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ABSTRACT

In order to use a wrist-mounted sensor (such as a camera) for a robot task,

the position and orientation of the sensor with respect to the robot wrist

frame must be known.: We can find the sensor mounting position by moving
the robot and observing the resulting motion of the sensor. This yields a
' _homogeneous transform equatlon of the form AX=XB, where A is the change
in the robot wrist position, B is the resulting sensor dlsplacement and X is
" the sensor position relative to the robot wrist. - The solution to an equation
of this' form has one degree of rotational freedom and one degree of
translational freedom if the angle of rotation of A is neither 0 nor 7 radians.
To solve for X uniquely, it is necessary to make two arm movements and
- form a system of two equations of the form: A X——XB1 and A,X=XB,. A
closed-form solution * to this system of equations ‘is developed and the
necessary conditions for uniqueness is stated.- :

1. Introduetion
The investigation into the solution of the homogeneous transform
equation of the form A X = X B, where A are B are known and X is

unknown, is motivated by a need to solve for the position between a wrist-

mounted 'sensor and the ma.nlpulator ‘wrist center (Tj). Throughout thls o

’ T Thls work was supported by the Purdue University Engmeermg Research Center for
- Intelligent Manufacturing Systems, which is funded by CIDMAC company contnbutlons :
- and NSF cooperatlve agreement 'CDR. 8500022 ’ - :



paper, the homogeneous transform Ts is used in the same manner as in
Paul’s text [28], it is used to represent the position and onentatlon of the
robot wrist frame with respect to the robot baoe frame In some llterature,;
v TB is used instead of Te. ‘ o ‘

We want to find the sensor p051t10n relative to the robot wrist 1nstead
‘of to other robot links, because of the following reasons: (1) The sensor is
usually mounted to the wrist (last link of the robot), to allow itself all 6
degrees of freedom. If, for example, the sensor is mounted on the fifth link
of the robot, its motion will be limited to 5 degrees of freedom. (2) Robot
motions are conventionally specified in terms of the position of the last robot
link (the wrist); it is therefore natural to find the sensor position re.lat‘ive to
this link. (3) Once the sensor pOsﬂition relative to the last link is found, it is
straightforward to find the sensor position relative to other links, using
encoder readlngs and link specifications. ‘

- Much research has been done on usmg a sensor to ]ocate an object
The three~d1men51onal position and orientation of an obJect can be found by
monocular vision, stereo vision, dense/sparse range sensing, or tactile
sensing. Monocular vision locates an “object usmg a single view, and the v
object dlmen31ons are assumed to be known apriori [2,6,8,10,13,22,29,31,32].
Stereo vision uses two views instead of one so that the range information of
feature points can be found [1,6,12,14,20,24,32). A dense range sensor scans
a region of the world and there are as many sensed points as its resolution
allows [3,7,17,25]. A sparse range sensor scans only a few points, and if the
sensed points are not sufficient to locate the object, additional points will be
sensed [5,15,16]. Tactile sensing is similar to sparse range sensing in that it
obtains the same information: range and surface normal of the sensed points
[4,15,16].

A sensing system refers to object positions with respect to a coordinate
frame attached to the sensor, but robot motions are specified by the wrist
positions (Tg). In order to use the sensor information for a robot task, the

.relative position between the sensor and the wrist must.be known.

Direct measurements are difficult because there may be obstacles to
obstruct the measurement path, the points of interests may be inside a solid
and be unreachable, and the .coordinate frames may differ in their
‘orientations. The measurement path can be obstructed by the geometry of
the sensor or the robot, the sensor mount, wires, etc. The unreachable
coordinate frames include Ty and the camera frame: Tg is unreachable



because it “is the intersection of various link axes, the camera frame is
unreachable because its origin is at the fo"ca’]'point, inside the camera.
Instead of direct measurement, we can compute the camera posit'ion by
<displacing the robot and observing the changes in the sensor frame using the
sensor system This method works for any sensors capable of finding the
three-dimensional position and orientation of an ‘object. ‘Figures'1. 1"and 1.2
show the cases of a monocular vision system and a robot hand with tactile
sensors

