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ABSTRACT

In order to use a wrist-mounted sensor (such as a camera) for a robot task, 
the position,  and orientation of the sensor with respect to the robot wrist 
frame must be known. We can find the sensor mounting position by impying 
the robot and observing the resulting motion of the sensor. This yields a 
homogeneous transform equation of the form AX=XB, where A is the change 
in the robot wrist position, B is the resulting sensor displacement, and X is 
the sensor position relative to the robot wrist. The solution to an equation 
of this form has one degree of rotational freedom and one degree of 
translational freedom if the angle of rotation of A is neither 0 nor tt radians. 
To solve for X uniquely, it is necessary to make two arm movements and 
form a system of two equations of the form: A1X=XB1 and A2X=XB2. A 
closed-form solution to this system of equations is developed and the 
necessary conditions for uniqueness is stated.

1. Introduction
The investigation into the solution of the homogeneous transform 

equation of the form A X = X B, where A are B are known and X is 
unknown, is motivated by a need to solve for the position between a wrist- 
mounted sensor and the manipulator wrist center (T6)-Throughout this

f This work was supported by the Purdue University Engineering Research Center for 
Intelligent Manufacturing Systems, which is funded by CIDMAC company contributions 
and NSF cooperative agreement CDR 8500022.
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paper, the homogeneous transform T6 is used in the same manner as in 
Paul’s text [28]; it is used to represent the position and orientation of the 
robot wrist frame with respect to the robot base frame. In some literature, 
°T6 is used instead of T6.

We want to find the sensor position relative to the robot wrist instead 
of to other robot links, because of the following reasons: (l) The sensor is 
usually mounted to the wrist (last link of the robot), to allow itself all 6 
degrees of freedom. If, for example, the sensor is mounted on the fifth link 
of the robot, its motion will be limited to 5 degrees of freedom. (2) Robot 
motions are conventionally specified in terms of the position of the last robot 
link (the wrist); it is therefore natural to find the sensor position relative to 
this link. (3) Once the sensor position relative to the last link is found, it is 
straightforward to find the sensor position relative to other links, using 
encoder readings and link specifications.

Much research has been done on using a sensor to locate an object. 
The three-dimensional position and orientation of an object can be found by 
monocular vision, stereo vision, dense/sparse range sensing, or tactile 
sensing. Monocular vision locates an object using a single view, and the 
object dimensions are assumed to be known apriori [2,6,8,10,13,22,29,31,32]. 
Stereo vision uses two views instead of one so that the range information of 
feature points can be found [1,6,12,14,20,24,32]. A dense range sensor scans 
a region of the world and there are as many sensed points as its resolution 
allows [3,7,17,25]. A sparse range sensor scans only a few points, and if the 
sensed points are not sufficient to locate the object, additional points will be 
sensed [5,15,16]. Tactile sensing is similar to sparse range sensing in that it 
obtains the same information: range and surface normal of the sensed points 
[4,15,16],

A sensing system refers to object positions with respect to a coordinate 
frame attached to the sensor, but robot motions are specified by the wrist 
positions (T6). In order to use the sensor information for a robot task, the 
relative position between the sensor and the wrist must be known.

Direct measurements are difficult because there may be obstacles to 
obstruct the measurement path, the points of interests may be inside a solid 
and be unreachable, and the coordinate frames may differ in their 
orientations. The measurement path can be obstructed by the geometry of 
the sensor or the robot, the sensor mount, wires, etc. The unreachable 
coordinate frames include T6 and the camera frame: T6 is unreachable
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because it is the intersection of various link axes, the Camera frame is 
unreachable because its origin is at the focal point, inside the camera. 
Instead of direct measurement, we can compute the Camera position by 
displacing the robot and observing the changes in the sensor frame using the 
sensor system. This method works for any sensors capable of finding the 
three-dimensional position and orientation of an object. Figures 1.1 and 1.2 
show the cases of a monocular vision system and a robot hand with tactile 
sensors.

In order to formulate a homogeneous transform equation, Figure 1.1 is 
re-drawn in Figure 1.3. If the robot is moved from position T6| to Te, and 
the position of the fixed object relative to the camera frame is found to be 
OBJj and OBJ2, respectively, then the following equation is obtained:

T6| X OBJ4 - Tg.X OBJ2, (1.1)

where X is the unknown transform representing the camera mounting 
position relative to the robot wrist frame- Premultiplying both sides of the 
equation by Tg.-1 and postmultiplying them by OBJ!-1, we have

T6 -1 T6i X = X OBJ^BJ!-1. (1-2)

Tg -1 T6i can be interpreted as the relative motion made by the robot and 
we denote it by A; thus,

: ■ A.. -IV. ! Th. VV ;;: ; : (1.3):

Similarly, we denote OBJ2OBJi 1 by B and it can be interpreted as the 
relative motion of the camera frame.

B = OBJ2OBJit1. (1.4)

The transform matrices A and B are known since T6| and Tj, can be 
calculated by the robot controller from the joint measurements, and OBJ^ 
and OBJ2 can be found by the vision system, The case of the tactile sensor 
shown in Figure 1.2 is similar to that of the vision system, where a 
homogeneous transform equation of the form AX=XB results.

Matrix equations of the form A X = X B have been discussed in linear 
algebra [11]; however, the results are not specific 'enough'to. be, Tisreflil' for four., 
application. In order to solve for a unique solution, We must have a 
geometric understanding of the equation and use properties specific to 
homogeneous transforms. Using Gantmacher’s results [ll], the solution to 
the 3x3 rotational part of X (Ry) is any linear combination of n linearly



independent matrices: Rx=k1M1+ • • • -fknMn, where ,n is determined by
properties of eigenvalues of RA and RB (rotational parts of A and B), 
k1? • • • ,kn are arbitrary constants, and Mlt • • • Mn are linearly independent 
matrices. Gantmacher’s solution is for general matrices; the given solution 
may not be a homogeneous transform. To restrict the solution to 
homogeneous transforms, we must impose the conditions that the 3x3 
rotational part pf the solution be orthonormal arid that the right-handed 
screw rule is satisfied. These restrictions will result in non-linear equations 
in terms of k1? • • • kn. Formulating the problem in the above manner does 
not solve the problem because of the following reasons: (1) There are
infinite number of solutions to an equation of the form AX—XB. In order to 
find a way to solve for a unique answer, we must have a geometric 
understanding of the equation; however, tlie above formulation does not 
enable us to do so. (2) Only iterative solutions are possible, since non-linear 
equations are involved; (3) The solution Cannot be expressed symbolically 
and in closed form. .

