












retransmitting lost topological change information in a
subsequent packet. If the rate of link change is low, a smal-
ler parent list for a node suffices as well. When PRR at the
base station for a node is good, a larger parent list allows a
node to record more next hop changes and ensures faster
transition to probabilistic encoding schemes. In our simu-
lation experiments, we found that the performance of
PPF is not highly sensitive to the size of the parent list,
and chose g for a g � g grid network.

Although our proposed topological change handling
scheme requires an extra bit in the provenance field, it of-
fers several advantages:

� Topological changes are rapidly propagated and
reflected in the provenance graph constructed at the
base station.
� Rank-based decoding can be used to decode the prove-

nance information of a packet with the path changed bit
set to 1.
� Nodes can automatically utilize an efficient encoding

scheme (e.g., prime or fingerprint) as soon as no further
topological changes are observed.

5. Decoding and constructing provenance

The provenance buffer of a packet is examined at the base
station to retrieve the embedded partial provenance (or path)
information. With the rank embedding approach, we can eas-
ily extract the embedded identities from the provenance buf-
fer, since we have the length field, and the rank of each node
ID uses a fixed number of bits. However, with both the prime
and fingerprint embedding methods, we assume that infor-
mation about ordering among nodes is known from a previ-
ously constructed provenance graph, Gpre ¼ ðVpre; EpreÞ. Here,
Vpre is the set of node IDs and Epre is the set of edges among
these nodes indicating provenance flow.

5.1. Decoding process for prime method

We apply a standard prime factorization algorithm over
the product part of the provenance buffer to retrieve the

Fig. 3. Provenance encoding using Rabin fingerprints (numbers inscribed in the circles indicate ID of nodes). (a) Embedding provenance with non-
partitioned fingerprint. (b) Embedding provenance with m ¼ 5 and r ¼ 2.
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Fig. 4. Snapshot of topological changes for 2000 packets in a 10 � 10 grid
network.

Fig. 5. Handling topological changes in an intermediate node.
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set of nearest prime numbers (say, X ¼ fX1;X2; . . . Xmg).
Then, we use Depth-First-Search (DFS) with backtracking
over Gpre to find all the possible paths consisting of m node
IDs whose nearest prime numbers form any permutation
of X. We need to modify DFS to compare the nearest prime
number to a particular node ID with the members of set X
while visiting that node, and track the offset of the ID when
a match is found. With this modification, DFS with back-
tracking outputs all possible sets of node IDs whose near-
est prime numbers form a permutation of X. Since every
ID does not differ from its nearest prime number by more
than s, we can find at most sm such sets. For each such set,
we sum up the offset values and calculate the difference
from the offset value retrieved from the received packet.
If the difference is zero, we record the matched set as the
retrieved provenance.

5.2. Decoding process for fingerprint method

Upon reception of a packet, we retrieve the r finger-
print(s), associated intermediate node ID(s), and the length
field indicating the number of participating node IDs. For
every intermediate node, IDi;1 6 i 6 r � 1, we perform a
DFS with backtracking over Gpre ¼ ðVpre; EpreÞ with the
following modifications:

� Set IDi is the root for DFS with backtracking.
� Search all the nodes within dmþr�1

r e hops away from the
node IDi and compute the Rabin fingerprint using a pre-
computed lookup table as discussed in Appendix A.
� After computing every fingerprint of length dmþr�1

r e, we
compare them to the retrieved fingerprints RFi and
RFiþ1. If a match is found, we record the matched path
as provenance of the received packet.

Note that, for every intermediate node, we are search-
ing a smaller portion of the graph Gpre using DFS with
backtracking.

5.2.1. False positive rate for fingerprints
Assume that we have at most x ¼ dmþr�1

r e node IDs per
partition, where m is the total number of node IDs embed-
ded per packet. Since decoding each pair of partitions is
independent of others, it suffices to analyze the false
positive probability of fingerprinting a path of x node IDs
originating from a particular intermediate node ID. Assume
that there are n such paths in the provenance graph. Then,
the false positive probability is 6 n2x:b

2k , where k is the num-

ber of bits used for fingerprinting and b is the length of the
bit representation of one node ID.

If the maximum fan-out of the network is f, then n is
upper-bound by f x�1 which gives,

False positive probability 6
f 2ðx�1Þx:b

2k
¼ bðmþ r � 1Þf 2ðm�1Þ

r

r:2k
ð2Þ

5.3. Construction of provenance

Depending on the network characteristics and bit
budget, decision makers may choose one of the three

provenance encoding schemes as the default one. When a
packet is received at the base station, the path changed
bit of the packet is checked to determine the encoding
method that was used to embed provenance. If the path
changed bit is set to 1, provenance (i.e. partial forwarding
path) of the received packet is extracted using the decod-
ing process of rank approach. Otherwise, the decoding pro-
cess for the default scheme is used to extract embedded
provenance.

Fig. 6 shows a block diagram of provenance construc-
tion using PPF. The process of provenance construction
maintains two data structures: (i) G ¼ ðV ; EÞ representing
the current provenance graph and (ii) GpreðVpre; EpreÞ
encompassing previously constructed provenance. Once
we have decoded partial path information from the re-
ceived packet, provenance construction is straightforward.
After collecting sufficient packets with embedded prove-
nance (i.e., when we have at least one ID from each node),
we combine the partial paths to produce the complete
provenance graph, G ¼ ðV ; EÞ. Here, V is the set of nodes
and for some v i 2 V ;v j 2 V ; ðv i;v jÞ 2 Eiff ðIDi; IDjÞ belongs
to some partial provenance encoded in a received packet.
Before the next round of provenance construction, we set
Vpre ¼ Vpre [ V and Epre ¼ Epre [ E to update GpreðVpre; EpreÞ
which is used by the decoding processes of prime and fin-
gerprint methods. Note that the initial G is constructed
from the partial provenance embedded in the packets car-
rying changed path information (path changed bit 1) only.

With the prime and fingerprint approaches, decoding
errors can occur when a packet carrying changed path
information is lost in the network and the base station is
unaware of the changes. Subsequently sent packets con-
taining encoded information of the changed path will
cause decoding errors at the base station. Further process-
ing can be employed to recover from these errors, such as
checking other combinations of partial paths by checking
edges between nodes on the recorded path and the nodes
that are 1 or 2-hop away from them. These extensions will
be the subject of our future work.

5.4. Complexity analysis

Decoding using the rank method is straightforward and
takes only OðmÞ time, where m is the maximum number of
nodes embedded per packet.

In case of the prime method, we use the General Num-
ber Field Sieve (GNFS) algorithm for prime factorization.
The asymptotic running time for this algorithm for a

b-bit number is O expðð64b
9 Þ

1
3ðlog bÞ

2
3Þ

� �
.

In an N-node network, node IDs require at most dlog2Ne
bits with the appropriate choice of s and m. Thus,
multiplication of m node IDs requires at most mdlog2Ne
bits which makes the complexity of prime factorization

O exp 64mdlog2Ne
9

� �1
3ðlogðmdlog2NeÞÞ

2
3

� �� �
.

We also need to perform DFS with backtracking. This
entails sm comparisons to find a path of m nodes (Section
5.1). We know that s can be approximated as N

pðNÞ � ln N
(as discussed in the next section). Thus, the time required
to decode provenance from a single packet becomes
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Oðexp
64mdlog2Ne

9

� �1
3

ðlogðmdlog2NeÞÞ
2
3

 !
þ expðNÞ

þ ðln NÞmÞ

which is exponential in terms of N.
In case of the fingerprint method, we need to search the

provenance graph and update the fingerprint using concat-
enation while visiting a node on that graph. This is per-
formed using DFS with backtracking which takes
exponential time in terms of N in the worst case. However,
nodes beyond dmþr�1

r e-hops away from the root can be
pruned in this case. Thus the actual number of nodes vis-
ited by the algorithm is much lower in practice.

Regarding the construction of entire provenance in an
N-node network, we can represent the provenance graph
using an adjacency matrix. The total number of edges of
the graph can be at most OðN2Þ. Since edge insertion re-
quires constant time, the worst case complexity for con-
structing the entire provenance is OðN2Þ. We need OðN2Þ
space to hold the provenance graph apart from the space
required by the trust framework. Alternatively, we can
use an adjacency list, which offers a different tradeoff.

6. Trust framework and PPF

In order to assess the trustworthiness of a data item,
traditional trust frameworks associate a trust score with
each data item. Although the actual meaning of the trust
score varies from application to application, this score
can be used for comparison or ranking [9]. The data item
having the highest trust score value can be labeled as the
most trustworthy item with respect to other data items.
Here we borrow the definition of trust of a data item given
in [8]: ‘‘The trust of a data item i, denoted as TðiÞ, is the
probability of i being true, as perceived by the receiver.’’

Provenance-based trust frameworks compute trust
scores over a collection of data items based on their values
and provenance information. These data items pertain to
the same physical event and are received at the base sta-
tion within a specified time window. The trust score of
each data item, TðiÞ is adjusted based on the value similarity
and provenance dissimilarity of the data items. If similar
data values have different provenance, this may increase
the trustworthiness of data items. If the two data items
have different provenance, they can be considered
supportive to each other. In contrast, if they share similar
provenance, this is not a clear indication of trustworthi-

ness. Thus both value similarity and provenance dissimilarity
of a data item contribute to its trust score.

PPF is agnostic of the way provenance dissimilarity is cal-
culated under different trust frameworks. In order for us to
explain the interface between PPF and trust frameworks,
we consider the following definition of provenance dissim-
ilarity score (qd), a variant of the path difference factor pro-
posed in [8]:

qd ¼
P

t2C;t–dqðd; tÞ
jCj � 1

where C denotes a collection of data items and qðd; tÞ
indicates provenance difference between two data items
d and t.

qðd; tÞ ¼ maxfjGdj; jGtjg � jIfGd;Gtgj
maxfjGdj; jGt jg

Here, Gd and Gt indicate provenance corresponding to the
data items d and t, and IfGd;Gtg indicates set of nodes that
are common to Gd and Gt .

6.1. Integration with trust framework

For a given collection of data items, trust frameworks
require the complete provenance of each data item to cal-
culate provenance dissimilarity score. Unfortunately, PPF
only typically provides partial provenance of each data
item. The partial provenance of a data item provided by
PPF is either a part of the previously constructed complete
forwarding path or a part of a new forwarding path that
will be followed by the data items of the same source in
near future. Thus after decoding partial provenance
fIDi1 ; IDi2 ; . . . IDimg of a data item (originated from source
i), PPF returns its complete provenance to the trust frame-
work as follows:

� Find paths from source i to IDi1 and from IDim to the base
station on the current provenance graph G. If no
such paths are found on G, continue searching over
the graph Gpre.
� Concatenate the above paths with the decoded partial

paths to form complete provenance for the received
data item.

Provenance constructed in this manner provide near
perfect accuracy in trust score calculation as we will
observe in our simulation results (Section 6.1).

Fig. 6. Construction of provenance and integration with trust framework.
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6.2. Trustworthiness versus transmission overhead

Since sensor nodes are deployed near the phenomena
to be sensed [31], data items with similar values are
likely to share forwarding paths (or provenance). How-
ever, in an ideal (i.e., attack free) environment, trust
scores evolve faster with data items having dissimilar
provenance than with the items having shared prove-
nance [9]. Dissimilar provenance of a collection of data
items may help reduce the severity of an attack because
a single attacker cannot be present on multiple forward-
ing paths at the same time. For example, if we consider an
adversary model where multiple attackers chain along a
path and forward packets selectively [32], most of the
data items sharing that forwarding path will be affected.
In a threat model where multiple attackers collude to in-
ject false data [33], similar provenance of data items
helps locate the attack region faster. Thus, it is desirable
to control the forwarding path of data items so that
required similarity or dissimilarity among provenance
can be ensured.

Forwarding paths are defined and maintained by the
routing protocols on the sensor nodes. These paths or
routes are usually built as part of a minimum cost tree
rooted at the base station. In routing terminology, the
cost for a node is the cost for its next hop plus the cost
of its link to the next hop. Thus the cost of a route is
the sum of the costs of its links towards the base station.
Assuming expected transmissions (ETX) [34] as a cost
metric, a forwarder node will route the data item through
the next hop that requires the least estimated number of
transmissions (to reach the base station) with respect to
other neighbors. In this case, choosing a next hop
other than the default one would result in a different for-
warding path with a higher ETX value. This reveals an
interesting trade-off between trustworthiness (or prove-
nance dissimilarity) and transmission overhead: making
provenance more dissimilar increases transmission
overhead.

We propose a solution (termed as controlled routing)
integrated with the default TinyOS routing protocol (CTP)
to provide decision makers with a tunable parameter to
control the extent of provenance dissimilarity and trans-
mission overhead. Before forwarding a packet, the next
hop function of the CTP routing engine is used to determine
the best next hop (i.e., neighbor with the smallest ETX) out
of the routing table of the forwarder. Our solution over-
rides this function with a parameterized next hop function
which takes an argument called ETX threshold (thetx) and
performs following steps:

� Before forwarding a packet, we examine the routing
table of the forwarder node to determine a list of eligi-
ble next hops. We discard neighboring nodes that create
self-loops and have estimated ETX beyond the smallest
ETX by more than thetx.
� We hash on the ID of the originator node of the packet

to generate a value i between 1 and the number of eli-
gible next hops. The ith next hop in the eligible next hop
list is returned as the output of the function.

Choosing next hop based on the hash value of the orig-
inator node ID keeps the forwarding path of the data items
(generated from that node) consistent and makes the solu-
tion more tailored to the PPF encoding schemes. Further,
by increasing the value of thetx, we can increase the degree
of dissimilarity among provenance of a collection of data
items at the cost of higher transmission overhead, and vice
versa.

7. Spread factor

The prime method requires two parameters s and P that
define the set of node IDs, Q P;s.

7.1. Approximating the spread factor

For a given number of nodes, N, we want to determine
the spread factor, s that minimizes the highest value of
QP;s. This value of s depends on the prime gap.

Definition 4. A prime gap is the difference between two
successive prime numbers, pk and pðkþ1Þ, where pk is the
kth prime number. Thus, a prime gap of length n is a run of
n� 1 consecutive composite numbers between two suc-
cessive primes.

We use the Prime Number Theorem to approximate
the average length of prime gaps. The theorem gives an
asymptotic form for the prime counting function pðnÞ,
which counts the number of primes less than some integer
n. According to this theorem (proved independently by
Hadamard (1896) and de la Valle Poussin (1896)),

pðnÞ �
X1
k¼0

k!n

ðln nÞkþ1

� n
ln n
þ n

ðln nÞ2
þ 2n

ðln nÞ3
þ . . . ð3Þ

It has been shown that summation of the first three
terms in Eq. (3) is a better estimate for pðnÞ (Derbyshire
2004, pp. 116–117). Now, we can approximate the average
length of prime gaps below n as

gapavgðNÞ �
n

pðnÞ �
1

1
ln nþ 1

ðln nÞ2
þ 2
ðln nÞ3

:

Table 2 shows the theoretical mean along with empiri-
cal mean and standard deviation of prime gaps for different
values of n. The last column of this table gives the ratio be-
tween empirical and theoretical mean which justifies the
approximation above. Assume that Pn denotes the nth
prime number. By choosing a spread factor, s, that approx-
imates to gapavgðNÞ for some N, we can obtain a set of num-
bers upper-bound by some prime number PpðNÞþ1 P N. We
denote this set as Q PpðNÞþ1 ;gapavg ðNÞ. Due to the high variation
in prime gaps with respect to gapavgðNÞ the cardinality of
this set becomes less than N. Assume that using the same
spread factor (s ¼ gapavgðNÞ), we find a set of numbers,
QPpðN0 Þ ;s

such that jQPpðN0 Þ ;s
j is the smallest number greater

than or equal to N. Similarly, by choosing some values lar-
ger than gapavgðNÞ for spread factor s, we can have a set of
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numbers Q PpðN00 Þ ;s
, where jQPpðN00 Þ ;s

j is the smallest number
greater than or equal to N. Clearly, PpðN0 Þ > PpðN00 Þ, which
makes the latter set more favorable in terms of bit require-
ments (as observed in Table 1). We use the following opti-
mistic choice:

s P gapavgðNÞ �
N

pðNÞ �
1

1
ln N þ 1

ðln NÞ2
þ 2
ðln NÞ3

: ð4Þ

7.2. Choice of spread factor

For a network of size N, we first calculate gapavgðNÞ and
by setting s ¼ bgapavgðNÞc, we pick a set Q PpðN0 Þ ;s

such that
jQ PpðN0 Þ ;s

j is the smallest number greater than or equal to
N. Considering the requirements for prime multiplication
and summation of offset, we estimate the worst case bit
requirements per packet as:

BP
worstðs;mÞ ¼ log2

Ym�1

i¼0

ðPpðN0Þ � iÞ
 !

þ log2ðm� sÞ;

where m is the number of node IDs embedded per packet.
Then we increase s by one and determine the corre-

sponding set of node IDs. After calculating the worst case
bit requirements for the new set, we compare the newly
calculated value with the current one. If the newly calcu-
lated set outperforms the current one in terms of worst
case bit requirements, we set the new set to be the current
one. We continue until the newly calculated set requires
more bits than the current one. Table 3 shows the compar-
ison among the required number of bits for different values
of s with varying numbers of nodes and number of per-
packet node IDs. For a particular number of nodes and
per-packet node IDs, the last column gives the best choice
for s (s�).

8. Bit budget

A fixed budget of bits (Bbudget) is available for embedding
provenance of at most m nodes within the meta-data of a
packet. We give the value of m for our three encoding
methods in this section.

8.1. Bit usage for rank method

In an N-node network, bit requirements for the rank
method are BRðmÞ ¼ m� log2N þ log2m, where, the first
term on the right hand side indicates the required number
of bits to embed m ranks, and the second term accounts for
the counter that tracks the number of embedded ranks.
Thus, we choose the largest m such that BRðmÞ 6 Bbudget .

8.2. Bit usage for prime method

In an N-node network, we can pessimistically pick a va-
lue of m such that BP

worstðm; s�Þ 6 Bbudget . This does not guar-
antee the best usage of available bits since prime
multiplication of m node IDs does not always need a fixed
number of bits (as in the case of rank approach) and
BP

worstðm; s�Þ can hold more than m node IDs in many cases.
Hence, we consider average case bit requirements before
choosing an m for a particular bit budget. The average bit
requirements per packet are

BP
avgðs;mÞ ¼log2ðm� sÞ þ m

pðN0Þ
Xlog2pðN0 Þ�1

i¼2

ði�½pð2iÞ � pð2i�1Þ	Þ
 

þlog2pðN0Þ � ½pðN0Þ � pð2log2pðN0 Þ�1Þ	
!
:

Table 4 shows the average number of bits calculated for
different numbers of nodes and per-packet node IDs with
their corresponding s�. We choose an m� such that
BP

avgðs�;m� � 1Þ 6 Bbudget 6 BP
avgðs�;m�Þ. For example, in a

1000-node network with 40 bits available for provenance
embedding, we choose m� to be 4 since
BP

avgð5;3Þ 6 40 6 BP
avgð7;4Þ (Table 4). This choice provides

the opportunity to embed more node IDs per packet on
the average.

8.3. Bit usage for fingerprint method

In an N-node network, the bit requirements for embed-
ding m IDs per packet can be expressed as

BFðr;mÞ
¼ bþ log2mþ k; r ¼ 1;
ðr � 1Þbþ log2mþ rk; r > 1;

�
ð5Þ

where r is the number of partitions in the provenance buf-
fer, k is the number of bits required for each fingerprint and
b is the number of bits required to represent one node ID.
We need to choose an m and r such that BFðr;mÞ 6 Bbudget .
Here, r ¼ 1 denotes the non-partitioned case, where the en-
tire provenance buffer can be regarded as a single partition.

Assuming a false positive probability of 2��; �P 0, from
Eq. (2),

k ¼ 2ðx� 1Þlog2f þ log2bþ log2xþ � ð6Þ

where m ¼ ðrx� r þ 1Þ.
First, we consider the case when r ¼ 1, which leads to

x ¼ m. Then, combining (5) and (6) we have,

2ðm� 1Þlog2f þ 2log2m 6 Bbudget � b� log2b� �: ð7Þ

Similarly, considering r > 1, we have

rð2ðx� 1Þlog2f þ log2xþ bþ log2bþ �Þ þ log2ðrx� r þ 1Þ
6 Bbudget þ b:

ð8Þ

We determine the maximum value of m for different
values of r P 1 using the above two equations. Decision
makers are left to choose the appropriate pair of ðr;mÞ
based on the rate of link failure or changes, and the
average fan-out of the network. In Table 5, we consider

Table 2
Prime gaps below the number n.

n Prime gap

Observed mean (l) Observed stdev gapavg
l

gapavg

500 5.29 3.11 5.12 1.03
1000 5.96 3.55 5.82 1.02
2000 6.61 4.50 6.52 1.01
5000 7.48 5.30 7.44 1.01
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a 5000-node network with average fan-out f ¼ 4; b ¼ 13
bits, and � ¼ 5 to show the possible choices for ðr;mÞ
where x indicates maximum number of node IDs
contained in each partition. Note that fanout should be
restricted so that excessive energy consumption at the
junction node does not partition the network [35]. We
also compare the theoretically calculated average bit
requirements of the fingerprint method with the two
other encoding schemes in Fig. 7. Clearly, the fingerprint
method requires fewer bits than the other methods, as
the value of N and m increase.

9. Simulations

We conduct simulations using TOSSIM [36] for net-
works with hop counts ranging from 5 to 31, and number
of nodes ranging from 5 to 500. For energy analysis, we
use POWERTOSSIMZ [37] which uses the micaz energy
model. We do not consider energy consumption related
to CPU computations since TOSSIM cannot capture CPU
usage [37]. However, all nodes other than the base station
only perform encoding operations which have low com-
putational complexity and are unlikely to draw signifi-
cant CPU power. A base station with no resource
constraints can perform the decoding operations, e.g.,
prime factorization, for a moderate number of nodes in
reasonable time. We compare the performance of the
encoding schemes of PPF with the following two variants
of probabilistic packet marking as they are the closest to
our approach (though they were designed for wired IP
networks):

� PPM [13,14]: The most basic probabilistic packet mark-
ing scheme which embeds one node ID per packet and
uses a distance field to track the position of the embed-
ded node ID on the forwarding path from the source to
the base station.
� PPM with network coding [24,25]: Incorporates net-

work coding with packet marking to embed a linear
combination of a probabilistically chosen set of con-
nected node IDs per packet. This scheme also uses a dis-
tance field to track the position of linearly combined
node IDs on the forwarding path from the source to
the base station.

Table 3
Worst case bit requirements for varying number of nodes, per-packet node IDs, and choice of s.

m N gapavg s ¼ bgapavgc s ¼ bgapavgc þ 1 s ¼ bgapavgc þ 2 s ¼ bgapavgc þ 3 s ¼ bgapavgc þ 4 s�

Pmax Bits Pmax Bits Pmax Bits Pmax Bits Pmax Bits

3 500 5 613 32 587 33 563 33 547 33 521 33 5
3 1000 5 1307 36 1229 36 1163 36 1109 36 1063 36 5
3 2000 6 2683 40 2477 39 2377 39 2269 39 2213 39 10
3 5000 7 6779 44 6367 43 6079 43 5857 43 5669 44 10
4 500 5 613 43 587 42 563 42 547 43 521 43 7
4 1000 5 1307 47 1229 47 1163 46 1109 47 1063 47 7
4 2000 6 2683 51 2477 51 2377 51 2269 51 2213 51 7
4 5000 7 6779 56 6367 57 6079 57 5857 57 5669 56 7
5 500 5 613 52 587 51 563 52 547 52 521 52 6
5 1000 5 1307 57 1229 57 1163 57 1109 57 1063 57 6
5 2000 6 2683 62 2477 63 2377 63 2269 62 2213 62 6
5 5000 7 6779 70 6367 70 6079 69 5857 69 5669 69 11

Table 4
Average case bit requirements for varying numbers of nodes and per-packet
node IDs with s� .

N m ¼ 3 m ¼ 4 m ¼ 5

s� Avg s� Avg s� Avg

500 5 27.82 7 36.16 6 44.35
1000 5 31.25 7 40.53 6 49.9
2000 10 34.5 7 45.14 6 55.81
5000 10 38.99 7 51.11 11 62.4

Table 5
Choosing ðr;mÞ for different bit budgets in a 5000-node network with
b ¼ 13 and � ¼ 5.

r Bbudget ¼ 32 Bbudget ¼ 64 Bbudget ¼ 128

m x m x m x

1 2 2 9 9 25 25
2 n.a. n.a. 7 4 21 11
3 n.a. n.a. n.a. n.a. 16 6
4 n.a. n.a. n.a. n.a. 9 3
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Since PPM and PPM + NC are designed for IP trace-
back, we need to adapt them for wireless sensor net-
works. PPM will use 16 bits for embedding a single
node ID (per TinyOS) and 8 bits for the distance field.
PPM + NC computes a linear combination of node IDs
over F216 (since node IDs are 16 bits). The coefficients
used to compute linear combinations are chosen over
F22 . PPM + NC uses the rest of the bit budget to embed
the coefficients and a counter that tracks number of par-
ticipating nodes in the linear combination. We note that,
our implementation of PPM + NC is a slightly improved
version of the original one. In the original version of
PPM + NC, a packet received at the base station does not
contain any linear combination of node IDs if no interme-
diate nodes mark the packet. We modified this so that a
packet received at the base station contains a linear com-
bination of the first few node IDs even if no intermediate
nodes mark the packet.

9.1. Performance metrics

The following performance metrics are considered to
evaluate our proposed schemes:

� Number of transmitted packets: The total number of
packets transmitted by all nodes on a path from a par-
ticular source to the base station before complete prov-
enance is constructed for that path.
� Aggregate energy consumption: The total energy con-

sumed (in mJ) by all nodes that participated in encoding
provenance of a path from a particular source to the
base station.
� Decoding error: The percentage of node IDs that cannot

be decoded due to link changes or false positive rates (if
any).

9.2. Simulation setup

All experiments are performed using a transmission
rate of 250 kbps, the default transmission rate of the
micaz mote, where every data-generating sensor sends
data towards the base station every 2 s. The probability
for embedding a node ID is p ¼ 1

25. Before starting data
transmission, the following initialization steps are
performed:

� Every node is assigned a node ID from the appropriate
set Q P;s� (discussed in Section 7).
� Every node computes and stores the lookup table neces-

sary to compute Rabin fingerprints.
� The sender node sends 500 dummy packets towards the

base station to ensure convergence of the routing proto-
col CTP. These packets are discarded at the base station
and thus not used in the provenance construction
process.

All results are averaged over 1000 runs, and we find the
standard deviation to be extremely small. Unless other-
wise stated, we use the above default values in our
simulations.

9.3. Random topology

We start with a randomly deployed 500-node network
where the position of the source node is varied to simulate
paths of different hops (from 5 to 31). The channel and
radio parameters for this topology are listed in Table 6.
The nodes have an average noise floor of�106 dBm, a stan-
dard deviation of 4.0 dB for the white Gaussian noise, and a
low level of asymmetry. The network has very low rate of
link changes. We place the same constraint on usable bits
(32 bits) for provenance embedding per packet on all
schemes.

Fig. 8(a) shows the number of packets required to con-
struct provenance for increasing numbers of hops from a
single source to the base station. The results reveal that
all three schemes of PPF have identical performance in this
case, since they can embed only 3 node IDs (on average)
per packet using 32 bits. However, they require at least
33% fewer packets than both PPM variants. The original
PPM scheme requires a large number of packets since it
embeds a single node ID per packet. In contrast, PPM + NC
uses 16 bits (out of 32) for the linear combination, 8 bits
for the distance field, 6 bits for storing coefficients, and
the remaining 2 bits to count the coefficients used. Thus
it embeds a linear combination of 3 node IDs in a packet.
However, in order to construct a forwarding path of length
d hops, PPM + NC converges upon reception of d unique
linear combinations of node IDs, whereas PPF requires d
different node IDs.

Fig. 8(b) compares the aggregate energy consumption
for the two PPM variants and PPF-Prime (the PPF method
that requires the lowest number of packets for a 32-bit
budget). PPF with a 32-bit budget consumes at least 30%
less energy than the PPM variants.

We perform the same experiment in a 5000-node net-
work with a 64-bit budget. We skip PPM since it embeds
only one node ID per packet and requires the same num-
ber of packets. Since TOSSIM does not scale to 5000
nodes, we randomly assign node IDs from a set of 5000
numbers and take the average over experimental results
of several TOSSIM runs. Fig. 8(c) shows that the prime
method requires fewer packets than the rank method,
while the fingerprint method outperforms both in this
case. The reason is that with a 64-bit budget, the finger-
print method (r ¼ 2) embeds 7 node IDs per packet with
a low false positive rate (< 0:001), whereas the prime
and rank methods embed 5 and 4 node IDs on average,
respectively. Though PPM + NC can embed a linear com-
bination of up to 17 node IDs (16 bits for linear combina-
tion field, 8 bits for distance field, 34 bits for the
coefficients and 5 bits for the counter field), it still
requires more packets than the efficient PPF schemes.
Specifically, PPF-Fingerprint requires at least 45% fewer
packets than PPM + NC.

Fig. 9 compares the aggregate energy consumption for
PPM + NC and PPF methods with a 64-bit budget in a 25-
hop network. We find that PPM + NC consumes less energy
with respect to PPF-Rank and the percentage of energy
gain is only 17 in this case. The best PPF scheme (PPF-Fin-
gerprint in this case) reduces energy consumption by 46%
with respect to PPM + NC. Further, PPF with a 64-bit
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budget reduces energy consumption by more than 60%,
compared to its 32-bit counterpart.

9.4. Grid network topology

We use highly asymmetric grid topologies to demon-
strate the effect of topological changes on our proposed
schemes. The radio and channel parameters used for these
topologies are shown in Table 6. The grid dimensions are
varied from 2 � 2 to 10 � 10, while node density is kept
constant with nodes spaced 2.0 m apart. The source node
is positioned at coordinate (0,0) and the base station is lo-
cated at the upper rightmost corner of the grid. The aver-
age hop count is observed to range from 2 to 19 for grid
dimensions of 2–10. The bit budget considered here is
64 bits.

We combine PPF with the topological changes handling
scheme discussed in Section 4.4, and compare the number
of packets required by PPF-Rank, PPF-Fingerprint, and PPF-
Prime. We do not consider PPM variants in this simulation
since they do not handle topological changes. Fig. 10(a) de-
picts the simulation results. PPF-Fingerprint outperforms
other methods as the grid dimensions (and hence the
hop count) increase. It is interesting to note that PPF
methods combined with topological change handling
perform similar to the basic PPF methods (without the
topological change handling) in a network with negligible
link changes.

To understand the simulation results, we consider a
10 � 10 grid network. The source node transmits 20,000
packets towards the base station. Fig. 10(b) shows the dis-
tribution of the number of changes in hop count for succes-
sive packets received at the base station (after discarding
out-of-order packets). About 98% of the packets that expe-
rienced topological changes have exactly a 1-hop differ-
ence with respect to the path followed by the preceding
packet. Fig. 10(c) shows the distribution of the number of
packets received at the base station between two consecu-
tive groups of topological changes. The number of packets
between two topological changes significantly varies. In
the 80% case, at least 50 packets are being received at the
base station between two changes. Thus, we find that once
there is a topological change, it affects a small number of
hops on the path from the source to the base station. After
that, the path remains stable for large number of packets.
This is why PPF with topological change handling incurs
negligible overhead without affecting convergence rate.

9.5. Varying link change rates

We have observed that incorporating the topological
change handling scheme into PPF helps track changing
paths. In such scenarios, the fingerprint method provides
additional resistance to decoding error over other encoding
methods, since it transmits a large provenance subgraph
with smaller partitions as discussed in Section 4.3.2.

Table 6
TOSSIM channel and radio parameters for different topologies.

Topology

Random Grid

Channel parameters
PATH_LOSS_EXPONENT 4.7 4.7
SHADOWING_STANDARD_DEVIATION 3.2 3.2
D0 1.0 1.0
PL_D0 55.4 55.4

Radio parameters
NOISE_FLOOR �106.0 �105.0
S11 0.9 3.7
S12 �0.7 �3.3
S21 �0.7 �3.3
S22 1.2 6.0
WHITE_GAUSSIAN_NOISE 4 4
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To observe the effect of partitioning fingerprints, we
study the decoding error of the fingerprint method with re-
spect to the rate of link changes. Here, decoding error de-
notes the percentage of node IDs that cannot be decoded
due to link changes or false positive rates, where rate of link
changes indicates the average number of link changes per
unit time. We artificially introduce link failures and associ-
ated path changes that are randomly distributed over a
time window of 200 s along a 30-hop path.

Fig. 11(a) shows that as link changes increase, the fin-
gerprint method with two partitions (r ¼ 2) has a decoding
error lower than the non-partitioned case because of its
low sensitivity to topological changes. However, the finger-
print method with r ¼ 3 suffers from a false positive rate of
about 0.16 with a 64-bit budget in this particular experi-
ment, and performs worse than the r ¼ 2 case in the pres-
ence of low rate of link changes (when decoding error due
to link changes is small). With a high rate of link changes,
the case of r ¼ 3 shows a small improvement over the r ¼ 2
case, but a relatively higher false positive rate in a dense
network will nullifies that improvement (as indicated in
Table 5). Fig. 11(b) shows the effect of the decoding error
in constructing provenance. The fingerprint method with
r ¼ 2 converges with a fewer number of packets even in
the presence of a high rate of link changes. The false posi-
tive rate is negligible.

9.6. Trust framework and provenance similarity

We integrate PPF with a provenance-based trust frame-
work [9] to iteratively compute trust scores. To evaluate
the performance of the trust framework integrated with

PPF, we use a 7 � 7 grid with the same channel and radio
parameters as the grid topology (see Table 6). Five nodes
(2, 3, 4, 5, and 6) generate data items every 1 s and the rest
of the nodes act as forwarders. Each of the data generator
nodes send 2000 data items. The top right most node
(49) in the grid works as the base station which computes
trust score over each collection of data items that have
same sequence number but are generated from different
originators. Fig. 12 shows that the trust score calculated
using PPF evolves correctly as soon as the entire prove-
nance is constructed at the base station. PPF accuracy in
trust score calculation is similar to the traditional approach
that includes every node ID on the forwarding path in the
provenance.

We use the same 7 � 7 grid network with varying ETX
threshold (thetx) to investigate the effectiveness of our
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controlled routing scheme proposed in Section 6.2. We keep
the data values reported from the originator nodes fixed
over different packets to solely focus on the role of prove-
nance similarity.

Fig. 13(a) and (b) shows the provenance of the data
items generated from node 2, 3, and 4 for thetx ¼ 10 and
thetx ¼ 30 respectively. It is seen that data items have
shared provenance with lower thetx and different prove-
nance with higher thetx. Fig. 13(c) shows the resulting effect
of provenance dissimilarity on the trustworthiness of data
items: higher dissimilarity in provenance increase the
trustworthiness of data items. Finally, Fig. 14 shows the
trade-off between provenance dissimilarity and transmis-
sion overhead. As the ETX threshold, thetx, increases, dis-
similarity among provenance, qd, increases at the
expense of increased transmission overhead. This allows
decision makers to select an appropriate thetx value based
on the security requirements and network conditions of
the system.

10. Testbed experiments

We ported the implementation of PPF to the TelosB
platform. Our motes have an 8 MHz TI MSP430 micro-con-
troller, 2.4 GHz radio, 10 kB RAM, and 1 MB flash for data
logging. We also ported the implementation of PPM and
PPM with network coding to this platform. We consider
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the same performance metrics as in Section 9.1 to compare
with PPF.

10.1. Experimental setup

We placed battery-powered TelosB motes in an indoor
environment. When necessary, we controlled the trans-
mission power of the motes to ensure multihop communi-
cation in the network. We assign node IDs from the set
Q P;s� . All nodes are started and stopped at the same time.
The source node sends out packets every 500 ms. The prob-
ability of embedding a node ID is set to 1

25. Before actual
data transmission starts, every node computes and stores
the lookup table necessary to compute Rabin fingerprints
and the source node sends 500 dummy packets to ensure
convergence of the routing protocol CTP. All results are
averaged over 500 runs.

10.2. Multihop linear topology

We construct a 3.5 m � 1.5 m topology consisting of
15 TelosB sensors deployed linearly in an apartment room.
We used the lowest transmission power level to ensure
multihop communication. Fig. 15 shows the coordinates
of the nodes in the testbed, where nodes are labeled
1–15. We used node 1 as base station and connected it to
a laptop through a USB cable. A Java application running
on the laptop received the packets and performed the
real-time decoding process. We conducted different sets
of experiments by varying hop counts from 5 to 15. The
bit budget considered here is 32 bits.

We compare PPF-prime (the best scheme for the 32-bit
budget as seen from our simulation results) with PPM and
PPM with network coding. Fig. 16 plots the number of

packets required to construct provenance. As the hop
count increases, PPF outperforms both PPM variants and
reduces the number of required packets by more than
33%. This result validates the gain that we achieved in TOS-
SIM simulations.

10.3. Multihop random topology

We construct a 9.5 m � 1.6 m topology consisting of
20 TelosB sensors deployed randomly in a Purdue Univer-
sity classroom. We used transmission power level 1 to cre-
ate relatively weak wireless links. Fig. 17 shows the
coordinates of the nodes in the testbed, where nodes are
labeled 1–20. Node 2 is selected as the source and node 1
(connected to a laptop) is chosen as the base station. The
hop count from the source to the base station was ob-
served to be between 9 and 11. Since PPF schemes with a
32-bit budget exhibit almost identical performance for
such a small hop count, we consider a 64-bit budget for
this experiment.

We compare PPF-Rank, PPF-Prime and PPF-Fingerprint
in the presence of topological changes. Fig. 18 depicts the
average number of packets required to construct prove-
nance for all three schemes. It is observed that PPF-Prime
and PPF-Fingerprint perform better than PPF-Rank. Their
performance is similar to basic PPF schemes in a network
of 9–11 hops with negligible rate of link changes.

11. Conclusions

We have presented an energy-efficient provenance
transmission and construction approach for large-scale
multi-hop wireless sensor networks, based on the idea of
probabilistic incorporation of node identities. We adapt
the Probabilistic Packet Marking (PPM) approach for IP
traceback, and propose three provenance encoding meth-
ods with a space constraint on the size of provenance data
in each packet. We analyze the suitability of the methods
based on the network size and bit budget via mathematical
approximations and numerical methods. In contrast to
PPM, our proposed approach requires fewer packets to
construct network-wide provenance, and significantly re-
duces the aggregate energy consumption of the network,
as demonstrated via both simulations and testbed experi-
ments. We also incorporate a simple but robust scheme
into PPF to handle topological changes. PPM variants do
not consider such changes. We demonstrate the effective-
ness of PPF in highly dynamic and asymmetric networks
using simulation and testbed experiments. PPF integration
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with a provenance-based trust framework reveals no deg-
radation in accuracy of trust scores. We also explore the
trade-off between trustworthiness or provenance dissimi-
larity of data items and transmission overhead. In this re-
gard, we propose a solution to provide decision makers
with a tunable parameter to control the extent of prove-
nance dissimilarity and transmission overhead. In our fu-
ture work, we will study how well a complete trust
framework can detect and react to different attacks and
failure scenarios.
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Appendix A. Implementation of fingerprint calculation

Assume that M denotes the irreducible polynomial of
degree z required to calculate the fingerprint. We show
how the fingerprint of the string ½b1 . . . bt 	 can be calculated
by extending it one bit at a time. For an arbitrary length l,
we can write,

RFð½b1 . . . bl	Þ ¼ ðb1al�1 þ b2al�2 þ . . . blÞ mod M

¼ r1az�1 þ r2az�2 þ . . . rz

Now if we extend ½b1 . . . bl	 by one bit blþ1, we have,

RFð½b1 . . . bl	jjblþ1Þ ¼ RFð½b1 . . . blþ1	Þ
¼ ðRFðb1 . . . blÞaþ blþ1Þ mod M

¼ ðRFðb1 . . . blÞaþ blþ1Þ mod M

¼ ððr1az�1 þ . . . rzÞaþ blþ1Þ mod M

¼ r2az�1 þ . . . rzaþ blþ1 þ ðr1azÞ mod M:

Observe that ak mod M ¼ ak �M ¼ M � ak. So
ak mod M is equivalent to M with the leading coefficient
removed. Computing the fingerprint of A extended by blþ1

consists of one shift left operation with blþ1 as the input bit
and r1 as the output bit, and then, conditioned upon r1 ¼ 1,
a bit-wise XOR operation, the second operand being M
with the leading coefficient removed. In this way, we can
extend the bit string up to length t to calculate the desired
fingerprint. Since each bit extension requires only a con-
stant number of shift and XOR operations, the time com-
plexity of calculating the fingerprint is linear in number
of bits of the input string.

We further show that time complexity of fingerprint
calculation can be improved by extending a byte at a time
and using a lookup table. If we extend ½b1 . . . bl	 by one byte
½blþ1; blþ2; . . . blþ7; blþ8	, we have

RFð½b1 . . . bl	jj½blþ1; blþ2; . . . blþ7; blþ8	Þ ¼ RFð½b1 . . . blþ8	Þ
¼ ðRFðb1 . . . blÞa8 þ blþ1a7 þ . . .þ blþ8Þ mod M

¼ ððr1az�1 þ r2az�2 þ . . . rzÞa8 þ blþ1a7 þ . . . blþ7a

þ blþ8Þ mod M

¼ ðr9az�1 þ r10az�2 þ . . . rza8 þ blþ1a7 þ . . . blþ8Þ
þ ðr1azþ7 þ . . . r7azþ1 þ r8azÞ mod M

Observe that the first part of the above equation can be
determined by shifting the previous fingerprint,
RFð½b1 . . . bl	Þ to left by 8 bits with the leading 8 bits re-
moved and then XORing the output with the input byte:
ð½r1 . . . rz	 � 8Þ 
 ð½r1 . . . r8	 � zÞ 
 ð½blþ1 . . . blþ8	Þ. The sec-
ond part is determined by a modulo operation where the
dividend is the leading 8 bits of the fingerprint,
RFð½b1 . . . bl	Þ shifted to left by z bits and the divisor is
M : ð½r1 . . . r8	 � zÞ mod M. By combining the two parts,
fingerprint can be determined as,

RFð½b1 . . . blþ8	Þ ¼ ð½r1 . . . rz	 � 8Þ 
 ð½r1 . . . r8	
� zÞ 
 ð½blþ1 . . . blþ8	Þ 
 ðð½r1 . . . r8	 � zÞ modMÞ
¼ ð½r1 . . . rz	 � 8Þ 
 ð½blþ1 . . . blþ8	Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

part 1


 ðð½r1 . . . r8	 � zÞ 
 ðð½r1 . . . r8	 � zÞmod MÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
part 2

:

Since M and z are known beforehand, part 2 of the
above equation can be looked up from a pre-computed ta-
ble (of size <4 KB) which contains the values of the expres-
sion ðð½r1 . . . r8	 � zÞ 
 ðð½r1 . . . r8	 � zÞ mod MÞÞ for all
possible values of the bits ½r1 . . . r8	. Thus the fingerprint
of a bit string extended by 1 byte can be calculated using
only 1 shift and 2 XOR operations.
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