In order to formulate a homogeneous ‘transform. equatlon, Figure 1. 1 is
re- drawn in Figure 1.3. If the robot is moved from position’ T6l to Tg, and

o the p051tlon of the fixed object relative to the camera frame is found to be

OBJ, and OBJ2, respectively, then the followmg equation is obtalned ,
Te, X OBJI =T6 XOBJ2, o o (1. 1)

~ where X is the unknown transform representing - the camera mountlng'
position relatlve to the robot wrist frame. Premultlplylng both 51des of the :
' equatlon, by ’.I‘ﬁ_2 and postmultlplylng them by OBJI ) We have

Te, " TBX XOBJ2OBJ1_1. ok - (12)

T T6 can be lnterpreted as. the relatlve motlon made by the robot and
we denote it by A thus, ’ .

A=Tg " Ts, R (1 3)

S‘imi'farly, we denote OBJ,OBJ,! by B and 1t can. be 1nterpreted as the_-
relatlve motlon of the camera frame. 7 i Si
o "B= OBJQOB.II"I. IR (1.4)
- The transform. matrices A and B are known since Té; andb T, can be
calculated by the robot controller from the joint measurements, and OBJ,;
and OBJ; can be found by the vision system. The case of the tactile sensor

shown in- Figure 1.2 is similar to that of the  vision system, Where a
r“'homogeneous transform equatlon of the form AX=XB results. -

' Matrix equations of the form A X =X B have been discussed in linear
algebra- [11] however, the results are not specific enough to be useful for our.
. apphcatlon " In order to solve for a unique solutlon, We must have a
‘geometrlc understanding of the equatlon and use propertles spec1ﬁc to

‘,homogeneous transforms Using Gantmacher’s results [11], the: solutlon to

the 3x3 rotatlonal part of X (RX) is’ any llnear comblnatlon of n hnearly



independent matrices: Ry=k /M;+ - ‘- +k,M,, where n is determined by
properties of -eigenvalues of R, and Ry (rotational parts of A and B),
ky; - =k, are arbitrary constants, and My, M are linearly independent .
matrices ‘Gantmacher’s ‘solution is for general matrlces, the given solut1on
may not be a  homogeneous transform. . To restrict the solution - to |
homogeneous transforms, we must 1mpose the conditlons that the 3x3
rotat1onal part of the solution be orthonormal and that the rlght handed
screw rule is satlsﬁed These restrictions will result in non-linear equations
in terms of kl, kg Formulatlng the problem in the above manner does
not solve the problem because of the followmg reasons: (1) There are
1nﬁn1te ‘number of solutlons to an equat1on of the form AX XB ln order to
find a way to solve for a un1que answer, we mist have a geometrlc‘
understanding of the equation; vhowever, the above formulat1on does not
enable usto do so. (2) Only iterative solutions are possible, since non-linear
equations are involved;"" -{3) The solution cannot be'exp"r’essed”symbolieallyv
and1nclosedform v R SREEEE

" The approach in this paper is based on the geometnc mterpretatlons of
the eigenvalues and e1genvectors of a rotat1onal matrix. The solutlon is
dlscussed ‘in the context of finding the sensor pos1t10n With respect to TB:
however, the results are general and can poss1bly be useful for other
appl1cat1ons which requ1re the solut1ons to homogeneous transform equations

of the form A X X B.

Since this paper investigates the solution to the homogeneous transform ’
equation of the form AX =XB in the context of finding a sensor’s
mounting position, we will relate the mathematics to this problem
throughout the paper. Section Two is a review on expressing a homogeneous
transform in terms of rotation about an axis of rotation and translations in
the x, y, and z directions. Some properties of the eigenvalue's and
elgenvectors of rotational matrices are also explored Section Three
discusses the - general  solution to the equation' and. its = geometric
. interpretation. Section Four. deals with the solution to a system of two such .
equations and the conditions for uniqueness. Section Five contains -an
example' showing -how we can solve for a sensor position using the proposed .
v m_ethod. Section Six addresses the issues of noise sensitivity. o



