Conference on Parallel Processing for
Scientific Computing, December 1987 (to appear). Also CSD-TR-683 Computer
Sciences, Purdue University, May 1987.

[12] D.C. Marinescu and J.R. RIce, "Domaln oriented analysis of PDE splitting algo
rithms", Infortnation Sciences, 43, pp. 3-24, 1987.

[13] D.M. Nicole, "Performance issues for domain~oriented time-driven distributed
simulation", Technical Report 87-49, ICASE, 1987.

[14] C.D. Polychronopoulous and U. Banerjee, "Processor allocation for horizontal and
vertical parallelism and related speed-up bounds", IEEE Trans. Computers, Vol.
C-36, pp. 410-420, 1987.

[15] D.A. Reed, L.A. Adams and M.L. Patrick, "Stencils and problem partitioning, their
influence on the performance of multiple processor systems" • IEEE Trans. Comput
ers, Vol. C-36, pp. 845-858, 1987.

- 20-

[16] J.R. Rice, "Multi-FLEX machines preliminary report", CSD-TR-612, Computer
Science, Purdue University, 1986.

[17] J.R. Rice and D.C. Marineseu, "Analysis and modeling of Schwartz Splitting algo
rithms for elliptic PDEs". in Advances in Computer Methods for PartiaL Differen
tial Equations. VI (Stepleman and Vishnevetsky. eds.), IMACS. Rutgers University,
pp. l--{j, 1987.

[18] J.R. Rice, "Paraliel methods for partial differential equations", in The Characteris
tics ofParallel Computation (Jamieson, et. al., eds.), MIT Press, pp. 209-231, 1987.

[19] R.J. Siegel, T. Schwederski, J.K. Kuehn and N.J. Davis IV, "PASM: A
reconfigurable parallel system for image processing" in Parallel Computing.
Theory and Comparisons by G. J. Lipovski and M. Malek, John Wiley, 1987.

	On the Effects of Synchronization in Parallel Computing
	Report Number:
	

	tmp.1307986960.pdf.zaUEz

