Co-Modulation Masking Release Begins in the Auditory Periphery

Kareem R. Hussein1, Agudemu Borjigan2, Mark Sayles M.D., Ph.D.1,2
1Weldon School of Biomedical Engineering, Purdue University
2Department of Speech, Language, & Hearing Sciences, Purdue University

Abstract

Listening in noisy environments is difficult. Neural “de-noising” mechanisms exist to improve the perceptual signal-to-noise ratio in such environments. This de-noising can be quantified using a “co-modulation masking release” (CMR) paradigm. People with hearing loss find noisy environments particularly troublesome, and have much weaker CMR. We tested the hypothesis that non-linear signal processing in the normal-hearing cochlea is the basis of CMR.

Hypothesis: Frequency-dependent suppressive non-linearities in the cochlea result in a neural correlate of CMR in the auditory nerve.

Introduction

Coiling inner and outer hair cells.

Basilar membrane velocity responses to CF-tones (left) and frequency tuning curve showing suppressive regions represented in dashed blue and red lines (right).

Two-tone suppression: an (almost) instantaneous mechanical phenomenon – NOT neural inhibition!

Methods

Surgical preparation and recording
- Anesthetized chinchilla (Chinchilla lanigera).
- Ketamine/xylazine/diazepam.
- Single-unit spike-time recording from ANFs.
- Dorsal fossa approach.
- Ipsilateral cerebellotomoy.
- High impedance glass pipettes (30–90 MΩ).

Signal: Masker Synchronized−Rate Ratio

experiment: 24−May−2017 track: 4 unit: 4 SR: 0 per sec.
RF
CM
CD

Prediction

Response

Signal Level

Results

Histogram of LSR fiber showing firing rates effects from RF, CM and CD stimulus conditions with increasing signal level as you go down (top). Signal:Masker Sync-Rate Ratio as a function of increasing signal level (left).

Signal:Masker Sync−Rate Ratio for different noise types.
- Think of this measure as a signal-to-noise ratio, in the response dimension rather than the acoustic.
- Low-pass noise maskers have most effect compared to notched- and high-pass noise maskers.

Basilar Membrane (top left), characteristic frequency of spontaneous rate fibers (top), and frequency tuning curves of several neurons (left).

Analyses:
- Constructed tuning curve to find the unit’s CF and threshold, both used to design the CMR stimuli.
- Vary sound pressure level of a band-stop Gaussian noise in the presence of a CF tone to find the noise level where maximum suppression of the CF-tone driven response occurs.
- Present RF, CD, and CM stimuli in randomized order, for 20 repetitions.

Acoustic stimuli
- Presented signal tone, masked by a SAM tone at fiber’s center frequency (CF) and band-stop Gaussian “flanking band” noise.
- Three acoustic signals used similar in past CMR studies [2,3]
 - RF: SAM + Signal.
 - CM: Signal + SAM + FB in phase with SAM.
 - CD: Signal + SAM + FB out of phase with SAM.

References

Acknowledgements

Supported by start-up funds from the College of Engineering and College of Health & Human Sciences, Purdue University. KRH is supported by the SURF program.

Conclusions and Future Work

- Proof of CMR in the nerve means relevant neural information is already present at the brain’s input.
- Chinchilla ANF data support a role for cochlear non-linearities in mediating across-frequency co-modulation masking release.
 - Important to characterize the strength of this effect in the inputs to brainstem circuits.
 - Doesn’t mean there’s no role for brainstem (or cortical) processing in CMR.

Expected improvement in masked signal-detection threshold when coherent (across-frequency) amplitude modulation is applied to a broadband masker [1].