2. Ho_mogeneou's Transforms and Rotation.about an Arbitrary Axis
‘Homogeneous transforms [28] can be viewed as the relative position and
orientation of a coordinate frame with respect to another coordinate frame.
The elements of a homogeneous transform T is usually denoted as follows:

e .
Dx Ox 8y Px
o MYy APy
T=1" . L - (2.1)
L n, Oy 3, Py ' _
1o o 6 1|

"~ We also’ denote [n,‘(,ny,nz}T as a, [ox,oy,oz]T as o, and [ax,ay,a;]T as a. n, o,
and a can be mterpretated as unit vectors which indicate the x, y, and 2z
directions of coordmate frame T; p can be viewed as the origin of T. The
vectors n, o, a and p are referenced with respect to a frame represented by
a transform to which T is post-multiplied. If there is no transform.to the
left of T, then n, o, a, and p will be vectors relative to the world or. absolute :

, frame

~We w1ll refer to the’ upper—left 3x3 submatrlx of T as the rotatlonal LR

submatrix since it contains information about: the ' orientation of the
: cobrdinate frame. A rotational submatrix can be expressed,as a rotation
around an arbitrary. axis. From [28]; the matrix representing a right-hand-
rule rotation of ¢ around an axis [kyky Xk |T is

k,k versﬁ—{-cosf) ky k Lversf—k smt‘) k,k, vers¢9+k sinf |
Rot(k,0) = kxkyvers(?—i-kzsm() kyk,versf+cost kzkyverse—kx51n9 (22)
o kxkzvers()—kysinb’ kyk,versf+k,sind k;kzver$9+c030
where versfi=(1—cosf) . |

Given the rotational part of a homogeneous transform in the form: of _
Equation 2.1, the angle of rotation and the axis of rotation can be solved.for
- symbolically, provided the rotational submatrix is not an identity 'matriji_. u

“we are given an identity matrix (which is equivalent to zero r'ota‘ti'o‘n), it"‘fw‘il"l"f’" S
V'not be posmble to determine k, smce zero rotation about any vector w1ll_:__,_ ,
'yleld an identity matrix. In this paper, we will follow the convention that"{ s

| _._0<9<7T From Paul s text [28] we have the followmg two equatlons



cost = '-;f(nx+oy+az—1) (2.3)
and
. 1
sinf = i5‘\/((oz—a§)+(ax-n3)+(ny—of). : (2.4)

Since 0<#<7, we only take the positive sigh of Equatidn 2.4. Thus, we have
only one solution for 6: :

0= atan2(’\/(oz——a,}?)+(ax—n3)—|—(ny—of),nx.+oy+az—1). o (2.5) |

We can now find k using 6 computed by Equation 2.5. The set of equations
used depends on whether n,, oy, or a, is most positive. From Paul’s text, if

n, is most positive,

n,—CoS
k,=sgn(o,—ay). el (2.6a)
ny+0y ,
e e Sy 2.6b
Y 2kyversf ( )
At (2.6¢)

a 2k, versf’

where sgn(e)=+1 if e>0 and sgn(e)=—1 if e<0. (Note that our definition of
sgn(e) is different from that in Paul’s text. We will discuss this later on.) If

o, is the most positive,

0, —CO0S

y
ky,=sgn(a,—n,) & / Tverd (2.7a)
ny+oy
_—T 2.7b
¥ 2kyversf (2.7b)

2oL "
2kyver39

Finally, if a, is the most positive,



- _can be calculated by:

(2..8a)
x 2k, verst ' ( - )
o,+a | L
k =_z_y_‘_. 2.8
Y 2k, versf” ( C)

From'a geometric point of view, when 6=, there are two solutions to k', one
vopposite to the other. Also, when O=m, we can see from Equa,tio'ri 2.2 that
~0,—a;=0, a,—n,=0, and ny—o0,=0. In this case, we can use either sgn(0)=-+1
or sgn(0)=—1 for Equation 2.6a, Equation 2.7a, and Equation 2.8a; we have.
two solutions for k. However, it is desuable to use some convention so that
‘we can solve for k uniquely even when f=m. To do this, we deﬁne
' sgn(O) +1, so that we have unique ¢ and k for each rotational matrix.

‘ In order to prov1de some background for later proofs, we W1ll present
the exponential representation of a general rotational matrix which was
discussed in [26,23]. Furthermore, we. ~will express k and 4 in terms of the
elgenvectors and eigenvalues of a rotational matrlx ‘A general rotatienal |
" matrix. can be represented.as the exponent of a skew-symmetric matrix [26]

Rot(k,6) =e*, bt (2 9)
Whefe ce _ - o ) s
0 —k, k
K=k, 0 -k
z_kY kx 0

Lemma 1: The elgenvalues of a general rotatlon matrix not equal to
1dent1ty are 1, ¢, and e, Let ¢/’ and ¢ be denoted by X and X. Then 9

| 9 = a.ta.n2 tR (A=N) I AN). | “ | (2 10) "

Proof Flsher [9] has shown that the elgenvalues of K are 0, J, and S
~ Since - these eigenvalues are distinct, K from Equation 2.9 can ‘be
,dla,gonallzed [26] Let E be the diagonalizing matrlx whose columns contalns

' _-.-lmearly mdependent elgenvectors we ha.ve



00 0

K=E 0"j 0 BN '”.'j(2111)
'By deﬁmtlon, . L i——L . Usmg th1s deﬁmtlon and after s1mphﬁcatnon,‘ ‘
- f i U . ,
YWe obtain . »
K0‘___ Ej._ 0 ejﬂ 0 fl. T ‘(2?12)‘ /

00ei"

" This dlagonallzed form shows that the elgenvalues of eKo or Rot(k (9) are' 1,
e’e, and e Ja. Slnce X—ejﬂ and X—e la, or >\—cos9+131n(9 and X—cos9—3snnt9_
Comblmng these equatlons, we have cos9——()\+ﬂ, and snn(‘)— —;‘_)( -—X)

Smce we cannot d1st1ngu1sh between A and X from the elgenvalues of a
_ ‘rotatlonal matrlx, we should rewrlte the equation for sinf in a ' way that we
' ».-fdon’t need to dlstmgulsh between X and X Knowmg that 0<9<7r we havel

: s1nl9— lR (—( —-X)) 5 Thus we have Lemma 1 o

. Lemma 2 For a general rotatlon matrix not ‘equal to’ 1dent1ty,_the

. elgenvector corresponding to the elgenvalue 1 can be expressed as a vector -

with real components and is either parallel or antlparallel to the axis of -
rotation. Furthermore, if the angle of rotation of the matrix is not equal to oo

‘7r the remammg two elgenvectors ‘cannot be expressed as real vectors

Proof: Fisher [9] has shown that the eigenvectors of K. are as follows

r‘cl[kx, Z]T - corresponding . to an eigenvalue .- of = 0, g
.1 ‘cz[sm,[?’—.]k cos[f —cosﬂ—Jk srn[)’,J‘\/ —k ]T | ‘_ |
‘corresponding - to an ~eigenvalue = of J(‘) © and. |

‘c3[s1n[9’+3k cos[f cos[)’+3k sinfJ, J‘\/ 1-k,’ ]T correspondmg to an elgenvalue o

ot .—39 where ¢;, ¢ and cg aré arbltrary complex constants and""""’

ﬂ—tan y/k . From the proof  of Lemma 1 we have



10 0
K—g o o B - (2.13)
0 0 e—j0 . .

where E is the eigenvector matrix of K. Thus the eigenvectors of ek’
corresponding to eigenvalues of 1, e, and e will be the same as the
eigenvectors of K corresponding to 0, jf and —39 except that they may
differ by a constant multiplier. We can see that the eigenvector of a
rotation matrix can be expressed as a real vector (when ¢, is real) and that

it is either parallel or antiparallel to the axis of rotation k.