The approach in this paper is based on the geometric interpretations of 
the eigenvalues arid eigenvectors of a rotational matrix. The solution is 
discussed in the context of finding the sensor position with respect to T6; 
however, the results are general and can possibly be useful for other 
applications which require the solutions to homogeneous transform equations 
of the form A X = X B.

Since this paper investigates the solution to the homogeneous transform 
equation of the form AX = XB in the context of finding a sensor’s 
mounting position, we will relate the mathematics to this problem 
throughout the paper. Section Two is a review on expressing a homogeneous 
transform in terms of rotation about an axis of rotation and translations in 
the x> y, arid z directions. Some properties of the eigenvalues and 
eigenvectors of rotational matrices are also explored. Section Three 
discusses the general solution to the equation and its geometric 
interpretation. Section Four deals with the solution to a system of two such 
equations and the conditions for uniqueness. Section Five contains an 
example showing how we can Solve for a sensor position using the proposed 
method. Section Six addresses the issues of noise sensitivity.
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2. Homogeneous Transforms and Rotation about an Arbitrary Axis
Homogeneous transforms [28] can be viewed as the relative position and 

orientation of a coordinate frame with respect to another coordinate frame. 
The elements of a homogeneous transform T is usually denoted as follows:

(2.1)

We also denote [nx,ny,nz]T as a, [ox,oy,oz]T as o, and [ax,ay,az]T as a. n, o, 
and a can be interpretated as unit vectors which indicate the x, y, and z 
directions of coordinate frame T; p can be viewed as the origin of T. The 
vectors n, o, a and p are referenced with respect to a frame represented by 
a transform to which T is post-multiplied. If there is no transform to the 
left of T, then n, o, a, and p will be vectors relative to the world or absolute 
frame.

nx °x ax Px

Dy °y ay Py
nz °z az Pz
0 0 0 1-

We will refer to the upper-left 3x3 submatrix of T as the rotational 
submatrix since it contains information about the orientation of the
coordinate frame. A rotational submatrix can be expressed as a rotation 
around an arbitrary axis. From [28], the matrix representing a right-hand- 
rule rotation of 0 around an axis [kx,ky,kz]T is :

Rot(k,#) =
kxkxvers#+cos# kykxvers$—kzsin# kzkxvers0-j-kysin$ 

kxkyvers^+kzsin^ kykyvers^+cos^ k zky ve r s #—kxs i n 6 

kxkzvers(9—kysin/9 kykzvers^+kzsin^ kzkzvers#~f-cos(9

(2.2)

where vers(9=(l— cos9) .
Given the rotational part of a homogeneous transform in the form of 

Equation 2.1, the angle of rotation and the axis of rotation can be solved for 
symbolically, provided the rotational submatrix is not an identity matrix. If 
we are given an identity matrix (which is equivalent to zero rotation), it will 
not be possible to determine k, since zero rotation about any vectof will 
yield an identity matrix. In this paper, we will follow the convention that 
0<#<7T. From Paul’s text [28], we have the following two equations:
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cos 9 = — (nx+oy+az—l) (2.3)
2

and

sin# = ±^V(K-ay)+(ax-ns2)+(ny^°*)- (2-4)

Since 0<#<7r, we only take the positive sign of Equation 2.4. Thus, we have
only one solution for 9:

.0 — ata,n2(\/(oz—a.y)+(ax—n|)+(ny—Ox),nx+oy+az—1). (2.5)

We can now find k using 9 computed by Equation 2.5. The set of equations 
used depends on whether nx, oy, or az is most positive. From Paul’s text, if 
nx is most positive,

/ nx—-cos#
kx-sgn(0,-as)'y yers() , (2.6a)

Ily-f-Ox
ky_ 2kxvers0 ’ (2.6b)

ax+nz
(2.6c)

z 2kxvers#’

where sgn(e)=-H if e>0 and sgn(e)=—1 if e<0. (Note that our definition of 
sgn(e) is different from that in Paul’s text. We will discuss this later on.) If 
oy is the most positive,

^ J Oy—COSt/
kJ-sgn(aI-ns)'y ^ , (2.7a)

j_ ny+°x
x 2kyvers#’

(2.7b)

k °z+ay
1 2kyvers(9

" (2.7c)

Finally, if az is the most positive,
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(2.8a)

(2.8b)

(2.8c)

From a geometric point of view, when 6=ir, there are two solutions to k, one 
opposite to the other. Also, when Q—n, we can see from Equation 2,2 that 
oz—ay=0, ax—nz=0, and ny—ox=0. In this case, we can use either sgn(O)—-fl 
or sgn(0)=—1 for Equation 2.6a, Equation 2.7a, and Equation 2.8a; we have 
two solutions for k. However, it is desirable to use some convention so that 
we can solve for k uniquely even when 0=n. To do this, we define 
sgn(0)=+I, so that we have unique ^ and k for each rotational matrix.

In order to provide some background for later proofs, we will present 
the exponential representation of a general rotational matrix which was 
discussed in [26,23]. Furthermore, we will express k and 9 in terms of the 
eigenvectors and eigenvalues of a rotational matrix. A general rotational 
matrix can be represented as the exponent of a skew-symmetric matrix [26];

where

Rot(k,$) = eKfl,

K

0 —kz ky

kz 0 —kx
-ky kx 0

(2.9)

Lemma 1: The eigenvalues of a general rotation matrix not equal to 
identity are 1, e^, and e~^. Let e^ and e-^ be denoted by X and X. Then 9 
can be calculated by:

6 = atan2( Re(X—X) ,X+X) (2.10)

Proof: Fisher [9] has shown that the eigenvalues of K are 0, j, and -j , 
Since these eigenvalues are distinct, K from Equation 2.9 can be 
diagonalized [26]. Let E be the diagonalizing matrix whose columns contains 
linearly independent eigenvectors, we have



K

By definition, eK0 = £]
i=0 *•

we obtain

E
0 0 0 
0 j 0 

0 0 -j
E-l (2-11)

Using this definition and after simplification,

eK0 = E
1 0
0 .ei'
0 0

0
0

H o
E-l (2.12)

This diagonalized form shows that the eigenvalues of eK<? or Rot(k,#) are 1, 
e^, and ei#. Since X=e^ and X=e-^, or X=cOs#-(-jsin# and X=cos#—jsin#.

Combining these equations, we have cos#=—(X+X), and sin#=—— j(X~-X)
2 2

Since we cannot distinguish between X and X , from the eigenvalues of a 
rotational matrix, we should rewrite the equation for sin# in a way that we 
don’t need to distinguish between X s,nd X. Knowing that 0<0<%, we have

sin#— Re(—(X—X)) 
2

Thus we have Lemma 1 . □

Lemma 2: For a general rotation matrix not equal to identity, the 
eigenvector corresponding to the eigenvalue 1 can be expressed as a vector 
with real components and is either parallel or antiparallel to the axis of 
rotation. Furthermore, if the angle of rotation of the matrix is not equal to 
7T, the remaining two eigenvectors cannot be expressed as real vectors.

Proof: Fisher [9] has shown that the eigenvectors of K are as follows: 
c1[kx,ky,kz]T corresponding to an eigenvalue of 0, 
c2[sin/?—jkzcos/9,—cos/9—jkzsin/9,j\/1—kz2]T

corresponding to an eigenvalue of j#, and
c3[sin/9+jkzcos/9,—cos/9+jkzsin/9, —j'Sj 1 —kz2]T corresponding to an eigenvalue 
of —j#, where cx, c2 and c3 are arbitrary complex constants and 
/9=tan-1(ky/kx). From the proof of Lemma 1, we have



,eK' = E
1 0 
0 ejtf
0 0

0
0

*-■}'
E-1 (2.13)

where E is the eigenvector matrix of K. Thus the eigenvectors of eK^ 
corresponding to eigenvalues of 1, e^, and e-^ will be the same as the 
eigenvectors of K corresponding to 0, and —]6, except that they may 
differ by a constant multiplier. We can see that the eigenvector of a 
rotation matrix can be expressed as a real vector (when c1 is real), and that 
it is either parallel or antiparallel to the axis of rotation k.

If the angle of rotation is not equal to 0 or 7T, the three eigenvalues are 
distinct and the eigenvectors associated with each eigenvalues are unique 
(ignoring the scaling factors) and can be written symbolically as shown 
earlier in this proof. The eigenvectors associated with e?9 and e~^ cannot be 
expressed in terms of real vectors because this will require that both sin/? 
and cos/? to be zero simultaneously, contradicting the identity 
sin2/?+cos2/?=l. (Notice that this lemma does not hold when' d—n. In this 
case, we will have -1 as an eigenvalue with multiplicity 2. and the 
eigenvectors associated with e^ and e-^ will no longer be unique.) □

Lemma 3: If R is a rotation matrix and R Rot(k,$) = Rot(k,$) R and 
6^0 or 7T, then R=Rot(k,/?), where /? is arbitrary.

Proof: We will first prove that R and Rot(k,$) have the same set of 
eigenvectors (up to a scaling factor). Since Rot(k,$) is a rotation matrix, it 
can be diagonalized and Rot(k,(9) = EAE-1. Substituting this into 
R Rot(k,$) = Rot(k,$) R and rearranging, we have AE~1RE=E~1REA . 
Denoting E-1RE by R', we have A R'—R' A. From Lemma 1, the 
eigenvectors of Rot(k,$) are 1, e^, and e-^. Rewritting Rf in terms of its 9 
elements (rx to r9), we have

1 0 0 i-i r2 r3 rl r2 f3 10 0
0 ej<? 0 U r5 r6 = U r5 r6 0 ejfl 0
0 0 e~3° r7 r8 r9 r7 r8 r9 0 0 e-j<?

(2.14)

Expanding the above, we have



rl r2 r3 j 0 —\0
rl r2e' r3e

r4eJ<? r5eJtf r6eJtf == r4 r5ejfl W”*"

r7e r8e_jtf rge_J<l r7 r8ejfl rge“J"
(2-15)

Equating elements of both sides and knowing i9?g) or 7r, we can conclude that 
all but the diagonal elements of R' are zero. Recall that R=MBR'E_1y we how
have'- v'"’•• : - A

R E

0 0

r5 0 
0 r9

(216)

Thus R must have the same set of eigenvectors as Rot(k,#), except the 
scaling constants.

jf (3 is the anglq of rotation of R, then the eigenvalues rj, r5 and r9 must 
be a Certain permutation of 1, and «b~^. In fact, r1=l, otherwise a 
contradiction will result when 0^0 or ir. From Lemma 2, Rot(k,$)has one 
eigenvector (first column of E) correspohdinjg to an eigenvalue of 1 and the 
remaining two eigenvectors (second and third columns of E) are complex. If 
rj in Equation 2.16 is not one, then either r5 or r9 equals one and its 
associated eigenvectors (second or third column of E) rnust be real. This 
contradicts that both the second and third columns of E are complex.

Frpm Lemma 2, the real eigenvector corresponding to an eigenvalue of 
one is either parallel or antiparallel to the axis of rotation. Since Rot(k,#) 
and R have the same eigenvector associated with an eigenvalue of one, they 
must have their axes of rotation parallel or antiparallel to one another and 
R can be expressed as Rot(k,/?), where /? is arbitrary. □ 3

3. Solution to the Equation A X = X B
We will solve for the rotational and translational components of X 

separately in order to make the geometric interpretation easier. Dividing a 
homogeneous transform into its rotational and translational components,
A X = X B becomes

Ba Pa

0 ; 1;-..

Rx Px
o i

% Rx Bp P B
0 1 (3.1)

where R is a 3x3 rotational matrix, P is a 3x1 translation vector, 
and 0 is a row of 3 zeros. Multiplying out and equating the first row of
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Equation 3.1, we have

. RARx — • (3-2)

and

v RaPx + Pa = RxPfl + Px (3-3)

We will show that RA and Rg have the same angle of rotation and that the 
rotational matrix Rx has one degree of freedom. Also, if Rx is fixed, Px has 
one degree of freedom. % o ^ ^ ;

Lemma 4: If RA and Rg are rotation matrices such that RA R = R Rg 
for any rotation matrix R, then RA and Rg must have the same angle of 
rotation. □

Proof: From Lemma 1, the product of the eigenvalues of a rotational 
matrix is 1. Thus a rotational matrix has a determinant of 1 and is always 
invertible. RA and Rg are similar, since RA= R Rg R_1. RA and Rg must 
have the same eigenvalues since similar matrices have the same eigenvalues 
[26]. From Lemma 1, RA and Rg must have the same angle of rotation. □

Before we formally state and prove the solution to RARx=RxRg in 
Theorem 1, we first examine the geometry of the problem. Let us rewrite RA 
and Rg as Rot(kA 0) and Rot(kg 0) respectively. We will show that kA 
referenced to the base frame ( basekA)
and kg referenced to the frame Rx ( xkg) both point in the same direction 

if a common frame of reference is used. Notice that, from Lemma 4, RA arid 
Rg have the same angle of rotation. We can now rewrite (3.2) as

Rot(kA,0)Rx = RxRottkg,#). (3.4)

For the the following discussion, we will think of Rx as a coordinated frame 
relative to the base frame. Using the geometrical interpretation of post- 
multiplication of homogeneous transforms [28], the left side of the equation 
can be interpreted as rotation of Rx frame with respect to basekA by an 
angle 9. Similarly, the right hand side of the equation is the rotation of Rx 
frame with respect to xkB by 0. As a result, Equation 3.4 can be 
interpreted as follows: Rx is a coordinate frame such that rotating Rx
about a vector basekA by any angle fi is equivalent to rotating R^ about 

xkg by the same amount, where asekA 1S referenced with respect to the 
base frame (the world frame), and Rxkg is referenced with respect to Rx. 
This is shown in Figure 3.1. In order that rotating Rx about basekA being
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the same as rotating it about xkB, asekA and xkB must be the same 
physical vector in 3-D space.

We will now show that the solution to Equation 3.4 has one degree of 
rotational freedom. A formal proof will be given in Theorem 1. If KX is a

’ R
solution to Equation 3.4 and it is rotated about the axis of rotation ( xkB 
or basekA ) by an angle, it will still satisfy the constraints posted by 
Equation 3.4. Thus the solution to Equation 3.4 has one degree of freedom. 
To show this mathematically, rotation of a particular solution Rxp about 
the axis by any angle can be written as RXpRot(kB,/?) or Rot(kA,/3)Rxp. 
We will use the later form for the rest of the paper. Since R^p is a 
particular solution, Rot(kAj#)Rxp=RxpR°t(kB,#). Also, since: 
Rot(kA,—/?)Rot(kA,/?)=I, Rot(kA,6l)Rot(kA,—/i)Rot(kA,/?)RXp=RXpRot(kB,^). 
Using the commutative properties of rotational matrices with a common axis 
of rotation and that Rot(kA,—/l)_1==Rot(kA,/?), we have
Rot(kA,^)Rot(kA,/?)RXp=Rot(kA,/l)RXpRot(kB,^), from which we can see that 
Rot(kA,j0)Rxp is a solution. In Figure 3.2, it is shown that a general solution 
has one degree of rotational freedom; any particular solution rotated about 
basekA by any angle is also a solution.

Definition: A homogeneous transform equation of the form AX=XB is 
solvable if there exists a homogeneous transform U such that B=U-1AU.

Theorem 1: The general solution to the rotational part of a solvable 
homogeneous transform equation of the form RaRx=RxHb> the angle of 
rotation of A being neither 0 nor 7r, is

Rx=R°t(kA,/;)RxP, (3<5)

where kA is the axis of rotation of RA, R^p is a particular solution to the 
equation, and (5 is any arbitrary angle.

Proof: Assume Rot(kA,/f)RXI> is not a general solution. Then, there 
must exist some rotation matrix R'such that

(3.6)

and RVRot(kA,/?)Rxp for any - P- Since R^p is a particular solution to 
Equation 3.2, RaRxp = RxpRB> or RB=RXp ^RaR^q,. Substituting this into
Equation 3,6, we have

R'-'RaR' - Rxp ‘BaRxp- ■ ' ^W)'

Rewriting RA as Rot(kA,$) and rearranging, we have
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Rot(kA,$)R*RXp X —^Rot(kA,$). (3.8)

Thus, Rot(kA,$) and RT^xp-1 arecommutative. Moreover, we know that 
9y£0 or it. If.R,RXp-'15^i, 'from Lemma 3, the axis of rotation ofR/Rxp1 must 
be parallel or antiparallel to kA. Thus there must exist a 7 such that 
RRxP_1=R°t(kA,7). We have R,=Rot(kA,'7)RXp, which is a contradiction. 
If R'Rxp ’=1, R'=RxpR°t(kA,0), which is also a contradiction. □

Next we will look at the translational part of the equation AX=XB. It 
has one degree of freedom, as shown in Figure 3.2. From Equation 3.3, we 
have '

(Ra-Wx = RxPb-P*- (3.9)

If Rx is already solved for, the only unknown in this equation will be Px. 
We thus have a system of 3 linear equations having the x, y, and z 
components of Px as unknown. Px has one degree of freedom because 
(Ra—I) has a rank of two, as will be shown next in Theorem 2.

Theorem 2: The translational part (Px) of the solution to a solvable 
homogeneous transform equation AX=XB, where Ra^I and RB/I, has one 
degree of freedom.

Proof: We can see that RA—I is similar to a. matrix of rank two if

Ra-I = EAaE_1-EIE_1 = e
0 0 0 
0 A—1 0
0 0 X—1

E“ (3.10)

Thus RA—I must have a rank of two. Thus, from Equation 3.9, there may 
be no solution or there are infinite number of solutions to Px. The first case 
is ruled out since the physical system guarantees the existence of a solution. 
The solution must exist arid consist of all the vectors in the null space of 
RA—I translated by a particular solution to Equation 3.9 [30], The null 
space of RA—I has a dimension of 3—rank(RA—I), thus the solution to 
Equation 3.9 has one degree of freedom. Q

Finally, we need to find a particular solution to the rotations,! part of 
AX=XB. From the geometric interpretation of the general solution, we will 
show that any transformation that rotates kg into kA is a solution.
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Rot(Rk,0)=RRot(k,0) R-1 (3.11)

for any axis of rotation k, any # G [0,7r], and any 3x3 rotation matrix R.
Proof: For the purpose of this proof, we will represent a rotation 

matrix in a form used by [23]. Let [h o a] be a homogeneous transform and 
[h' o' a'] be the former transform rotated by Rot(k,$). Thus

Rot(k^)=[n' o' a'][n o a]-1.. (3.12)

If we premultiply n, o, a, n', o', a', and k by R, the angular relationship 
between Rn, Ro, Ra, Rn', Ro', Ra', and Rk will be the same as before the 
premultiplication, bebausb of the angular preservation property of R as a 
rotational matrix. Since n'=Rot(k,#)n before the premultiplication, 
Rn'=Rot(Rk,#)Rn. Similar relationships hold for other vectors as well; 
therefore, [Rn' Ro' Ra']^RotfRk,^)[Rn Ro Ra] and

? Rot(Rk,#)=[Rn' Ro' Ra'][Rn Ro Ra]-1 (3.13)

From Equation 3,13,Rot(Rk,^) = R [n' p'.a'] [n o a]_1R_1 = R Rot(k,$) R-1.
□ ip-'V; ■ ■ ’ , ' \

Theorem 3: Any rotation matrix R that satisfies

/ kA = R kB ; (3.14)

is a solution to

where kA is the axes of rotation of RA and kg is the axes of rotation of RB. 
Proo/: Let us rewrite Equation 3.15 as

Rot(kA,#)Rx=RxRot(kB>^)* (3.16)

Substituting R into Rx and RkB into kA, the left hand side becomes 
Rot(RkB,(?)R. By Lemma 5, this becomes RRot(kB,<9)RxR =RRot(kB,$), 
which is the same as the right hand side when Rx is replaced by R, □

Since any rotational matrix R such that kA==RkB is a particular 
solution, one method to find a particular solution is a rotation about an axis 
perpendicular to both kB and kA, Thus,

Rxp=Rot(v,cu), (3.17)

where
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v=kBxkA (3.18)

w=atan2( kBxkA jkB.kA). (3.19)

The above method will not work when kA and kB are parallel or 
antiparallel to One another since it will produce a zero Vector. However, 
particular solutions for these two special cases can be found easily by other 
methods. In the first case, the identity matrix will be a valid particular 
solution. In the second case, any rotation matrix with its rotation axis 
perpendicular to kA and its angle of rotation equal to 7r will be a particular 
solution.

4. Solving for a Unique Solution Using Two Simultaneous 
Equations

We have seen that the solution to a homogeneous transform equation of 
the form AX—XB has two degrees of freedom. However, in bur application, 
we need to find a unique solution for “Tcam- We cah find a unique 
solution to this equation if we have two equations of the form '

A^XBj (4.1)

and

A2X=XB2. (4.2)

In order to obtain two such equations, we need to move the robot twice and 
use the vision system to find the corresponding changes in the camera frame. 
It is also desirable to know when this method will not yield a unique solution 
and the physical interpretation of this situation.

A unique solution to Rx (the rotational part of X ) can be found by 
associating the general solutions of the two equations RaRx—RxRb, and 
RA.RX=RXRB, Let RXPRot(kA|,/91) and RXP>Rot(kA,/i/2) be the general 
solutions to the above two equations, we then have

R°t(kA|,/7>1)RXpi=Rot(kA2,/?2)RXpi. , (4,3)

Let the particular solutions be written as follows:
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nXi °Xi av. Px;

ny. °yi ay. Py
•XPi - nz; aZi Pz;

0 0 0 1

(4.4)

Rearranging and writing it in more condensed form, we have

-nXl+kXin1.kAi (nlxkA,)x nx.v kx ,n2.kA (—n2xkA.,)x

-‘0x,+kxl°i-kAl (oixkA,)* °x-kxA>2kA, (—o2xkAJx

-ax.+kxai-kA, (alxkA,)x axo—kx.ja2.kA) (—a2xkA)x

-ny.+ky1nikA, (nixkAi)y ny2—Hy8n?*kAa (—n2xkA)y

--Oy.-t-ky.opkA, (°lxkA,)y 0y2—ky^Oj.kA., ( °2xkAj)y

-ayi+kyiai.kA. (aixkA1)y ay.3—ky,a2.kA, (—a2xkA.)y

-nZi+kZini.kAi (niXkA,)z nz.3—kz._,ri2-kA) (—n2xkA)z

—Oz.+kziOi.kA, (oixkA^z 0zo-kz202-kA,, (—02xkAo)z

-aZi-t-kZiai.kAi (aixkA,)z az-kZ2a2.kA.) (—a2xkA.)z

CQS/?j

sin/?!'

cos/?2

sin/?2

-kxJi2-kAo+kX|n1.kA

-kx^2-kA,+kxOi.kA|

-kx>2-kAo+kX|ai-kA,

-kyJl2-kA2+ky,nl-kA,

-kyeo2.kAi+ky ox.kAl 

■“ky.^2. kA.,+ky • ka , 

-kZ;,n2,kA2+kzn1.kAi

-kz^2-kA,+kzoi.kAi

-kzia2-kA^-k?iai-kAl

where the notation (uxv)w denotes the w component of the cross product 
uxv. Equation 4.5 is a system of linear equations involving cos/?j, sin/?!, 
cos/?2 and sin/?2- Once these values are solved for, we can find (\ and /?2 by 
/?1=atan2(sin^1,cos/?1) and /?2^at'a,p2(sin/?2>.cos/?2). Since we have more 
equations than unknown, from the point of view of linear algebra, we can 
have a system of inconsistent equations. However, in an ideal environment 
where there is no noise, the equations must be consistent because they 
originated from physical situations. Since the linear equations are physically 
constrained to be consistent, there are either a unique solution or an infinite 
number op solutions; there are no other possibilities. We will show in 
Theorem 4 that the solution is unique when kA| arid kAo are neither parallel 
or antiparallel to one another and the angles of rotation of Aj and A2 are 
neither 0 nor tt. Let us abbreviate Equation 4.5 to CY=D, if ra.nk(G)=4, we 
can find four linearly independent rows of C to solve for Y uniquely. 
However, in real applications where noise is present, we can find a least- 
square-fit solution Y by
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Y = (CtC)_,CtD. (4.6)

The translational part of X is constrained by Equation 3.3; thus, we 
have Rj^ Px+Pa!—Rx^Bi+Px an|d Ra.Rx+Pa .^RxPbo+Px’ Combining these 
two equations, we can solve for Px by

ra-I

Ra-i

RxPb,—PA,

%P B_> PA...
(4.7)

Like the uniqueness conditions for the rotational part, it will be shown that 
the translational part will have a Unique solution; if the rotation axes of Aj 
and A2 are neither parallel nor antiparallel to one another and the angles of 
rotation are neither 0 nor 7T. Rewriting Equation 4.7 as EPX=F, a least- 
square fit solution can be calculated by

^ ^ r (4.8)

Before we go into the necessary conditions for uniqueness, we need to prove 
two more lemmas.

Lemma 6: If R is a 3x3 rotational part of a homogeneous transform 
and its angle of rotation is neither 0 nor 7T, any row of (R—I) is a linear 
combination of the transposes of the two eigenvectors corresponding to the 
two non-unity eigenvalues of R.

From Equation 3.10, we have

0 X-l

where e1, e2, and e3 are the eigenvectors of R corresponding to the 
eigenvalues 1, X and X. Writing ejT as (e^ej and rearranging Equation
4.9, we have

R—I=(X—l)

T T-e2xe2 e3xe3
T

e2ve2
T

e3ve3
T T

e2.,e2 e3 e3-

□ (4.10)

Lemma 7: For two rotational matrices Rj and R2 whose axes of
rotation are neither parallel nor antiparallel to one another and whose
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angles of rotation are neither 0 nor 7r, it is impossible that the sets of vectors 
{e2, e3,f2} and (e2, e3,f3) are both linearly dependent, where e2 and e3 are 
the eigenvectors of corresponding to the non-unity eigenvalues of Rr, and 
f2 and f3 are the eigenvectors of R2 corresponding to the non-unity 
eigenvalues of R2.

Proof: For any rotational matrix R and its hermitian RH,
' IT XT

RR =R R=I; hence R is a normal matrix [27]. Given that the angle of 
rotation of R is neither 0 nor tt, R must have distinct eigenvalues. From 
Key Theorem 9.2 in Noble’s text, a matrix formed by 3 column eigenvectors 
of a normal matrix with distinct eigenvalues is hermitian. Hence any 
eigenvector matrix of R is hermitian. Let be the eigenvector of Rj 
corresponding to the unity eigenvalue. Note that ej.f2 and elff3 cannot be 
zero simultaneously. If they are simultaneously zero, we will have a system 
of two linearly independent homogeneous equations which will constraint ej 
except for a scaling factor. Since the eigenvectors of R2 are hermitian, 
and-fj.fj are zero. Similarly, this will constraint up to a scaling factor^ 
Thus and ej must be scalar product of one another. However, this 
contradicts; the assumption that the axes of rotation (ex and fj) are neither 
parallel nor anti-parallel to one another. Therefore, the two dot products 
Cannot be zero simultaneously. To prove that {e2,e3,f2} is linearly 
independent, We need to 'prove that k1=k2=k3=0 if

■kiej+kitea+kaf^M). . (4.11)

Taking the dot prodhct of both sides of Equation 4.11 with ej and using the 
fact that eigenvectors of a normal matrix with distinct eigenvalues are 
orthogonal to each another, we will have k^.^— 0. If ej.^^0, then k3==0. 
Equation 4.11 simplifies to

• k1e2+k2e3==0. (4.12)

Since e2 are e3 are linearly independent, we have k1=k2=0. Therefore, 
{e2,e3,f2} are linearly independent if e1.f27>^0.. When ej.^^0, ej.fg must be 
non-zero , from a previous argument in this proof. In this case, we can use a 
similar method to prove that {e2,e3,f3} is linearly independent. Q

Theorem 4: A consistent system of two solvable homogeneous transform 
equations of the form A1X=XB1 and A2X=XB2 has a unique solution if the 
axes of rotation for Ai and A2 are neither parallel nor antiparallel to one 
another and the angles of rotations of Ai and A2 are neither 0 nor tt.
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Proof for the rotational part: We have already seen that the general 
solution to AX=XB has one degree of rotational freedom when the angle of 
rotation of A is neither 0 nor 7r; any solution revolving about is still a 
solution. The solution to the system of homogeneous transform equations 
A1X=XBj and A2X=XB2 is found by equating the solutions of the 2 
individual equations, as shown in Equation (4.3). Since Equation (4.3) is 
independent of the choices of the particular solutions, we can simplify it by 
choosing a particular solution which is a solution to both equations; i.e., 
RxP0=RXP,=RXP.• After replacing Rxp, and Rxp. in Equation 4.5 by Rxp(; 
RX1> , cancels out and we have

1—kxx2 0 kx22—1 0 kx22—kxx2

—-kx^y! —kzj kx2ky2 kz2 kx2ky2—kxjkyj
—kxjkzj kyj kx2kz2 —ky2

COS
kX2kz2—kxjkzj

—kx1ky1 kzj kx2ky2 —kz2 sin /?! kx2ky2-kx1ky1

1-ky,2 0 ky22—1 0 cos /?2
—kyjkzj —kxj ky2kz2 kx2 sin/?2 ky2kz2-ky1kzi

—kx1kz1 — kyx kx2kz2 ky2 kx2kz2—kx1kz1

—kyjkzj kxx ky2kz2 —kx2 kyakzg-kyikz!

1—kzx2 0 kz22—1 0 kz22—kzj2

(4.13)

Let us abbreviate Equation 4.13 as C'Y/=D'. With the assumption of 
consistency, a unique solution exist if and only if the rank of Y' is 4, in 
which case we can pick 4 linearly rows to form 4 equations to solve for the 
same number of unknowns. Since the rank of C' is the same as the rank of 
C'TC' and that the later is a 4 by 4 matrix, C’ has a rank of 4 if and only if 
C'TC' has full rank . Thus, we will have a unique solution iff the 
determinant of C,TCJ is not equal to zero. We have used the SMP program 
[19] to express the determinant of C,TC' in symbolic form and have simplified 
it by making the following substitutions:

(1) kx2+ky2+kz2=l, i=l,2.



The third substitution comeg from the fact that

k- Ai

kA,xkA,
jkA)|sin#12. The determinant is finally simplified to

det(C'TC5 * 7)=4sin2^12(sin2^12-4)(kA .kA,+l)(kA .kA -1).

equals

(4,14)

The determinant is zero when sin#12=+2, which is impossible, when 
sin^i2=0, and when kA|.kA)=d;l- Thus we will have a non-unique solution 
only when kA)' and kA) are parallel or antiparallel to one another. P

Proof for the translational part: Since E is a 6 by ^iiiatqxr we have 8 
equations and 3 unknowns. We know that these equations cannot be 
inconsistent since they originated from physical conditions. Therefore, we 
have a unique solution for Px if and only if matrix E has a rank of 3, in 
which case we can pick 3 linearly independent rows for E to solve for Px. 
From Lemma 6, any row of (RA — I) is a linear combination of the transposes

■ ' T* /*p’\ •'of the eigenvectors e2 and e3 corresponding to the non-unity eigenvalues, 
and any row of (RAo—I) is a linear combination of the transposes of the 
eigenvectors f2 and f3 corresponding to the non-unity eigenvalues. Since 
the rank of RA| is two (from the proof of Theorem 2), we can pick two linear 
independent rows from it, both are linear combinations of e2 and e3. We 
can also pick a row from RAo , which is a linear combination of f2 and f3, 
and combine it with the two rows from RA> Since we know that if kj is not 
aligned with k2, from Lemma 7, at least one of f2T and f3T must be linearly

rr» rp rp .■ rp

independent from e2- and e3 . Say a row from RXo.is af2 +bf3 , We can 
always pick a row where a#0 or a row where b^O since rank(RAo)=2. Thus, 
we can always find a row from RA and combine it with two rows from RA] 
to form three linearly independent rows. We can use the corresponding three 
equations from Equation 4.7 to solve for a unique Px- D

5. An Example
We have written a program calling IMSL routines [18] to test our

method; A single-precision version is used on a VAX 780 machine. We will 
solve for the sensor position relative to the robot wrist by moving the r:obot
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twice and observing the changes in the sensor positions. The two robot 
movements must have distinct axes of rotation and their angles of rotation
must not be 0 or 7r in order to ensure a unique solution. Let Ax and Bx be 
the first robot movement and Bj be the resulting motion of the sensor, and 
let A2 be the second robot movement and B2 be the resulting sensor motion. 
Two equations relating the motions and the sensor-mounting position will 
result:., ■

Aj X = XBj,

A2 X = X b2. (5.2)

Bx and B2 are determined by Ax and A2 and the actual sensor mounting 
position. Let Xact be the actual sensor mounting position, then

b2

^■act (5.3)

,-^-act ^2-^-act* : (5.4)

The above two equations are only used for simulations. In an actual robot 
application, Bj and B2 are found by the sensor system; however,. Aj iatid Bj, 
and A2 and B2 are still related by Equations 5.3-5.4.

Assume the actual sensor mounting position and two robot motions Are 
as follows:

Xact — Trans(10 mm, 50 mm, 100 mm) Rot([l, 0, 0]T, 0.2 rad), (5.5)

Aj = Trans(0 mm, 0 mm, 0 mm) Rot([0, 0, l]T, 3.0 rad), (5.6)

and

A2 = Trans(—400 mm, 0 mm, 400mm) Rot([0, 1, 0]T, 1.5 rad). (5.7)

The above parameters are chosen to match the setup in our laboratory. The 
camera coordinate frame (Xact) is nearly parallel to the robot wrist frame 
but is angled slightly towards the gripper. The first robot motion (Ax) is 
approximately a rotation of 3 radians (172 °) about the camera’s line of 
sight, so that the Upside-down camera is still pointing to the general 
direction of the object. Notice that we did not choose 180 ° because our 
theorems do not apply to that case. However, we chose a value close to 
180 ° because that minimizes the noise sensitivities. How close to 180 ° we 
should choose depends on how accurate our system (robot and vision system) 
is. For example, if we know that the system has a maximum angular error
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of 2 ° , we must choose the robot motion to be less than 178 °. The second 
motion (A2) is a rotation of 1.5 radians (86 °) about the y-axis of the robot 
wrist and the translation is chosen such that the fixed object is still in the 
camera’s view. '

We can find the numerical values of the Ax, B1? A2, B2, and Xact using 
Equation 2.2, Equations 5.3 and 5.4.

Ai==

Bi =

A-2-

®2

-0.989992 -0.141120 0.000000 0
0.141120 -0.989992 0.000000 0
O.OOOOOO bodoooo l.odoooo 0 >

0 0 ': ‘ 1

-0.989992 -0.138307 0.028036 -26.9559
0.138307 -0.911449 0.387470 -96.1332

—0.028036 0.387470 0.921456 i 9.4872 >

0 0 l
_

0.070737 0.000000 0.997495 --400.000
0.000000 1.000000 0.000000 0.000000

-0.997495 0.000000 0.070737 ■400.000 J

0 0 0 l

0.070737 0.198172 0.977612 -309.543
-0.198172 0.963323 -0.180936 59.0244
—0.977612 -0.180936 0.107415 291.177

0 0 0 1

X-act

1.000000 O.OOOOOO 0.000000 10
0.000000 0.980067 -0.198669 50 
0.000000 0.198669 0.980067 100

: o ' .-o"':-'T";

(5.11)

Now we can find the axis of rotations of A1; B1? A2, and B2 by 
Equations 2.3, 2.6-2.S:

kA|=[0.000000, 0.000000, 1.000000]T, (5.13)
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kB =[0.000000, 0.198669, 0.980067]T, (5.14)

kA =[0.000000, 1.000000, 0.000000]T, (5.15)

kB,=[0.000000, 0.980067, -0.198669]T. (5.16)

From the above four axes of rotations and from Equation 3.17-3.19, we can 
find Rxpi and Rxp2> which are the particular solutions to the rotational 
parts of Equations 5.1 and 5.2, respectively. The numerical values of these 
two rotational matrices are

Rvxp.
1.000000 0.000000 0.000000 
0.000000 0.980067 -0.198669 
0.000000 0.198669 0.980067

and

1.000000 0.000000 0.000000 
0.000000 0.980067 -0.198669
0.000000 0.198669 0.980067

(5.18)

Notice that the two particular solutions in this example are the same and 
are both equal to the final solution. This is merely a coincidence. When 
other X, Aj and A2 are used, the particular solutions are generally different 
from the final solution.

From Theorem 1, the solution is either Rot(kA|,/i1)Rxp1 or 
Rot(kA j/^jRxp. • We. can solve for /3X and fi2 from Equation 4.5-4.6 and 
from /?i=atan2(sin/?i,cos/ii), 1=1,2. We found Bx 'to be 0. The rotational part 
of X ( Rx ) can be found by computing the numerical values of
R°t(kA ,/3t )Rxp :

1.000000 0.000000 0.000000
0.000000 0.980067 -0.198669 
0.000000 0.198669 0.980067

(5.19)

This solution is correct because it is the same as the rotational part of the
actual sensor position (Xact).

To find the translational part of the solution, we use Equations 4.7 and 
4.8; it is found to be [10.0000, 50.0000, 100.000]T, which is the same as that 
of the actual sensor position.
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6. Noise Sensitivities
To measure the noise sensitivity of our calibration method, it is 

necessary to compare true measurements of the sensor mounting position 
with experimental results using the method discussed. However, true 
measurements are difficult or expensive to obtain. In this paper, we will 
simulate the noise sensitivities by perturbing' the.'robot motions (Aj and A2) 
and the sensor motions (B* and B2), and observing the resulting errors in the 
sensor mounting position (X). In the rest of this section, noise sensitivity 
will refer to error in the solution per unit perturbation, e.g., 0.6 millimeter 
solution error per 1 millimeter perturbation.

Noise sensitivities are configuration dependent. We will use the set of 
values given in last section’s example, which are chosen realistically for our 
laboratory setup. Noise sensitivities are also dependent on the direction of 
perturbation. Since a homogeneous transform has six degrees of freedoms, 
we will perturb the translations in x, y, and z directions and the rotations 
about the x, y, and z axes.

Figure 6.1 shows the translational noise sensitivities due to translational 
perturbations of robot motion measurements and sensor mbtion 
measurements. The translational components of Aj, B1? A2, Bg are 
perturbed by adding between 1 to 5 millimeters to each of the x, y, and z 
components. The resulting translational errors are then calculated by 
taking the euclidean distance between the actual sensor mounting position 
(Xact) and the calculated position (X), where the distance is the magnitude 
of the p vector (or translation vector) of the compound matrix X_1Xact. 
Errors due to perturbations in x, y, and z directions are marked by □, Q, 
and A respectively. Rotational errors due to translational perturbations are 
not plotted because they are always zero.

Figures 6.2 and 6.3 show the translational and rotational noise 
sensitivities due to rotational perturbations. The rotational parts Of Al5 Bj, 
A2 and B2 are perturbed by rotating them around each of their x, y, and z 
axes by 0 to 5 degrees. Rotational errors are calculated by taking the 
minimum angle required to align the perturbed solution X to the actual 
mounting position Xact (angle of rotation of the compound matrix X7xXact). 
Errors due to rotational perturbations about the x, y, and z axes are marked 
by □, O, arid A respectively.

Notice that noise sensitivities vary greatly, depending on the direction 
of perturbation. It may be useful to use this information for planning



sensor-mount calibration if the error characteristics of the robot and the 
sensor are known.

7. Conclusions
. ;We' have, desc.rfoecl. a method to find the position of a wrist-mounted 
sensor relative to a robot wrist, without using direct measurements. This 
will be useful for calibrating vision systems, range sensing systems and 
tactile sensing systems. The process can be automated and does not require 
anymeasuring equipment.

Our method requires the solution to a homogeneous transform equation 
of the form AX=XB, where the angle of rotation of A is neither 0 nor 7T. We 
found that the solution is hot unique; it has one degree oL rotational freedom 
and one degree of translational freedom- We propose that we use two 
simultaneous equations of the form A1X=XB1 and A2X=XB2. Physically, this 
means that we move the robot twice and observe the changes in the sensor 
frame twice. The necessary condition for a unique solution is that the axes 
of rotation of Ax and A2 are neither parallel nor antiparallel to one another 
and that the angles of rotation are neither 0 nor 7T. A computer program is 
written for the proposed method. We have generated several test .cases in 
which the conditions for uniqueness are satisfied; all the computed solutions 
are found to; be correct. Another program is written to test the noise 
sensitivity of the method. The matrices Aj, Blr A2, and B2 are perturbed 
and the errors in the resulting solutions are plotted.
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new robot position 
after motion

initial robot position
robot wrist frame fixed object

Figure 1.1. Finding the mounting position of a camera by solving a 
homogeneous transform equation of the foriii AX=XB, where A 
is the robot motion, B is the resulting camera motion, and X is 
the camera mounting position.



reference with tactile sensors

Figure 1.2. Finding the mounting position of a robot hand equipped with 
tactile sensors, by solving a homogeneous transform equation pf 
the form AX=XB, where A is the robot motion, B is the 
resulting motion of the hand coordinate frame, and X is the 
mounting position of the hand.



Figure 1.3. If the robot is moved from position T6i to T8o andthe position 
of the fixed object relative to the camera frame is found to be 
OBJj and QBJ2, respectively, then the following equation is 
obtained: T6i X OBJj == T6o X OBJ2 , where X is the unknown 
transform representing the camera mounting position relative 
to the robot wrist frame.



base framebase frame

Rx frame with respect to 
the base frame

kv' Rx frame rotated about 
base kA by an angle 9

frame -tyith • respect to 
the base frame

V 4 Rx frame rotated about 
Rx kB by an angle 9

i ■ ■ ■ R' ■

Figure 3.1. Rotating Rx about ase kA by 9 is equivalent to rotating R^ about •* kB by 
the same angle. kA is the axis of rotation of A and kB is the axis of rotation 
of B in the homogeneous transform equation AX — XB.



Figure 3.2.

base - 
frame rotational

freedom

translational
freedom

solution to 
AX '= XB

The rotational and translational degrees of freedom of the solution to AX == 
XB. The frame in the figure can rotate about base kA and slide along the axis 
as shown.
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Figure 6.1, Translational noise sensitivities due to translational 
perturbations of robot motion measurements and sensor motion 
measurements. Errors due to perturbations in x, y, and z 
directions are marked by □, O, and A, respectively.
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Figure 6.2. Translational noise sensitivities due to rotational perturbations 
of robot motion measurements and sensor motion 
measurements. Errors due to perturbations about the x, y, and 
z axes are marked by □, O, and respectively.



R
ot

. Err
or

s in
 So

lu
tio

n (d
eg

) 
R

ot
, Err

or
s in

 So
lu

tio
n (d

eg
)

0.0 w

Rot. Errors in B1 <d@g>Rot. Er r or s in A1 (deg)

Rot. Errors in B2 (deg)Rot. Errors in A2 (deg)

Figure 6.3. Rotational noise sensitivities due to rotational perturbations of 
robot motion measurements and sensor motion measurements. 
Errors due to perturbations about the x, y, and z axes are 
marked by □, O, and A, respectively.
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