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OF BIG DATA
A Gaussian Regression Model to Predict the 
Spatiotemporal Distribution of Ground Ozone

Abstract 
Tracking pollution levels on the ground is important to the environment and public health. One of the pollutants of 
concern is ozone, which, at high concentrations, can cause respiratory and cardiovascular problems. The National 
Center for Atmospheric Research (NCAR) has published valuable ozone data obtained from ground-based sensors 
installed at selected locations. Because it is unfeasible to measure the exact ozone levels everywhere at any time, it 
would be valuable to predict the temporal-spatial distributions of ozone concentration based on existing data. This 
would help us better understand the patterns and trends in the data and make better decisions to reduce pollution. 
Motivated by this, the objective of this paper was to build predictive models to illustrate the temporal-spatial structure 
of the large amount of ozone data. The training data included measurements of ozone in 513 locations in the eastern 
states of the United States spanning five years. We used a machine-learning method called Gaussian process regression 
(GPR) with a covariance function that describes the temporal-spatial relationship between data points. With this 
method, we were able to observe the trends and dynamics of ozone formation. Additionally, maps were created to 
visualize the spatial and temporal distribution of ozone concentrations. The results demonstrate that the GPR method 
with the Matérn covariance function was able to give a reliable estimate of the uncertainty as well as the mean ozone 
concentration at various locations and times, which helps us better understand the dynamics of ozone formation.
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INTRODUCTION 

Ground-level ozone is a major component of air pollution 
and can be detrimental to human health.1  High concen-
trations of ozone can cause respiratory and cardiovascular 
problems, as well as damage to vegetation, crops, and 
other natural resources.2 According to the Environmental 
Protection Agency’s (EPA) National Ambient Air Quality 
Standards (NAAQS), the acceptable ozone concentration 
is 70 parts per billion (ppb), which is calculated based on 
the daily maximum 8-hour average.3 Monitoring 
ground-level ozone concentrations can help to identify 
areas with high ozone levels, which can then be tackled 
through public health initiatives, air quality regulations, 
and other methods to reduce air pollution. For this 
reason, EPA established ground sensors at 513 monitor-
ing stations in the eastern United States to measure the 
daily surface ozone concentrations over a period of 
several years, and the data are publicly accessible.4 

Ground-based sensors can be costly, so they are usually 
only installed in select areas with greater distances 
between them in order to reduce expenses. Additionally, 
these sensors may not be able to collect data continuously 
or at frequent intervals, leading to coarser spatial and 
temporal resolutions of the recorded data. This can make 
it difficult to identify the true source and location of the 
pollution and make decisions about how to address the 
issue. As a result, there is increasing interest in analyzing 
massive data to detect meaningful spatiotemporal 
dependence patterns and to subsequently smooth and 
predict in the space-time domain. Various algorithms 
have been developed to construct more flexible, accurate, 
and computationally efficient models for large spatio
temporal data.5,6 Ma et al. provided a review of three 
common statistical spatial-temporal models for ambient 
ozone exposure in environmental epidemiology studies: 
the land use regression model, the random forest model, 
and the artificial neural network model.7 The latter two 
methods, both of which are machine-learning algorithms, 
provide nonlinear mapping tools for large datasets, 
though they can be prone to overfitting with high- 
dimensional features and have a slow convergence rate, 
resulting in a high computational cost.

Motivated by the need to reduce the computational cost, 
this study seeks to apply a Gaussian regression process 
model with the Matérn covariance function to predict 

Student Author
Jerry Gu is a junior at West 
Lafayette Jr./Sr. High School in 
Indiana and a nondegree student at 
Purdue University, where he has 
been taking courses from the 
Departments of Mathematics and 
Computer Science. He has been 

working with Professor Lin on machine learning of big 
data since August 2021. In the summer of 2022, he 
interned at the Crane Naval Surface Warfare Center, 
where he developed an image processing method with a 
convolutional neural network to identify and classify 
obstacles and street signs for ground military drones. He 
also participated in research on unmanned aerial systems 
(UAS), creating a simulation environment to predict the 
optimum trajectory of autonomous drones. These 
research experiences have deepened his interest in 
applying mathematics to the design and development of 
artificial intelligence, enabling the creation of intelligent 
systems that can learn, reason, and make decisions.