If the angle of rotation is not equal to 0 or 7, the three eigenvalues are
distinct and the eigenvectors associated with each eigenvalues are unique
(ignoring the scaling factors) and can be written symbolically as shown
earlier in this proof. The eigenvectors associated with e’ and e cannot be
expressed in terms of real vectors because this will require that both sinf
and cosf to be =zero simultaneously, contradicting the identity
sin2ﬁ+cos2ﬁ— 1. (Notice that this lemma does not hold when 6=7. In this
case, we Wlll have -1 as an eigenvalue with multiplicity 2. and the
elgenvectors associated with ¢!’ and eV will no longer be unique. ) o

Lemma 3: If R is a rotation matrix and R Rot(k,0) = Rot(k ) R a,nd
640 or 7, then R=Rot(k,(3), where (3 is arbitrary.

Proof: We will first prove that R and Rot(k,f) have the same set of
eigenvectors (up to a scaling factor). Since Rot(k,0) is a rotation matrix, it
can be diagonalized and Rot(k,§) = EAE™'. Substituting this into
R Rbt(k,(‘)) = Rot(k,/) R and rearranging, we have AET'RE=E"'REA
Denoting E"'RE by R/, we have A R'=R'A. From Lemma 1, the
eigenvectors of Rot(k,f) are 1, e, and e, Rewritting R’ in terms of its 9
elements (r; to rg), we have

1 0 0 |[fr1 e T3 rp rg r3fll 00

0 e o Ty T5 Tgl= |rgy 15 Tgl10 ol (2.14)
S . | —j0

0 0 e {lr; rg Tg Iy tg Ig 0 0 e i

Expahding the above, we have
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r, oy rg [+ Ini rzelo :r3ef10
1'4‘3J fsew 'reew_ = |ry r5e!’ ree™V S (28)
r7e J rge” J” ‘Tge” 30 o rgel’ rge-"” A

' Equatmg elements of both sxdes and knowmg 840 or-m, we can conclude that" .
‘. all but the dlagonal elements of R' are zero. Recall that R—ER’E ! We now_

' Thus R must have the same. set of elgenvectors as Rot(k 9) except the
scaling constants. ' ‘

, If P is the angle of rotatlon of R, then the elgenvalues rl, rg and ro must‘;h_
be a certaln permutatlon of 1, e and e . In fact, r=1, otherwise a
contradlctlon will result When 650 or . From Lemma 2, Rot(k,0) has one.

e1genvector (ﬁrst column of E) correspondmg ‘to an elgenvalue of 1 and the‘ o
remalnmg two elgenvectors (second and third columns of E) are complex If - '_ o

o in Equatlon 216 is not one, then either ry or rg equals one . and its

.‘assoc1ated elgenvectors (second or thlrd column of E) ‘must: be real. ‘This
o contradlcts that both the second and third columns of E are complex

From Lemma 2, the real eigenvector: correspondmg to-an- elgenvalue of
one is either parallel or antiparallel to the axis of rotation. Since Rot(k, 9)" '
and R have the same elgenvector associated with an eigenvalue of one, they -

- must- have their axes of rotation parallel or antiparallel to one another and
j R can be expressed as Rot( ), where 3 is arbltrary o -

‘ 3. Solutnon to the Equa.tlon AX=X B

We w1ll solve for the rotational and translat1onal components of X v,

-’;separately in order to make the geometric- 1nterpretatlon easier. Dividingla R R

vhomogeneous transform into. its rotatlonal and translatlonal components,f_'- )

,‘-A X =X B becomes
| | RA Py |

0 1

Rx Px
D 1

Ry P.X |

0 1

o 1) L e,

‘ ,where R i is a 3x3 rotatlonal matrix, P is a 3x1 translatlon vector, _
o and (1) is a Tow of 3 zeros Multlplylng out’ and equatlng the first row of



- R\kB by the same amount, where .

11

E_duat_ion.B’.i,‘ We,halve; ‘ _ = ‘ R
| RoRx =RyRg, o (32)
R . - RAPx + PA = RXPB + PX o (3 3)
) We will show that RA and Rp have the same angle of rotation and that the

rotatlonal matrix Ry has one degree of freedom Also, if RX is ﬁxed Px ‘has
one degree of freedom. : : :

Lemma-4 If Ry and Rp are rotatlon matrices such that RA R=R RB
for any- rotatlon matrix R, then R, and RB must: have the same angle of
rotation. O . ‘ _ :

- Proof From Lemma 1 the product of the elgenvalues of a rotational
matrlx is 1. Thus a ‘rotational matnx has a determlnant of 1 and is always' )
invertible. RA and Rp atre similar, since R, =R RB R R, and Ry rhust
~ have the same elgenvalues since similar matrices have the same elgenvalues\‘
[2_6] From Lemma 1, R, and Ry must have the same angle of rotation. O

_ Before we formally state and prove the solution. to RARX-—RXRB in
Theorem 1, we ﬁrst examine the geometry of the problem Let us rewrlte RAV |
~and RB as Rot(kA 9) and ‘Rot(kg 0) respectlvely We w1ll show that kA
referenced to the base frame basek A) v ~ =

and kB referenced to the frame RX (- \kB) both pomt in the same dnrectlon -
if a common frame of reference is used. Notice that from Lemma 4, RA and
,RB have the same angle of rotatlon -We can now rewrlte (3.2) as

ks Rot(kA,e)Rx — RyRot(kpf). (3.4)

‘ _For the the following discussion, we will think of Ry as a ‘coordinated fra‘me

relative to the base frame. Using the geometrical interpretation .of post- .-

multlpllcatlon of homogeneous transforms [28]; the left side of the equation -
~ can be interpreted as rotation of Ry frame with respect to basel, by an

angle 6. Similarly, the rlght hand side of the equation is the rotation of Rx - - L

frame with respect to \kB by 6. As a result,. Equatlon 3.4 can be
; interpreted as follows: Ry is a coordinate frame such that rotatlng Rx
about a vector basek by any angle £ is equlvalent to rotatlng Rx about
basek is referenced with respect to the' '
base frame (the world - frame) and - kB is referenced with respect - to RX.

:Th]S is" shown in Figure 3.1. In order that rotatlng RX about basek be1ng
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the same as rotating it about RSkB, b“‘sekAand » kavaﬁSt be the same 7
physwal vector in 3-D space IR : e e

We will now show that the so]utxon to Equatlon 3 4 ‘has one degree of

rotatlonal freedom A formal proof will be given in Theorem 1. If RX is a B

solution to Equatlon 3.4 and it is rotated about the axis of rotation ( R kg

basek ) by an angle, it will still satisfy the constralnts posted by'.'

or
Equatlon 3.4. Thus the solution to Equation 3.4 has one degree of freedom.
To show this mathematically, rotation of a particular solution Ryp about :
the axis by any angle § can be written as RypRot(kp, ) or Rot(kA,ﬁ)RXp
We will use the later form for the rest of the paper. Since Ryp is a
particular  solution,  Rot(k A9)Rxp=RypRot(kp,b). Also,  since.
Rot(ka,—f)Rot(ks,0)= I, Rot(ks,0)Rot(ky, [f)Rot(kA,ﬂ)RXp=RXPRot(kB, 6).

' Usmg the commutative propertles of rotational matrices with a common axns

of  rotation  and that Rot(k,,—0)" 1—Rot(kA,[)’) we ~ have

Rot(kA,B)Rot(kA,[f)RXP——Rot(kA,[f)RXPRot(kB,(}) from which we can see that
- Rot(ky,0)Rxp is a solution. In Figure 3.2, it is shown that a general solution

has one degree of rotational freedom; any partlcular solutlon rota,ted about.'
basek by any angle is also a solution. ' '

De fzmtzon A homogeneous transform equa.tlon of the form AX—-XB is
solvable if there exists a homogeneous ‘transform U such that B=U"'AU.

‘ Theorem 1: The general solution to the rotatlonal part of a solvable
homogeneous transform equation of the form'; RyRx=RxRp, the angle of
rotation of A being neither 0 nor 7, is v o o
| Ry=Rot(k,)Rxp, L (3.9)
where k, is the axis of rotation of Ry, RXP is a partlcular solutlon to the‘
equatlon and ( is any arbitrary angle. ' ) .
- Proof: Assume Rot(k,,/)Ryp is not a general solutlon Then, there'
must exist some rotatlon matrlx R’ such that RT
RAR’—-R’RB, L e (3.8)
and R';éRot(kA,[)’)RXp for any (. Since Ryxp is- a partlcular solutlon to
‘Equation 3.2, RARXP RXPRB: or RB—RXP_IRARXP Substltutmg thls into
Equatlon 3. 6 we have ‘ SO '
' Rl—lRARI: RXP_“I_RARXP. B X

Rewriting R, as Rot(kA,f)) and rearranging, we ha‘ve



R°t(k~9)R’RxP o Rot(kA,e) )

Thus, Rot(kA,f)) and R’RXP 1 are commutatlve Moreover, we know thatji

040 or 7. If R'Ryp 15, from Lemma 3, the axis of rotation of R'RXP must; =

be parallel or antlparallel to kj. Thus ‘there - must exist a "4 such that

R'Rxp —Rot(kA,W) We have R'—Rot(kA,"y)Rxp, which is a contradlctlon o

If R'RXP—I——I R'=RxpRot(k,,0), which is also a ‘contradiction. o

Next we will look at the translational part of the equatlon AX-—XB It .
_has one degree of freedom, as shown in Flgure 3.2. From Equatlon 3 3, we
have - R T o R R
(RA—I)PX—RXPB—PA ST R (3 9)
'_ _If RX is. already solved for, the only unknown 1n ‘this equatlon w1ll be PX‘
We  thus have a system of 3 llnear equatrons havrng the x, y,,and Z

components of Px as unknown Px has one degree of freedom because' D

,(RA—I) has a rank- of two, as will be shown next in Theorem 2.

Theorem 2 The translatlonal part (PX) of the solut1on to a- solvable
i homogeneous transform equat1on AX=XB, where RA#I and RB#I has onef 3
'degree of freedom o o , L

, Proo f We can see that RA—I is- s1mllar to a. matr1x of rank two 1f“:
RA;éI , , - RO

lo o o

RA—I—EAAE‘ —EE"' =E[0 »1 0 o (310)

OOX—

“Thus Rp—1 must have a rank of two. Thus, from Equatlon 3 9 there may_j_:"»» ‘. I
: be no solution or there are infinite number of solut1ons to Px. The ﬁrst case ;

';1s ruled out s1nce the physwal system guarantees the ex1stence of a solut1on

‘ »'The solut1on must exist and consist of all the vectors in ‘the null space of,v:_ - S
Ry—1 translated by a partlcular solutlon to Equation’ 3.9. [30] The null

'space of- RA—I has a d1mens1on of 3——rank(RA——I) thus the solut1on to:
‘.'Equatlon 3. 9 has one degree of freedom o ‘ ’ ' -

Flnally, we ‘need to find a partlcular solutlon to the rotatlonal part of e

. AX—XB "From the geometrlc 1nterpretatlon of the: general solutlon, we’ Wlll"
show that any transformatlon that rotates ky into k A is a- solutlon ‘



 Lemmas o T |
o Rot(Rk 6)=R. Rot(k orR (3 11);
_for any axns of rotatlon k, ‘any 6 C [O 7r] and any 3x3 rotatlon matrlx R. »

Proof For ‘the purpose of this proof we will represent a; rotatlon'

. matrix in a.form used by [23]. Let [n o a] be a homogeneous: transform and
g [n of a’] be the former transform. rotated by Rot(k,0). Thus : o

| ‘Rot(k,f)=n’ o' anoal™ (3 12)_

If -we premultlply n, o, a, n/, o, a and k by R, the angular relatlonshlp
between Rn, Ro, Ra, Rn/, Ro’, Ra and Rk will be the same as before the

' bpremultlpllcatlon, because of ‘the angular preservation property of R as a

rotatlonal matrix. - