
Purdue University
Purdue e-Pubs

Cyber Center Publications Cyber Center

3-2014

Security of Graph Data: Hashing Schemes and
Definitions
Muhammad U. Arshad
Purdue University, marshad@purdue.edu

Ashish Kundu
Purdue University

Elisa Bertino
Purdue University, bertino@cs.purdue.edu

Krishna Madhavan
Network for Computational Nanotechnology, Purdue University

Arif Ghafoor
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ccpubs

Part of the Engineering Commons, Life Sciences Commons, Medicine and Health Sciences
Commons, and the Physical Sciences and Mathematics Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Arshad, Muhammad U.; Kundu, Ashish; Bertino, Elisa; Madhavan, Krishna; and Ghafoor, Arif, "Security of Graph Data: Hashing
Schemes and Definitions" (2014). Cyber Center Publications. Paper 627.
http://dx.doi.org/10.1145/2557547.2557564

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fccpubs%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cc?utm_source=docs.lib.purdue.edu%2Fccpubs%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=docs.lib.purdue.edu%2Fccpubs%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=docs.lib.purdue.edu%2Fccpubs%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=docs.lib.purdue.edu%2Fccpubs%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages


Security of Graph Data: Hashing Schemes and Definitions

Muhammad U. Arshad†1, Ashish Kundu‡2 , Elisa Bertino†3, Krishna Madhavan†4, Arif Ghafoor†5

†Purdue University
West Lafayette, Indiana, USA

{1marshad, 3bertino, 4cm, 5ghafoor}@purdue.edu

‡IBM T J Watson Research Center
Yorktown Heights, New York, USA

2akundu@us.ibm.com

ABSTRACT
Use of graph-structured data models is on the rise – in
graph databases, in representing biological and healthcare
data as well as geographical data. In order to secure graph-
structured data, and develop cryptographically secure schemes
for graph databases, it is essential to formally define and
develop suitable collision resistant one-way hashing schemes
and show them they are efficient. The widely used Merkle
hash technique is not suitable as it is, because graphs may
be directed acyclic ones or cyclic ones. In this paper, we are
addressing this problem. Our contributions are: (1) define
the practical and formal security model of hashing schemes
for graphs, (2) define the formal security model of perfectly
secure hashing schemes, (3) describe constructions of hash-
ing and perfectly secure hashing of graphs, and (4) perfor-
mance results for the constructions. Our constructions use
graph traversal techniques, and are highly efficient for hash-
ing, redaction, and verification of hashes graphs. We have
implemented the proposed schemes, and our performance
analysis on both real and synthetic graph data sets support
our claims.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Cryptographic controls

Keywords
Integrity; Hash Functions; Perfectly Secure Hash Functions;
Graphs; Privacy

1. INTRODUCTION
One of the fundamental building blocks of modern cryp-

tography is hash function. Hash functions are used towards
verification of data integrity as well as message authentica-
tion codes and digital signature schemes. Traditional hash
functions handle messages as bit strings. H : {0, 1}∗ → {0,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY’14, March 3–5, 2014, San Antonio, Texas, USA.
Copyright 2014 ACM 978-1-4503-2278-2/14/03 ...$15.00.
http://dx.doi.org/10.1145/2557547.2557564 .

1}n defines a hash function that takes a bitstring of any size
as input and outputs a hash-value of size n-bits. Integrity
protection of data includes not only data objects that are
bit strings but also data objects that are graphs.

Some of the several contexts where graph-structured data
models are widely used are healthcare, biological, geograph-
ical and location data as well as financial databases [6, 18].
Often it is required to check if a given graph has been up-
dated or not or whether two graphs are identical1. Hashing
is used to carry out these operations [12]. The problem of
hashing graphs is of great immediate practical value and just
not of conceptual value – programmers are looking for tech-
niques that they can implement in order to compute hash
values of directed graphs2. Moreover, authenticating graph-
structured data is often a crucial security requirement for
databases [17]. Hashing is used as a basic building block for
authentication schemes based on hash-and-sign paradigm.
In this paper, we have focused on hashing schemes (in-
tegrity) and not on authenticity.

In case of hashing schemes such as SHA-1, SHA-2, a mes-
sage is either shared completely or not shared at all with the
user. In contrast, when graphs are used, a user may receive
part(s) of a graph (subgraph(s)). Graph models are often
used for representing sensitive data as well (such as health-
care, biological data). Traditional hashing schemes leak in-
formation (for SHA1 and SHA2 leak information about the
length of the plaintext [2]). The challenge is how to hash
graphs so that no information is leaked at least in the con-
text of probabilistic polynomial adversaries [8]. The Merkle
hash technique (MHT) has been proposed as an approach
for computing hashes for trees [15] and has been extended
for directed acyclic graphs [14].

Cryptographic hashing techniques for cyclic graphs have
not been well-studied in the existing literature. There are
schemes for hashing trees and directed acyclic graphs: Merkle
hash technique, and Search DAG, which is based on MHT.
Existing schemes rely on the fact that updates do not change
a tree into a non-tree graph and a DAG to a cyclic graph.
That restriction is quite strong – it limits the operations
that can be carried out on a graph database. Moreover, it is
desireable to have one hashing scheme that is applicable to
any type of graph, which helps simplifying security of graph

1Identical graphs are isomorphic graphs, but the reverse is
not true [4].
2http://stackoverflow.com/questions/14532164/
hash-value-for-directed-acyclic-graph

223



a

b c

d

e f

1

(a)

a

b c

d

e f

1

(b)

a

b c

d

e f

1

(c)

a

b c

d

e f

g

h

i

1

(d)

Figure 1: Graphs: (a) Tree, (b) DAG, (c) Graph with cycles, (d) Graph with multiple sources (vertices with
no incoming edge). The shadowed with dotted boundary are the subgraphs that a user may receive.

databases; without such a generic yet efficient scheme, graph
security technqiques need to determine the type of the graph
being hashed and then determine which scheme would be ap-
plicable. Such a process would not only add cost of software
engineering and maintenance for such additional schemes
and logic, but also add cost in terms for performance and
latency to the security schemes using hashing.

In many application domains, such as health care and mil-
itary, an additional requirement is to maintain the secrecy
of the content from which its hash value: by secrecy, we
mean that the hash value of a content does not leak any
information of the content. Canetti et al. [3] refer to this
as perfectly secure hashing. As in the MHT, when a sub-
tree is shared with a user, the user also receives a set of
Merkle hash values for some of the nodes that are not in the
shared subtree. If the hash function used is not perfectly
collision-resistant , the hash values could lead to leakage of
information about the unshared nodes, which needs to be
prevented. In addition the user may learn the existence of
nodes that he/she is not allowed to access; such knowledge
may lead to inferences that may then result in privacy or
confidentiality breaches [11]. Encryption is too heavyweight
and has different security properties than the properties re-
quired for hash functions.

Therefore, in case of graph data, there is a need to define
the formal notions of hashing and perfectly secure hashing
schemes, and develop constructions for such definitions that
are efficient and practical to be used by real-world graph
database systems. In addition, the formalization of such
secure hashing schemes for graphs is essential towards ana-
lyzing different constructions with respect to their security.

In this paper, we make the following contributions: (1)
we define the formal security model of hashing schemes for
graphs, (2) we define the formal security model of perfectly
secure hashing schemes, (3) we have proposed efficient generic
constructions of hashing and perfectly secure hashing schemes
that can be applied to any types of graphs, and (4) we have
carried out experiments, and our performance results for the
constructions corroborate that our schemes are highly effi-
cient and can be used in real-world graph databases and
graph security schemes.

2. RELATED WORK AND BACKGROUND
There are two techniques in the literature that come clos-

est to the constructions presented in this paper: The Merkle
hash technique [15] (MHT) and the Search-DAG technique [14]
(SDAG).

Integrity assurance of tree-structured data is primarily
carried by the Merkle hash technique [15]. We would de-
scribe the issues associated with MHT in the next section.
Martel et al. [14] proposed SDAG – an authentication tech-
nique for directed acyclic graphs referred to as“Search DAGs”
in third party distribution frameworks. Their technique uses
MHT. The SDAG technique only covers DAGs, not the gen-
eral directed graphs, which is of greater interest in this pa-
per. Martel et al. do not define security of hashing of
directed graphs nor they address perfectly secure hashing
of graphs. Kundu et al. [10] have defined the security of
leakage-free signatures for graphs, which however does not
cover the hashing schemes.

Throughout the paper, we have cited other related works
as and when needed.

2.1 Hashing Trees with Merkle Hash Technique
The Merkle hash technique [15] works bottom-up. For a

node x in tree T (V,E), it computes a Merkle hash (MH)
mh(x) as follows: if x is a leaf node, then mh(x) = H(cx);
else mh(x) = H(mh(y1)‖mh(y2)‖. . . ‖mh(ym))3, where y1,
y2, . . . ,ym are the m children of x in T in that order from
left to right. For example, consider the tree in Figure 1(a).
The MH for this tree is computed as follows. The MH of
e and f are computed as H(ce) and H(cf ), respectively,
which are then used to compute the MH of d as mh(d) =
H(mh(e) ‖ mh(f)). The MH of b is computed as H(mh(d)).
Similarly, the MH of c and a are computed as H(cc) and
H(mh(b) ‖ mh(c)), respectively.

By using such a technique, only the contents of the leaf
nodes can be authenticated. In case the non-leaf (interme-
diate or root) nodes have contents, the computation of the
MH of non-leaf nodes x involves the MH of all of its children,
and either (a) the content of x, or (b) hash of the content of
x (used in 1(a)). Suppose x to be a non-leaf node in T . The
MH of x is defined as follows: mh(x) = H(H(cx) ‖ mh(y1) ‖
mh(y2) ‖ . . . ‖ mh(ym)).

Consider again the tree in Figure 1(a). MH of d, b and a
are computed respectively as H(H(cd) ‖ mh(e) ‖ mh(f)),
H(H(cb) ‖ mh(d)), and H(H(ca) ‖ mh(b) ‖ mh(c)).

2.1.1 Integrity Verification
Let Tδ be a subtree of tree T as shown shadowed to be

shared with a user. The following set of verification objects
VO is also sent to the user, for integrity verification of Tδ.

3Henceforth, H denotes a one-way, collision-resistant hash
function, and || stands for concatenation

224



Such auxiliary information constitutes the information leak-
ages by MHT (Figure 1). The user then computes the MH
of the whole tree using such information (the subtree and
auxiliary information) and verifies the hash of the original
tree using using this MH.

1. Let x be a node is Tδ. The MH of each sibling of x the
is in T but not in Tδ. (e.g., mh(f) w.r.t. e)

2. The MH of each sibling y of each ancestor x, such that
y is not in Tδ. (e.g., mh(c) and mh(f) w.r.t. e)

3. The hash of the content of each ancestor of x. (e.g.,
H(ca) and H(cb) w.r.t. x)

4. (i) The structural order between a node x in Tδ and
its sibling(s) that are not in Tδ, and (ii) the structural
order between the sibling nodes that are not in Tδ.
(e.g., (i) the order between e and f , and (ii) the order
between b and c.)

5. (i) Parent-child/ancestor-descendant relationship(s) be-
tween a node in Tδ and another node not in Tδ and
(ii) those between the nodes that are not in Tδ . (e.g.,
the relationships (i) between b and d, (ii) between a
and b, and between a and c.)

6. The fact that a given node is the root of T (even if it
is the root of Tδ).

The user then computes the MH of the whole tree using
such information (the subtree and VO) and compares it with
the received signed MH of the root. If they are equal, the
integrity of the subtree is validated. Moreover, this process
verifies the integrity of the subtree against the original tree.

2.2 Hashing Graphs
In graphs, nodes may have multiple incoming edges, there

maybe no roots or source nodes; perhaps, there maybe a
number of roots or source nodes. The major challenges in
hashing graphs arise out of the fact that (i) a graph may have
cycles, (ii) changes to the nodes affect hashes of multiple
other nodes, and (iii) a graph can be shared with a user in
parts or in terms of subgraphs. For example, in Figure 1,
subgraphs that are shared are shown as shadowed regions
on each of the graphs.

Consider the DAG in Figure 1(b). Node f has three in-
coming edges. If we use the SDAG technique, then the hash
of node f influences the hashes of three other nodes from
which these nodes originate: d, b, and c. While that is ac-
ceptable, any update to f affects the hashes of all nodes
other than e. In general in the SDAG technique, an update
to a node in a DAG affects |V |+ |E| nodes.

Hashing graphs with cycles is more complex because such
graphs cannot be ordered topologically [4]. For the graphs
in Figure 1 (c) and (d), the cycles involve nodes a, b, c and f .
The issue is then how to hash such graphs so that the cyclic
structure is also preserved in the hash – dissimilar structures
should not have the same hash even if the contents maybe
identical.

2.3 Formal Security Models
Existing approaches [15, 14] do not formally define the

notion of graph hashing, nor they define how to construct
perfectly collision-resistant graph hash functions. Canetti et

al. [2, 3] developed the notion of perfectly collision-resistant
hash functions for messages that are bit-strings and are not
graphs nor any structured/semi-structured objects. Canetti
et al. [3] also proposed that the verify method should be in-
cluded in the definition of random oracles. In this paper, we
also propose a similar hash-verify method as well as a hash-
redact method that is specific for structured/semi-structured
data.

3. TERMINOLOGY
Trees and Graphs: A directed graph G(V,E) is a set of

nodes (or vertices) V and a set of edges E between these
nodes: e(x, y) is an edge from x to y, (x, y) ∈ V × V . Undi-
rected graphs can be represented as directed graphs. There-
fore, in what follows we consider only the case of directed
graphs and we will use the term graph with the meaning of
directed graph. A node x represents an atomic unit of data,
which is always shared as a whole or is not shared at all. A
source is a node that does not have any incoming edge. A
node x is called the ancestor of a node y iff there exists a
path consisting of one or more edges from x to y. Node x is
an immediate ancestor, also called parent, of y in G iff there
exists an edge e(x, y) in E. Nodes having a common immedi-
ate ancestor are called siblings. Let G(V,E) and Gδ(Vδ, Eδ)
be two graphs. We say that Gδ(Vδ, Eδ) is a redacted subgraph
of G(V,E) if Gδ(Vδ, Eδ) ⊆ G(V,E). Gδ(Vδ, Eδ) ⊆ G(V,E) if
an only if Vδ ⊆ V and Eδ ⊆ E. Also Gδ(Vδ, Eδ) ⊂ G(V,E)
if and only if Vδ ∪ Eδ ⊂ V ∪ E. A redacted subgraph
Gδ(Vδ, Eδ) is derived from the graph G(V,E) by redacting
the set of nodes V \ Vδ and the set of edges E \ Eδ from G.
A directed tree T (V,E) is a directed graph with the follow-
ing constraint: removal of any edge e(x, y) from E leads to
two disconnected trees with no edge or path between nodes
x and y. As in the case of graphs, a redacted subtree of
tree T (V,E) denoted by Tδ(Vδ, Eδ) is such that Tδ(Vδ, Eδ)
⊆ T (V,E). Tδ(Vδ, Eδ) ⊆ T (V,E) denotes that Vδ ⊆ V and
Eδ ⊆ E. Redacted subgraph Tδ(Vδ, Eδ) is derived from the
tree T (V,E) by redacting the set of nodes V \ Vδ and the
set of edges E \ Eδ from T . Two trees/graphs/forests with
the same nodes and edges, but different ordering between at
least one pair of siblings are different trees/graphs/forests.

4. REVIEW OF STANDARD HASHING
SCHEMES

In this section, we review the standard definition of hash-
ing schemes (adopted from [8]). A standard hashing scheme
Π is a tuple (Gen, H). (s is not a secret key in standard cryp-
tographic sense.)

Definition 1. (Standard hashing scheme) A hashing
scheme Π consists of two probabilistic polynomial-time al-
gorithms Π = (Gen,H) satisfying the following requirements:

KEY GENERATION: The probabilistic key generation
algorithm Gen takes as input a security parameter 1λ

and outputs a key s: s← Gen(1λ).

HASH: There exists a polynomial l such that H takes a
key s and a string x ∈ {0, 1}∗ and outputs a string

Hs(x) ∈ {0, 1}l(λ) (where λ is the value of the security
parameter implicit in s).

225



If Hs is defined only for inputs x ∈ {0, 1}l
′(λ) and l′(λ) >

l(λ), then we say that (Gen, H) is a fixed-length hash func-
tion for inputs of length l′(λ).

4.1 Security of Hash Functions
The strongest form of security for hash functions include

three properties: (1) collision resistance, (2) second pre-
image resistance, and (3) pre-image resistance. Collision
resistance is the strongest notion and subsumes second pre-
image resistance, which in turn subsumes pre-image resis-
tance [8]. In other words, any hash function that satisfies
(2) satisfies also (3) but the reverse is not true; and any hash
function that satisfies (1) satisfies also (2) (and transitively
(3)) but the reverse is not true. In the rest of the paper, se-
curity of hash functions refer to the strongest property, i.e.,
collision resistance.

For the traditional hash functions defined in the previous
section, we are now reviewing the collision-finding experi-
ment (adapted from [8]). In the rest of the paper, A is a
probabilistic polynomial-time (PPT) adversary.

Collision-finding Experiment: H-CollA,Π(λ)

1. Key s← Gen(1λ)

2. A is given s and outputs x and x′. (If Π is a fixed-
length hash function for inputs of length l′(λ) then

x, x′ ∈ {0, 1}l
′(λ))

3. The output of the experiment is 1 if and only if x 6= x′

and Hs(x) = Hs(x′). In such a case, we say that A
has found a collision for Hs; else the output of the
experiment is 0.

Definition 2. A hash function Π = (Gen, H) is collision-
resistant if for all PPT adversaries A there exists a negligible
function4 negl such that

Pr[H-CollA,Π(λ)] ≤ negl(λ)

5. COLLISION-RESISTANT HASHING OF
GRAPHS

The standard definition of hashing schemes cannot be ap-
plied directly to graphs because the standard definition op-
erates on messages x ∈ {0, 1}∗ and each message is shared
either fully or not shared at all with a user. In contrast, a
graph G(V,E) is a set of nodes and edges, where each node
may be represented by x, and a user may have access to one
or more subgraphs instead of the complete graph.

As discussed earlier, a hashing scheme for graphs requires
a key generation algorithm and a hash function algorithm.
We would also need a method to verify hashes for a graph
as well as its subgraphs. We refer to this algorithm as the
“hash-verification” method. This is because as mentioned
earlier, users may receive entire graphs or subgraphs, and
need to verify their integrity. To that end, if the hash func-
tion used to compute the hash of a graph is a collision-
resistant hash function, then the user would need certain
extra information along with the proper subgraphs. Other-
wise, the hash value computed by the user for the received

4A function ε(k) is negligible in cryptography if for every
polynomial p(.), there exists an N such that for all integers
k > N it holds that ε(k) < 1

p(k)
([8]:Definition 3.4).

subgraphs would not match the hash value of the graph un-
less there is a contradiction to the premise that the hash
function is collision-resistant. We refer to this extra infor-
mation as “verification objects” VO ??. Computation of
the VO for a subgraph with respect to a graph is carried
out by another algorithm also part of the definition of the
hashing scheme for graphs. We call this algorithm as “hash-
redaction” of graphs.

The conceptualization of these two algorithms for verifi-
cation and redaction described in the previous paragraph is
already in use by schemes such as the MHT, but have not
been formalized. As essential components of our formaliza-
tion of the notion of graph hashes, we need to formalize
these methods. Such formalization is also essential for a
correct design and rigorous analysis of the protocols that re-
alize these definitions. The definition of the graph hashing
schemes is as follows.

Definition 3. (Collision-resistant graph hashing scheme)
A hashing scheme gΠ consists of three PPT algorithms and
one deterministic algorithm gΠ = (gGen, gH, ghRedact, ghVrfy)
satisfying the following requirements:

KEY GENERATION: The probabilistic key generation
algorithm gGen takes as input a security parameter 1λ

and outputs a key s: s← gGen(1λ).

HASHING: The hash algorithm gH takes a key s and a
graph G(V,E) and outputs a string gHs(G(V,E)) ∈
{0, 1}l(λ), where l a polynomial, and λ is the value of
the security parameter implicit in s.

HASH-REDACTION: The redaction algorithm ghRedact

is a probabilistic algorithm that takes G(V,E) and a
set of subgraphs Gδ (such that each Gδ ∈ Gδ, Gδ ⊆
G(V,E)) as inputs and outputs a set VOGδ,G(V,E) of
verification objects for those nodes and edges that are
in G(V,E) but not in any of the subgraphs in Gδ.

VOGδ,G(V,E) ← ghRedact(Gδ, G(V,E))

HASH-VERIFY: ghVrfy is a deterministic algorithm that
takes a hash value gH , a set of graphs G, and a set
of verification objects VO, and returns a bit b, where
b = 1 if the hash value gH is a valid hash for G and
VO, and b = 0 otherwise: b← ghVrfys(gH,G,VO)

5.1 Correctness
A hashing scheme for graphs is correct if the following

properties hold.

Hashing Correctness (Empty redaction): For any graph
G(V,E), any positive integer value of λ, any key s

← gGen(λ), and any gH ← gHs(G(V,E)), VO ←
ghRedact({G}, G), ghVrfys(gH ,{G(V,E)},VO) always
outputs 1.

Hash-Redaction Correctness: For any graph G(V,E),
any positive integer value of λ, any key s ← gGen(λ),
any set Gδ of subgraphs Gδ(Vδ, Eδ) ⊆ G(V,E) such
that the union of all the subgraphs in Gδ results in
a graph that is a proper subgraph of G, and gH ←
gHs(G), VO ← ghRedact(Gδ, G), ghVrfys(gH ,Gδ,VO)
always outputs 1.

226



5.2 Security of Hash Functions
The strongest form of security for hash functions for graphs

also includes three properties: (1) collision resistance, (2)
second pre-image resistance, and (3) pre-image resistance.
As earlier, collision resistance is the strongest notion and
subsumes second pre-image resistance, which in turn sub-
sumes pre-image resistance.

Collision-finding Experiment: GH-CollA,gΠ(λ)

1. Key s ← gGen(1λ)

2. A is given s and outputs (a) G(V,E) and G′(V ′, E′),
and (b) VOGδ,G(V,E) ← ghRedact(Gδ, G(V,E)) and
VO′G′

δ
,G′(V ′,E′) ← ghRedact(G′δ, G′(V ′, E′))

3. The output of the experiment is 1 if and only if any
of the following is true: in such a case, we say that
A has found a collision for Hs; else the output of the
experiment is 0.

(a) G(V,E) 6= G′(V ′, E′) and gH = gH ′, where
gH ← gHs(G), and gH ′ ← gHs(G′(V ′, E′)).

(b) G(V,E) 6= G′(V ′, E′) and ghVrfys(gH ′,Gδ,VO) =
gHs(gH,G′δ,VO′).

Definition 4. A hash function gΠ = (gGen, gH, ghRedact,
ghVrfy) is collision-resistant if for all PPT adversaries A
there exists a negligible function negl such that

Pr[GH-CollA,gΠ(λ) = 1] ≤ negl(λ)

6. PERFECTLY COLLISION-RESISTANT
HASHING SCHEME FOR GRAPHS

In this section, we formalize the notion of perfectly one-
way (i.e., collision-resistant) hash functions for graphs.

Hash functions used in practice do not hide information
about the message being hashed. Canetti [2] showed that
there is the need for a hash function that is perfectly one-
way, i.e., for which it is hard to find a collision. SHA1,
MD5 do not satisfy the “perfectly one-way” property. In
this paper, we refer to “perfectly one-way” hash functions
as “perfectly collision-resistant” hash functions. Before we
define what perfectly collision-resistant hash functions are
for graphs, we discuss why such a notion is necessary and
what the leakages are.

Standard hashing schemes may leak information about
the image being hashed. Even though such schemes are
one-way in a computational sense (informally speaking, to
find a collision one needs to solve a hard problem or do
intractable amount of work), the hash value H(x) of image
x reveals some information about x. Such information leaks
in the reverse direction – H(x) to x makes this function “not
perfectly one way”; such leakage may allow the attacker to
construct pre-images and second-preimages with less work
than what was defined by the random oracle model. In the
case of sensitive data, such leakages via hash values lead to
another security issue: leakage of sensitive information. As
Canetti et al. describe in [3], if x represents a confidential
information, H(x) may leak the length of x and bits of x,
which is a serious security breach.

The formal definition of hashing schemes does not capture
the requirement of non-leakage of information about pre-
images. Canetti has introduced a formal definition for x ∈

{0, 1}∗ and several constructions for perfectly one-way hash
functions [3].

However, for graphs no such notion has been defined.
Graphs are often used to represent sensitive data, and it
is thus essential to hide all the information contained in the
nodes. There is another reason for the need of perfectly
collision-resistant hash functions: the standard definition
operates on messages x ∈ {0, 1}∗ and each message is either
fully shared or not shared at all with a user. In contrast, a
graph G(V,E) is a set of nodes and edges, where each node
may be represented by x, and a user may have access to one
or more subgraphs instead of the complete graph. As in the
MHT, when a subtree is shared with a user, the user also
receives a set of MH values for some of the nodes that are
not in the shared subtree. If the hash function used is not
perfectly collision-resistant, then the hash values could lead
to leakage of information about the unshared nodes, which
needs to be prevented. Encryption is too heavyweight and
has different security properties than those required for hash
functions. We thus need perfectly collision-resistant hash
functions for graphs.

In the previous section, we formally defined the notion of
collision-resistant graph hashing schemes. The definition of
a perfectly collision-resistant graph hash function is identical
to this definition but includes an extra element: a key that is
used towards making the scheme perfectly collision-resistant
(as well as hiding).

Definition 5. (Perfectly collision-resistant graph hash-
ing scheme) A hashing scheme pgΠ consists of three prob-
abilistic polynomial-time algorithms and one deterministic
algorithm pgΠ = (pgGen, pgH, pghRedact, pghVerify) sat-
isfying the following requirements:

KEY GENERATION: The probabilistic key generation
algorithm pgGen takes as input security parameter 1λ

and outputs a key s.

s← pgGen(1λ).

RANDOMIZER GENERATION: The probabilistic ran-
domizer generation algorithm pgRandom takes as input
security parameter 1λr and outputs a uniformly chosen
random r ∈ {0, 1}λr .

r ← pgRandom(1λr ).

HASHING: There exists a polynomial l such that the hash
algorithm pgH takes keys s and r along with a graph
G(V,E) as input and outputs a string pgH.

pgH ← pgHs,r(G(V,E)) ∈ {0, 1}l(λ,λr).

HASH-REDACTION: The redaction algorithm ghRedact

is a probabilistic algorithm that takes G(V,E) and a
set of subgraphs Gδ (such that each Gδ ∈ Gδ, Gδ ⊆
G(V,E)) as inputs and outputs a set VOGδ,G(V,E) of
verification objects for those nodes and edges that are
in G(V,E) but not in any of the subgraphs in Gδ.

VOGδ,G(V,E) ← pghRedact(Gδ, G(V,E)).

HASH-VERIFY: pghVerify is a deterministic algorithm
that takes a hash value pgH, a set of graphs G, and
a set of verification objects VO, and returns a bit b,
where b = 1 meaning valid if the hash value pgH is a

227



valid hash for G and VO, and b = 0 meaning invalid
hash value.

b← pghVerify
s,r(pgH,G,VO)

6.1 Correctness
A perfectly collision-resistant hashing scheme for graphs is

correct if the following properties hold: Hashing Correctness
(Empty redaction) and Hash-Redaction Correctness. These
two properties have definitions similar to the definitions of
such properties for the collision-resistant hash function for
graphs in section 5.1.

6.2 Security
There are two security requirements: (1) collision-resistance,

and (2) semantically perfect one-wayness of graph hash func-
tions. The collision-resistance experiment is similar to the
one defined earlier in Section 5.2.

Collision-finding Experiment: PGH-CollA,pgΠ(λ, λr)

1. Key s ← pgGen(1λ)

2. Randomizer r ← pgRandom(1λr )

3. A is given s, r; A outputs (a) G(V,E) and G′(V ′, E′),
and (b) VOGδ,G(V,E) ← pghRedact(Gδ, G(V,E)) and
VO′G′

δ
,G′(V ′,E′) ← pghRedact(G′δ, G′(V ′, E′))

4. The output of the experiment is 1 if and only if any
of the following is true: in such a case, we say that A
has found a collision for Hs,r; else the output of the
experiment is 0.

(a) G(V,E) 6= G′(V ′, E′) and pgH = pgH ′, where
pgH ← pgHs,r(G), and pgH ′ ← pgHs,r(G′(V ′, E′)).

(b) G(V,E) 6= G′(V ′, E′) and
pghVerifys,r(pgH ′,Gδ,VO) = pgHs,r(pgH,G′δ,VO′).

The following experiment involves the adversary who can
learn information about the graphs applied with hash. In
the first game, the adversary is challenged to determine
the graph that has been hashed without the knowledge of
the graphs themselves. The adversary is given two hash
values computed either for the same graph or for two dis-
tinct graphs. Iff the hash function is not perfectly collision-
resistant hash function then the adversary can determine
whether the two hash values correspond to one graph or the
two graphs with a probability non-negligibly greater than 1

2
.

Privacy experiment-1: PGH-Priv1A,pgΠ(λ, λr)

1. Key s ← pgGen(1λ)

2. Randomizers r1, r2 ← pgRandom(1λr )

3. Any two random graphs G0(V0, E0), and G1(V1, E1)
that differ only at the contents of one or more nodes,
drawn uniformly from G.

4. Toss an unbiased coin; if it returns head then bit b = 1,
else b = 0.

5. Compute the following: pgH0 ← pgH(r0, G0(V0, E0))
and pgH1 ← pgH(r1, G1(V1, E1)).

6. A is given s, r, pgH0 and pgH1; A outputs a bit b′.

7. The output of the experiment is 1 if and only if any of
b = b′.

The following experiment is for privacy, but is with re-
spect to the hash-redaction algorithm.

Privacy experiment-2: PGH-Priv2A,pgΠ(λ, λr)

1. Compute Key s ← pgGen(1λ)

2. Compute randomizer r ← pgRandom(1λr )

3. Draw a random graph G(V,E). Determine any two
sets of subgraphs Gδ0, Gδ1 ⊆ G(V,E). Compute the
hash of G(V,E): pgH ← pgHs,r(G(V,E)).

4. Toss an unbiased coin; if it returns head then bit b = 1,
else b = 0.

5. Compute the following: VO0 ← pghRedact(Gδ0, G(V,E))
and VO1 ← pghRedact(Gδ1, G(V,E))

6. A is given s, r, pgH , VO0 and VO1; A outputs a bit
b′.

7. The output of the experiment is 1 if and only if any of
b = b′.

Definition 6. A hash function pgΠ = (pgGen, phH,
phgRedact, pghVerify) is collision-resistant if for all PPT
adversaries A there exists a negligible function negl such
that

Pr[PGH-CollA,pgΠ(λ, λr) = 1] ≤ negl(λ, λr)

Definition 7. A hash function pgΠ = (pgGen, phH,
phgRedact, pghVerify) is perfectly collision-resistant if for
all PPT adversaries A there exists a negligible function negl

such that

Pr[(PGH-Priv1A,pgΠ(λ, λr) = 1)

∨ (PGH-Priv2A,pgΠ(λ, λr) = 1)] ≤ 1

2
+ negl(λ, λr)

7. CONSTRUCTION OF HASHING SCHEME
FOR GRAPHS

In this section, we propose a construction of collision-
resistant hashing scheme for general graphs that is appli-
cable to trees, DAGs and graphs with cycles. The scheme
is secure with respect to gΠ. Our construction exploits a
specific property of graph traversals, and defines a new type
of trees “efficient-tree” that are used to represent graphs.

7.1 Graph Traversal
A graph G(V,E) can be traversed in a depth-first manner

or breadth-first manner [4]. Post-order, pre-order, and in-
order graph traversals are defined in [9, 4]. While post-
order and pre-order traversals are defined for all types of
trees, in-order traversal is defined only for binary trees. In
each of these traversals, the first node visited is assigned
1 as its visit count. For every subsequent vertex visited,
the visit count is incremented by 1 and is assigned to the
vertex. This sequence of numbers is called the sequence
of post-order (PON), pre-order (RON), or in-order (ION)
numbers for the tree T , depending on the particular type
of traversal. Figure 2 shows the traversal numbers and the
DFT for a graph.

228



v1

v2

v3

v4 v5

v6

v7

ce

fe be

1

(a) A depth first tree

Node Post-order Pre-order

v1 7 1
v2 6 2
v3 5 3
v4 3 4
v5 4 7
v6 2 5
v7 1 6

1

(b) Traversal numbers

Figure 2: A graph with depth-first tree.

Properties of traversal numbers: The post-order number
of a node is smaller than that of its parent. The pre-order
number of a node is greater than that of its parent. The
in-order number of a node in a binary tree is greater than
that of its left child and smaller than that of its right child.
A specific traversal number of a node is always smaller than
that of its right sibling. The following lemma provides the
basis for using traversal numbers in hash computation.

Lemma 1. The pair of post-order and pre-order number
for a node in a non-binary tree correctly and uniquely deter-
mines the position of the node in the structure of the tree,
where the position of a node is defined by its parent and its
status as the left or right child of that parent.

Proof. From the post-order and pre-order traversal se-
quences of the vertices, it is possible to uniquely re-construct
a non-binary tree [5] [7]. Thus from these sequences or from
their counterparts, for a node, it is possible to correctly iden-
tify its parent and its status as left or right child of that
parent in the tree.

7.2 Graphs
In our scheme we are going to use the notion of post-

order and pre-order numbers. However, in order to do that,
we need to represent the graph as a tree. To that end, what
we do is: we carry out a depth-first search (DFS) of the
graph G(V,E), which gives us one or more depth-first trees
(DFT).

The various types of edges in a graph are defined below
using the notion of traversal numbers. An example of depth-
first tree and types of its edges is given in Figure 2 with the
post- and pre-order numbers for each node being given in
the table in the figure. Edge e(v3, v6) is a forward-edge,
edge e(v5, v6) is a cross-edge and edge e(v6, v2) is a back-
edge. However, DFTs do not capture the edges that are
called forward-edges, cross-edges and back-edges.

Definition 8. Let τ be the depth-first tree (DFT) of a
directed graph G = (V,E). Let x, y ∈ V , and e(x, y) ∈
E. Let px and rx refer to post-order number and pre-order
number of node x, respectively. With respect to the DFT
τ , e(x, y) is a (1) tree-edge, iff px > py, and rx < ry; (2)
forward-edge, iff there is a path from x to y consisting of
more than one tree-edges, px > py, and rx < ry; (3) cross-
edge, iff px > py, and rx > ry; (4) back-edge, iff px < py,
and rx > ry.

Efficient-Tree Representation of a Graph: In the efficient
tree representation of a graph, G(V,E) we represent forward-
, cross-, and back-edges by a special node called edge-node
which contains information about both the source and target
vertex pre- and post-processing numbers (for that specific
edge). Moreover, edge-node has an incoming edge from the
node the specific edge originates from. The edge-nodes do
not have any outgoing edges. Once the post-order and pre-
order numbers have been assigned to the nodes, we can dis-
mantle the structure of the DFT, because the traversal num-
bers can be used to re-construct the DFT again (Lemma 1
and Definition 8). Figure 3 shows such tree-representations
of graphs.

7.3 Construction of Collision-resistant Hash-
ing Scheme for Graphs

The construction of the collision-resistant hash functions
for graphs gΠ is given below. H refers to a standard hash
function as defined by Π. The last statement in gH com-
putes the hash of a tree as shown in Figure 3 (b-efficient)
and (c-efficient).

Using the proposed schemes different hash values are gen-
erated for isomorphic graphs [4] i.e., if the origin or DFS-tree
changes the resulting hash value also changes.

gH: Input : a graph G(V,E) .

1. Sort the source nodes of the graphs in the non-decreasing
order of their contents or label.

2. Let x be the first source node in the sorted order. If
there are no source nodes in G(V,E) choose x ran-
domly.

3. Carry out the depth-first traversal of the graphG(V,E)
from source node x as follows.

(a) If node y is visited in DFS, assign its (post-order,
pre-order) numbers to it: (py, ry).

(b) Let there be an edge e(y, z) such that e(y, z) ∈ E
and z ∈ V . If e(y, z) is not a tree-edge, then cre-
ate an edge-node yz having the following content:

• If cross-edge: ce((py, ry), (pz, rz));

• If forward-edge: fe((py, ry), (pz, rz));

• If back-edge: be((py, ry), (pz, rz)).

(c) Add an edge from y to the new node yz, and
remove the edge e(y, z).

4. Remove x from the sorted order of source nodes if ex-
ists.

5. If there are nodes in G(V,E) that are not yet visited,
then repeat from 2.

6. Compute hash of each node y as follows:

Hy ← H((py, ry)||y).

7. To each edge-node yz, assign Hyz ← H(Hy||Hz).

8. Compute the hash of graph gHG(V,E) as follows:

gHG(V,E) ← H(Hy1 ||Hy2 || . . . ||Hym)

where yi refers to the i’th node in the increasing order
of the post-order numbers of the nodes, and of the

229



a

b c

d

e f

1

(a) DAG

a

b c

d

e f

fe ce

1

(b) b-tree

a b c d e f fe ce

root

1

(c) b-efficient

a

b c

d

e f

1

(d) Graph with cycles

a

b c

d

e f

fe cebe

1

(e) c-tree

a b c d e f fe ce be

root

1

(f) c-efficient

Figure 3: Tree representation of the running examples from Figure 1: (b-tree) and (c-tree) are tree-
representations of the graphs in (a) and (d) – each node contains its (post-order, pre-order) number. (b,
c-efficient) are one-level tree representations of the graphs exploiting the post-order and pre-order numbers
of graph traversals. Each node contains their numbers. fe, ce, and be represent forward-edges, cross-edges
and back-edges, respectively. Each of these nodes contain the post- and pre-order numbers of the origin and
target of the edges and the hashes of their contents.

originating nodes of the edge-nodes, and m is the total
number of nodes in the efficient-tree including original
nodes and the edge-nodes.

ghRedact:

1. Input: a set of subgraphs Gδ that contains the efficient
tree representations of the subgraphs, and the efficient
tree-representation of graph G(V,E).

2. Given Gδ, and G(V,E), determine the set V \excluded
and E\excluded consisting of excluded nodes and edge-
nodes, respectively, in the efficient tree-representation
of the graph.

3. VO← ∅

4. VO ← VO ∪ ((py, ry), Hy), where y ∈ V \excluded.

5. VO ← VO ∪ (τ((py, ry), (pz, rz), Hyz), where τ defines
the type of the edge-node: fe, ce, and be, and yz ∈
E\excluded.

ghVrfy:

1. Input: a set of subgraphs G′δ that contains the efficient
tree representation of the subgraphs, a set of verifica-
tion objects VO, and the hash of the complete graph
gH .

2. Sort the received nodes, edge-nodes in the increasing
order of the post-order numbers of the nodes or origins
of the edge-nodes.

3. For each node x that is in a subgraphGδ ∈ G′δ, compute
Hx.

4. For each edge-node xy that is in a subgraph Gδ ∈ G′δ,
compute Hxy.

5. Compute the hash gH ′ ← H(Hx1||Hx2|| . . . ||Hxm′),
where xi refers to the i’th node in the increasing order
of the post-order numbers of the nodes, and of the
originating nodes of the edge-nodes, and m′ is the total
number of nodes in the efficient-tree including original
nodes and the edge-nodes.

6. Iff gH ′ = gH , return 1, else return 0.

7.4 Construction of Perfectly Collision-resistant
Hashing Scheme for Graphs

In order to construct perfectly collision-resistant hash func-
tions for graphs, we need to handle two cases of use of hashes:
(1) redaction is not necessary, and (2) redaction is necessary.
The reason is: redaction leads to use of non-empty verifica-
tion objects that contain post-order and pre-order numbers,
which would leak information (as shown in previous Sec-
tion). When redaction is to be supported, the verification
object needs to protect the information about the graph,
and should not leak it to the verifier via the hash value. As
in standard hashing for graphs described earlier, the verifi-
cation object contains the post-order and pre-order number
of each node that is not in the redacted graph and its hash.
Post-order and pre-order numbers leak information about
the number of nodes in the graph, and other information
such as cycles or whether there are different types of edges

230



in the graph. In order to make the hash scheme perfectly
collision-resistant one, then it has to prevent leakage of such
information.

There are use-cases that do not need redaction, and there
are other use-cases that need redaction. If redaction is not
essential for hashing, then the computation of hash has to
make sure that the hash value pgHG(V,E) does not leak any
information about the graph G(V,E), which is defined in the
Section 6.2; it should be secure against the Privacy Exper-
iment - 1 in Section 6.2. If redaction is necessary, in order
to prevent any leakage by the redacted hash value of a sub-
graph Gδ(Vδ, Eδ), the verification object must also not leak
any information; the hash function should be secure against
both privacy experiments: Privacy Experiment – 1 and 2.

7.5 Perfectly Collision-resistant Hashing With-
out Redaction

In this section, we would discuss what changes we would
make to the hashing scheme described in the previous sec-
tion in order to make it perfectly-secure without supporting
redaction. In what follows, we have referred to the steps of
the previous section 7.

For hashing:

1. In Step 3(a), generate a unique random number µ(x)
for each node/edge-node x.

2. In Step 6 for computing hash of a node, use the random
number: compute hash

Hy ← H((py, ry)||µ(y)||y).

3. In Step 7 for computing hash of an edge-node yz, com-
pute hash

Hyz ← H(µ(yz)||Hy||Hz).

4. Hash-value of the graph is: (HG(V,E), σ), where σ is an
ordered list of the random numbers computed during
the process of hashing, and the order is the order in
which the nodes are sorted for hashing.

For verification:

1. A verifier receiver the hash value that has HG(V,E),
and σ;

2. Verifier sorts the nodes as in Step 2, and computes the
hash of each of the node by using the random number
for that node in σ: it concatenates the random value
while computing the hash.

Use of the random numbers help this updated scheme sup-
port the Privacy Experiment – 1.

7.6 Perfectly Collision-resistant Hashing With
Redaction

In order to develop a hashing scheme for graphs that
supports both Privacy Experiment – 1 and 2, we need to
ensure that the post-order and pre-order numbers do not
leak any information. In that case, we recommend use of
order-preserving encryption to encrypt the post-order num-
bers and pre-order numbers, and use the encrypted values
in place of the corresponding plaintext values [16] [1]. Use
of such encrypted values have been supported in the notion
of randomized traversal numbers [13].

Computation of hash of a graph and redacted graph would
use encrypted randomized traversal numbers, and the ran-
dom numbers, which support Privacy Experiments – 1 and
2, respectively. The rest of the scheme is as described in the
previous section 7.5.

7.7 Security
The following lemma states the security of the proposed

constructions for gΠ and pgΠ.

Lemma 2. Under the random-oracle model, the gΠ is a
collision-resistant hash function for graphs.

Lemma 3. Under the random-oracle model, the pgΠ is a
perfectly collision-resistant hash function for graphs.

Due to space constraints we are unable to provide de-
tailed proofs, which will be added in a technical report as
an extension of this paper. However, the proof of Lemma 2
follows from the properties of post-order and pre-order num-
bers and the random oracle hypothesis. Post-order and pre-
order numbers prevent collision for graphs that have same
set of nodes and edges but having the possibility that the
order between siblings may have been changed, which would
be invalidated by these numbers. The hash function being
used to hash nodes and edge-nodes implement the random
oracle and thus they are collision resistant. Any collision
found by gΠ implies that our claims about the post-order
and pre-order numbers and the hash functions are invalid.

Similarly, for Lemma 3, security depends on the security of
(1) traversal numbers, (3) order-preserving encryption and
(2) random oracle premise. In fact collision resistance is
dependent on 1 and 3, while privacy properties of the hash
values depend on the security properties of the encryption
function. We would specify the proofs in a technical report.

8. PERFORMANCE RESULTS
In the following sections, we analyze the complexity and

performance of the proposed schemes.
Cost : Each of the schemes gH, ghRedact, and ghVrfy,

performs a traversal on the graph in the worst case (when
the graph is shared as it is with no redaction). The cost of
such traversal and each of these methods is: O(|V |+ |E|).

We have implemented the two schemes in Java 1.6 us-
ing JGraphT 0.8.3 (a free Java Graph Library) APIs. The
experiments were carried out on a machine with following
specification: Dell PowerEdge 2950, 64-bit Linux (Gentoo
2.6.32.20) running on dual 3.0GHz Intel Xeon E5450 pro-
cessors with 32GB of RAM. We provided JVM with the fol-
lowing parameters: -Xss1024m, -Xms2048m, and -Xmx4096m

to set the thread stack size and min/mix values for buffer
space. For our experiments, we generated synthetic graph
data sets using JGraphT’s RandomGraphGenerator class and
used real world directed graph data sets available at Stan-
ford Large Network Dataset Collection5. Table 1 shows the
specification of real world data sets as we used in our sim-
ulations. We ran all our simulations 10 times - per input
instance - and report the average computation time for the
results.

In our experiments, we have implemented the hashing
scheme for graphs as in Section 7, and the perfectly collision-
resistant hashing scheme without redaction as in Section 7.5.

5http://snap.stanford.edu/data/

231



Table 1: Different graph data sets
Graph |V | |E| Description

soc-Epinions1 75,879 508,837 Who-trusts-whom network of Epinions.com
soc-Slashdot0902 82,168 870,161 Slashdot social network from February 2009

email-Enron 265,214 418,956 Email communication network from Enron
web-NorteDame 325,729 1,469,679 Web graph of Notre Dame

web-Google 875,713 5,105,039 Web graph from Google

 0

 1e+010

 2e+010

 3e+010

 4e+010

 5e+010

 6e+010

 7e+010

em
ail-EuAll

soc-Epinions1

soc-Slashdot0902

w
eb-N

orteD
am

eT

w
eb-G

oogle

T
im

e
 (

n
a
n
o
 s

e
c
)

Efficient-tree
Hash-Computation

(a) Hash computation

 0

 1e+010

 2e+010

 3e+010

 4e+010

 5e+010

 6e+010

 7e+010

 8e+010

 9e+010

em
ail-EuAll

soc-Epinions1

soc-Slashdot0902

w
eb-N

orteD
am

eT

w
eb-G

oogle

T
im

e
 (

n
a
n
o
 s

e
c
)

Efficient-Tree
Hash-computation

(b) Perfectly collision-resistant hash
computation (128-bit key)

 0

 2e+010

 4e+010

 6e+010

 8e+010

 1e+011

em
ail-EuAll

soc-Epinions1

soc-Slashdot0902

w
eb-N

orteD
am

eT

w
eb-G

oogle

T
im

e
 (

n
a
n
o
 s

e
c
)

Efficient-Tree
Hash-computation

(c) Perfectly collision-resistant hash
computation (256-bit key)

Figure 4: Time taken to compute hash of the graph using gH scheme; Efficient-tree represents the time to
build the efficient-tree; and the Hash computation represents the time to compute the gHG(V,E) value using
efficient-tree.

 0

 5e+010

 1e+011

 1.5e+011

 2e+011

 2.5e+011

 3e+011

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

T
im

e
 (

n
a
n
o
 s

e
c
)

Graph size (total number of nodes and edges)

Efficient-tree
Hash computation

gHash

(a) Hash computation

 5e+010

 1e+011

 1.5e+011

 2e+011

 2.5e+011

 3e+011

 3.5e+011

 4e+011

 4.5e+011

 5e+011

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

T
im

e
 (

n
a
n
o
 s

e
c
)

Graph size (total number of nodes and edges)

Efficient-tree
Hash computation

pgHash

(b) Perfectly collision-resistant hash
computation (128-bit key)

 1e+011

 2e+011

 3e+011

 4e+011

 5e+011

 6e+011

 7e+011

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

T
im

e
 (

n
a
n
o
 s

e
c
)

Graph size (total number of nodes and edges)

Efficient-tree
Hash computation

gHash

(c) Perfectly collision-resistant hash
computation (256-bit key)

Figure 5: Time taken to compute the hash of graph end-to-end; Efficient-tree represents the time to build
the efficient-tree; Hash computation represents the time to compute the gHG(V,E) value using efficient-tree;
and gHash represents the total time to compute the graph hash i.e., efficient-tree and hash computation
combined.

Our simulation results report three different kind of re-
sults:

• For gH function we report (a) the time to construct
Efficient-tree from input graph and (b) the graph hash
value computation, gHG(V,E), time for the two pro-
posed hashing schemes.

• For ghRedact we report the time to compute the redacted
graph vs number of nodes requested for ghRedact. Be-
sides computing the redacted graph this process also
involves generating the set of verification objects, VO
for both original nodes and edge-nodes in the redacted
graph.

• In the final set of experimental results we plot ghVrfy

computation time vs number of nodes requested by the
user.

Time taken to build Efficient-tree: This process involves
running the Depth First Search (DFS) traversal algorithm
on the input directed graph to assign both the pre- and post-
processing numbers to nodes (i.e., determining the structural
positions of nodes in a directed graph) and based-on these
numbers classifying the graph edges as tree, forward, cross,
and back edges. Additionally, this process also involves mak-
ing the edge-node set for forward-, cross-, and back-edges.
This is part of the one-time process of computing graph hash
value, gHG(V,E).

Time taken to compute gHG(V,E) value: This process re-
quires computing the hash value of all the nodes in the
Efficient-tree representation of G(V,E) by traversing the
nodes in post-order fashion. Our implementation uses TreeMap()
to keep a sorted listing of all the nodes (original nodes and
edge-nodes) by post-order number. We use Java’s String-

232



 3.8e+009

 4e+009

 4.2e+009

 4.4e+009

 4.6e+009

 4.8e+009

 5e+009

 10000

 20000

 30000

 40000

 50000

 60000

 70000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

soc-Epinions1 data set

ghRedact

(a) Redaction time for soc-Epinions1
data set

 4.4e+009

 4.6e+009

 4.8e+009

 5e+009

 5.2e+009

 5.4e+009

 5.6e+009

 5.8e+009

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

soc-Slashdot0902 data set

ghRedact

(b) Redaction time for soc-
Slashdot0902 data set

 4.5e+010

 5e+010

 5.5e+010

 6e+010

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

web-Google data set

ghRedact

(c) Redaction time for web-Google
data set

 8e+009

 9e+009

 1e+010

 1.1e+010

 1.2e+010

 1.3e+010

 1.4e+010

 50000

 100000

 150000

 200000

 250000

 300000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

web-NotreDame data set

ghRedact

(d) Redaction time for web-
NotreDame data set

 1.3e+010

 1.4e+010

 1.5e+010

 1.6e+010

 1.7e+010

 50000

 100000

 150000

 200000

 250000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

email-EuAll data set

ghRedact

(e) Redaction time for email-EuAll
data set

Figure 6: ghRedact/pghRedact function computation time vs number of requested subgraph nodes

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 1.6e+009

 10000

 20000

 30000

 40000

 50000

 60000

 70000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

soc-Epinions1 data set

ghVrfy
pghVrfy (128-bit key)
pghVrfy (256-bit key)

(a) Verification time for soc-
Epinions1 data set

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 1.6e+009

 1.8e+009

 2e+009

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

soc-Slashdot0902 data set

 ghVrfy
pghVrfy (128-bit key)
pghVrfy (256-bit key)

(b) Verification time for soc-
Slashdot0902 data set

 5e+009

 1e+010

 1.5e+010

 2e+010

 2.5e+010

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

web-Google data set

ghVrfy
pghVrfy (128-bit key)
pghVrfy (256-bit key)

(c) Verification time for web-Google
data set

 2e+009

 3e+009

 4e+009

 5e+009

 6e+009

 7e+009

 50000

 100000

 150000

 200000

 250000

 300000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

web-NotreDame data set

ghVrfy
pghVrfy (128-bit key)
pghVrfy (256-bit key)

(d) Verification time for web-
NotreDame data set

 2e+009

 3e+009

 4e+009

 5e+009

 6e+009

 50000

 100000

 150000

 200000

 250000

T
im

e
 (

n
a
n
o
 s

e
c
)

# of subgraph nodes

email-EuAll data set

ghVrf
pghVrfy (128-bit key)
pghVrfy (256-bit key)

(e) Verification time for email-EuAll
data set

Figure 7: ghVrfy/pghVrfy function computation time vs number of requested subgraph nodes

Buffer class to maintain a running concatenation of hash
values for all the nodes in the Efficient-tree.

From Figure 4 (a) we can see that the time to construct
Efficient-tree is significantly less than the time to compute
gHG(V,E) value whereas it is less than the time to compute

pgHG(V,E) value ( Figure 4 (b) and (c)); We can also infer
that the time to compute pgHG(V,E) value with 128/256-
bit key is more than the time to compute gHG(V,E) value,
as this process now involves generating a random key with
128/256-bit length. The results depict that the overall time

233



to compute gH is between 70-100 seconds for web-Google
data set with approximately six million nodes and edges
combined signifying that our scheme is highly efficient. In
fact we can make this more-efficient by by-passing O(n logn)
the sorting phase by placing the nodes in sorted-order during
the DFS traversal once a node is finally visited. Figure 5
shows the end-to-end computation time for calculating the
hash of graph for synthetic data.

Time taken to compute ghRedact : This operation is per-
formed either by the data owner itself or by a third party
data distributor on behalf of the user. From Figure 6 (a),
(b), (c), (d), and (e) we can see that for all the graphs the
ghRedact computation time decreases as we increase the
number of nodes requested from the original graph. This
is understandable that as we increase the size of the number
of nodes requested the redacted graph size decreases and
hence the computation required to generate the VO set.

Time taken to compute ghVrfy : This function takes as in-
put three parameters the original graph hash value gHG(V,E),
the requested subgraph and the VO set. Figure 7 (a), (b),
(c), (d) and (e) shows the graph verification time vs the
number of subgraph nodes returned. This function also in-
corporates computing the Hx and Hxy values for each node
x and for each edge-node xy. We can see that as we in-
crease the subgraph size the time to compute ghVrfy also
increases; this is owing to the fact that this function has to
compute the hash values for node and edge-nodes in the re-
turned subgraph. Moreover, the time taken is more for the
case of perfect graph hashing scheme when compared to the
scheme gH.

9. CONCLUSION AND FUTURE WORK
Graphs are widely used to specify and represent data.

Verifications of integrity and whether two graphs are iden-
tical or not are often required by applications that involve
graphs such as graph databases. Collision resistant one-way
hashing schemes are the basic building blocks of almost all
crypto-systems. In this paper, we studied the problem of
hashing graphs with respect to crypto-systems and proposed
two constructions for two notions of collision-resistant hash
functions for graphs. We defined the formal security mod-
els of hashing schemes for graphs, and perfectly collision-
resistant hashing schemes for graphs. We proposed the first
constructions for general graphs that includes not only trees
and graphs but also graphs with cycles and forests. Our
constructions use graph traversal techniques and are highly
efficient for hashing, redaction, and verification of graphs.
Moreover, our proposed schemes require only a single traver-
sal on the graph. To the best of our knowledge this is the
first perfectly collision-resistant hashing schemes for graphs
that are practical and are highly efficient for hashing, redac-
tion, and verification of hashes graphs.

As a future work, we plan to take updates into consider-
ation, parts of graph maybe updated and other parts may
not be updated; the challenge is how to recompute hash of
the updated graph with O(1) cost, which is currently loga-
rithmic to linear (Merkle hash technique for trees requires
O(n) – linear cost).

10. ACKNOWLEDGMENTS
This work is partially supported by NSF Grants IIS-0964639

and TUES-1123108.

11. REFERENCES
[1] A. Boldyreva, N. Chenette, Y. Lee, and A. OŠneill.

Order-preserving symmetric encryption. In Advances
in Cryptology-EUROCRYPT 2009, pages 224–241.
Springer, 2009.

[2] R. Canetti. Towards realizing random oracles: Hash
functions that hide all partial information. In
CRYPTO, pages 455–469, 1997.

[3] R. Canetti, D. Micciancio, and O. Reingold. Perfectly
one-way probabilistic hash functions (preliminary
version). In STOC, pages 131–140, 1998.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2001.

[5] S. K. Das, K. B. Min, and R. H. Halverson. Efficient
parallel algorithms for tree-related problems using the
parentheses matching strategy. In IPPS, pages
362–367, Washington, DC, USA, 1994.

[6] H. V. Jagadish and F. Olken. Database management
for life sciences research. SIGMOD Rec., 33(2):15–20,
June 2004.

[7] V. Kamakoti and C. P. Rangan. An optimal algorithm
for reconstructing a binary tree. Inf. Process. Lett.,
42(2):113–115, 1992.

[8] J. Katz and Y. Lindell. Introduction to Modern
Cryptography: Principles and Protocols. Chapman &
Hall/CRC, 2007.

[9] D. E. Knuth. The Art of Computer Programming,
volume 1. Pearson Education Asia, third edition, 2002.

[10] A. Kundu, M. J. Atallah, and E. Bertino. Leakage-free
redactable signatures. In Proceedings of the Second
ACM Conference on Data and Application Security
and Privacy, CODASPY ’12, pages 307–316, New
York, NY, USA, 2012. ACM.

[11] A. Kundu and E. Bertino. Structural signatures for
tree data structures. PVLDB, 1(1):138–150, 2008.

[12] A. Kundu and E. Bertino. On hashing graphs. IACR
Cryptology ePrint Archive, 2012:352, 2012.

[13] A. Kundu and E. Bertino. Privacy-preserving
authentication of trees and graphs. International
Journal of Information Security, pages 1–28, 2013.

[14] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz,
A. Kwong, and S. G. Stubblebine. A general model for
authenticated data structures. Algorithmica, 39:21–41.

[15] R. C. Merkle. A certified digital signature. In
CRYPTO, 1989.

[16] R. A. Popa, F. H. Li, and N. Zeldovich. An
ideal-security protocol for order-preserving encoding.
IACR Cryptology ePrint Archive, 2013:129, 2013.

[17] M. L. Yiu, E. Lo, and D. Yung. Authentication of
moving knn queries. In Proceedings of the 2011 IEEE
27th International Conference on Data Engineering,
ICDE ’11, pages 565–576, Washington, DC, USA,
2011. IEEE Computer Society.

[18] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering
based on structural/attribute similarities. Proc. VLDB
Endow., 2(1):718–729, Aug. 2009.

234


	Purdue University
	Purdue e-Pubs
	3-2014

	Security of Graph Data: Hashing Schemes and Definitions
	Muhammad U. Arshad
	Ashish Kundu
	Elisa Bertino
	Krishna Madhavan
	Arif Ghafoor

	tmp.1418412561.pdf.SiMi0