Mentor
Guang Lin is a Full Professor in the 
Department of Mathematics and the 
School of Mechanical Engineering at 
Purdue University. His research 
interests include diverse topics in 
computational and data science both 
on algorithms and applications. His 

main current thrust is machine learning, data-driven 
modeling, stochastic simulation, and multiscale model-
ing of interconnected, physical, and biological systems. 
He is the Director of Data Science Consulting Service, 
which performs cutting-edge research on data science 
and provides hands-on consulting support for data 
analysis and business analytics in all areas to overcome 
data science challenges arising in research, education, 
and business and organization management. Professor 
Lin is currently also Co-Chair of the Purdue Engineering 
Initiative in Data Engineering and Application.



Machine Learning of Big Data 33

Statistical Method 

In this study, we focused on the ground level ozone 
concentration at various locations, which was the output 
of the machine-learning model (dependent variable). 
The input data (or independent variables) were the 
location and time (longitude and latitude of the location 
and date).

We began by cleaning up the original recorded data, then 
performing statistical analysis on the datasets. To analyze 
the data, we used a cross-validation procedure whereby 
70% of randomly selected data points were used as the 
training set and the remaining 30% as the testing set for 
assessing the model’s predictive performance. 

After examining the collected data, we found a weak 
relationship between spatial and temporal data, which 
allowed us to separate temporal and spatial components. 
Consequently, we decided to conduct the spatiotemporal 
prediction in two stages: (1) the use of Gaussian process 
regression for the modeling and prediction of the spatial 
distribution at each time step; and (2) the modeling and 
prediction of the temporal distribution based on the 
observed temporal covariance from the measurements. 

the spatial and temporal distribution characteristics of 
ground-level ozone concentration in the eastern states of 
the United States. We will describe the data source and 
statistical model used, then show the trend and dynamics 
of ozone formation based on the predicted daily, 
monthly, and yearly ozone concentrations at a higher 
spatiotemporal resolution. Additionally, we will discuss 
the uncertainty analysis of the simulation results, as well 
as the factors influencing ozone patterns and trends.

MATERIALS AND METHODS
Training Data

The training data included measurements of the daily 
maximum average 8-hour ozone in 513 locations during 
the period 1995–1999.4 There were 920 total samples for 
each location over the course of 5 years, indicating a total 
number of 471,960 data samples. The data spans 23 states 
in the eastern half of the United States. Figure 1 shows 
the distribution of the 513 ozone monitoring sites. It is 
clear that the sites are more concentrated in the big cities 
with large populations, whereas they are more sparse in 
rural areas and inner states. Neighboring sites can be as 
close as a few miles, or as distant as a thousand miles.

FIGURE 1. The distribution of ozone monitoring sites in the 23 states of the eastern United States.



Journal of Purdue Undergraduate Research: Volume 13, Fall 202334

and times. Plots and animations were created to visualize 
ozone predictions in the eastern states.

Finally, it is important to note that even though the data 
utilized in this study is not the most up-to-date, the 
method and approach employed can still be used for 
more current data and other pollutants.

RESULTS
Descriptive Statistics

We first chose the city of Chicago to investigate the 
ground ozone concentrations over daily, seasonal, and 
annual timescales. Figure 2 demonstrates the ozone data 
for the months of May to October from 1995 to 1999, 
with no data available for the months of November to 
April due to the inactivity of the ozone sensors during 
this period. The boxplot for each year is included, which 
is a method used to show the distribution of the data 
through their quartiles. For all of the boxplots in this 
study, the middle, upper, and lower lines of the box 
represent the mean, 75%, and 25% percentiles of the 
data, and the upper and lower legs of each boxplot 
represent 95% and 5%; the rest of the dotted data are the 
outliers of the statistics. The yearly average ozone 
concentration does not change drastically with values of 
48.6, 44.2, 43.7, 45.6, and 43.0 ppb, respectively. 
However, there are large changes within each year, with 
August having the highest peak value and October 
having the lowest. On top of this, the annual peaks and 
lows are consistent over the years, with the average being 
less than half of the peak value.

This decoupled approach proved to be highly efficient, 
while still providing satisfactory results.

Using a machine-learning method called Gaussian 
process regression (GPR) to predict the temporal spatial 
dependence structure of the data, we assumed that the 
output variable was a random function of the input 
variable and that this random function was drawn from 
a Gaussian process. We selected a covariance function 
that describes the temporospatial relationship between 
data points, determining how quickly the data values 
change as a function of time and space. Then, we fitted 
the model to the training data set by maximizing the 
likelihood of the data under the model. Subsequently, 
we used the testing data set to evaluate the model by 
comparing the model-predicted ozone concentration 
with measured data. If the model met the success 
criteria, we could use it to make predictions about the 
ozone concentration at new input locations. For each 
new input location, we computed the mean and variance 
of the predicted output distribution. The mean 
represents the most likely value of the output variable 
at that location, while the variance represents our 
uncertainty about that prediction.

The Matérn kernel was chosen for this study due to its 
ability to calculate the covariance  solely based on the 
distance between data points: 
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where  is the distance between two location vectors  and ;  
is the gamma function;  is the smoothness parameter, 
which controls the level of differentiability in the func-
tion; l is the length-scale parameter, which determines 
how quickly the covariance decays with distance; and is a 
modified Bessel function of the second kind.

We first organized the data into data frames in R and 
removed missing values from the dataset. Then we chose 
the Matérn kernel as the covariance function based on 
the distance between points, which is commonly used in 
spatial statistics. Finally, we used Ski-Kit Learning, a 
machine-learning library in Python, to conduct GRP. 
The output of the model is a prediction of the temporo-
spatial structure of the data, which can be used to predict 
future values of the data, such as at different locations 

FIGURE 2. Statistics of the ground ozone concentration 
data in Chicago from May to October during the years 
1995–1999.



Machine Learning of Big Data 35

instance, in 1995, the highest daily ozone concentration 
was recorded on August 12 with a value of 106 ppb, 
while the lowest was recorded on October 21 with a 
value of 5 ppb. In 1996, the highest daily ozone concen-
tration was recorded on June 27 and July 6 with a value 
of 106 ppb, and the lowest was on October 16 with a 
value of 7 ppb. Within just a few days in the same 
month, drastic changes in ozone concentration can 
occur, which is likely due to significant daily fluctua-
tions in temperature.

Next, we examined several other major cities in addition 
to Chicago: Fort Wayne, Indianapolis, Kansas City, New 
York City, Philadelphia, and St. Louis. Figure 5 shows the 
average yearly ozone concentration in these cities. Fort 
Wayne and Indianapolis had the highest average concen-
tration while Chicago had the lowest. Interestingly, New 

Figure 3 shows the average monthly ozone concentra-
tion of Chicago in 1999. It is evident that June has the 
highest ozone level, followed by July, while October is 
the lowest. The data points outside of the boxplots for 
June, July, and August indicate that the daily peaks for 
these months are nearly identical, around 110 ppb, 
whereas May has a slightly lower daily peak of 80 ppb. 
Additionally, May is the only month that has quite a few 
data points falling below the boxplot (outside of the 25% 
range), indicating the lowest daily ozone concentrations 
in May are far below the average. On the other hand, 
October has no outliers as all data points are within the 
boxplot. This implies that the daily ozone concentration 
changes significantly from May to August, but is 
relatively stable in October, which is likely due to the 
decrease in temperature. It is well documented that 
ground ozone concentrations are high in summer and 
low in winter because of the interactions between 
sunlight, temperature, and air pollutants. In summer, 
the intense sunlight and high temperatures create 
favorable conditions for ozone formation from air 
pollutants like nitrogen oxides and volatile organic 
compounds. In fall and winter, the decreased sunlight 
and lower temperatures limit ozone formation and 
reduce the concentrations of ozone.

Figure 4 illustrates the daily variation of ozone concen-
tration in Chicago from May to October in 1996 (blue) 
and 1995 (red). It is clear that ozone concentration 
increases from May to June, July, and August, then 
decreases in September and October. The most note-
worthy aspect of this figure, however, is the large 
fluctuations in ozone concentration on a daily basis. For 

FIGURE 3. Ozone distribution in each month from May to 
October in 1999.

FIGURE 5. Annual average ozone concentration in different 
cities, including Chicago, Fort Wayne, Indianapolis, Kansas 
City, New York City, Philadelphia, and St. Louis. 

FIGURE 4. Daily variation of ozone concentration from 
May to October in Chicago in 1995 and 1996.
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19th in ground ozone concentrations among all states in 
recent years.8

Spatial and Temporal Covariance

In Figures 6 and 7 present the spatial and temporal 
covariance of ozone daily exposure data, providing 
information on the spatiotemporal variation of the ozone 
residual concentration. As observed, the covariance 
decreases with increasing distance or time. Figure 6 
depicts the monthly spatial covariance, showing the 
covariance between two locations within a 1,500-mile 
distance. Significant covariance (> 0.25) is observed 
when the distance is less than 500 miles. However, 
differences are evident among the months, with October 
displaying more data points outside of the 5%–95% 
range. This suggests that local weather fluctuations or 
extreme weather may have a more significant impact on 
ozone generation during this month. Figure 7 presents 
the monthly temporal covariance, which spreads across a 
narrower range than the spatial covariance, with fewer 

York City had the highest peaks, indicating that it may 
experience more severe air pollution at certain times of 
the year. 

Extensive studies have suggested that ground ozone is 
primarily caused by emissions from motor vehicle 
exhaust, industrial facilities, and chemical solvents. 
While cities such as New York City and Chicago may 
have heavier traffic than Indianapolis and Fort Wayne, 
other factors also contribute to levels of ground ozone, 
such as geography and local industries. For example, 
although Chicago’s population dominates in precursor 
emissions leading to high ozone formation, winds from 
the lake tend to blow the ozone and precursor emissions 
away from the city. Conversely, Fort Wayne and 
Indianapolis have less wind and traffic than Chicago, but 
more heavy industrial facilities, such as chemical plants, 
petroleum refineries, and power plants, which emit 
nitrogen oxides (NOx) and volatile organic compounds 
(VOCs), resulting in higher yearly average ground ozone 
formation. Indeed, according to the Environmental 
Protection Agency (EPA), the State of Indiana ranked 

FIGURE 6. Observed covariance of the ozone residual concentrations on a daily time scale shown as a function of spatial 
lag from May to October for all years.
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Temporospatial Distribution  
of Ozone Concentrations

As discussed earlier, the uneven distribution of ozone 
monitoring stations, concentrated mainly in urban areas, 
does not fully reveal the overall spatial distribution 
characteristics of ozone. Moreover, ground monitoring 
stations cannot monitor changes in ozone concentrations 
over extended periods of time. To address this, models 
must be developed that are capable of predicting the 
temporospatial structure of the data so that estimated 
ozone levels can be determined in areas and times 
lacking monitoring data. This will facilitate a greater 
understanding of ozone distribution in the United States, 
as well as provide a scientific basis for air pollution 
monitoring and management.

To investigate the spatial distribution, we picked the first 
day of each month from May to October in 1999 and 
used the Gaussian regression process model with a 
covariant function to calculate the ozone concentration 

outliers observed in each boxplot. Furthermore, it 
indicates that the temporal covariance is only affected by 
3–4 lags, making temporal prediction computationally 
efficient.

To predict the spatial distribution of ozone concentra-
tion, a GPR machine-learning approach was employed, 
and the testing dataset (30% of the original data points) 
was utilized to assess the model’s performance. Table 1 
presents the statistical metrics of the ozone concentra-
tion prediction in comparison with the measurements. 
The model’s statistical quality is generally acceptable, 
indicating its potential for predicting ozone concentra-
tion on uniform longitude-latitude grids in areas where 
no measurements are available.

FIGURE 7. Observed covariance of the ozone residual concentrations on a daily time scale shown as a function of temporal 
lag from May to October for all years.

TABLE 1. GPR model quality with testing dataset.

R2 RMSE MAE MAPE
0.7–0.89 12–20 11–14 2.5%–3.7%
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such as staying indoors and using air filters during the 
hottest summer season in these regions.3 

While Figure 8 demonstrates the spatial characteristics of 
the data, Figure 9 illustrates both the temporal and 
spatial structure. It shows the average monthly ozone 
concentration in the 25 states. The data showed an 

at any location on the map, which is a function of the 
data from the 512 surrounding monitoring stations. 
Figure 8 shows the resulting spatial distribution of ozone 
concentrations, which were generated based on one-day 
data from May to October. We observed a clear trend 
that the overall ozone level increases from May, reaches a 
maximum in August, and then decreases again in 
October. Additionally, the spatial distribution of ozone 
varied significantly. For example, on June 1, the midwest-
ern and southern states of Ohio, Kentucky, Tennessee, 
Georgia, and South Carolina had higher ozone levels 
than the east coast states such as Connecticut, New York, 
New Jersey, and Delaware. On July 1, northern states of 
Illinois, Indiana, Ohio, Pennsylvania, and New York 
seemed to have higher ozone concentrations than the 
southern states. However, on August 1, the highest ozone 
concentration areas were focused on the big cities along 
the east coast, starting from New York, to Philadelphia, 
to Washington, DC, to Atlanta. This correlates with the 
traffic of these big cities, where mobile cars emit Nox, 
which interacts with the strongest sunlight in August to 
produce the most ozone. Furthermore, on August 1, the 
warning threshold of ground ozone concentration, which 
is 70 ppm, was exceeded in most of the 25 eastern states, 
suggesting that precautionary measures should be taken 

FIGURE 8. Ozone concentration distribution map on the 
first day of each month from May to October in 1999.

FIGURE 9. Monthly averaged ozone concentration distribution map from May 
to October in 1999.
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and direction, and air humidity) may contribute as well. 
For example, researchers established a positive correlation 
between ozone concentration, wind speed, and tempera-
ture, and a negative correlation between ozone concentra-
tion and relative humidity.10,11 Japanese researchers 
examined the increase of annual ozone in the western 
parts of Japan, despite the decrease in the ambient levels of 
NOx and organic compounds—precursors of photochem-
ical reactions—from 1990 to 2010. They concluded that 
the increase in ozone was likely due to transboundary 
transport from the Asian continent during this time 
period.12 The meteorological factors could explain why 
there is a higher ozone concentration in the Midwest 
compared to the east coast in June, as windy conditions 
enhance mixing between the high ozone in higher altitude 
atmospheres and the low ozone on the ground, leading to 
a higher ground ozone concentration.

Finally, spatial covariance of greater than 0.25 is 
observed when the distance between data points is less 
than 500 miles. The temporal covariance is only influ-
enced by 3–4 lags. The model’s statistical quality is 
generally satisfactory, suggesting its potential for predict-
ing ozone concentration on uniform longitude-latitude 
grids in areas where no measurements are present. 
Additionally, the proposed method can be applied to 
predict the temporospatial structure of large datasets in 
other fields than atmospheric research. For example, it 
can be used to predict the temporospatial distribution of 
the unemployment rate and median household income, 
both of which are important economic indicators. 
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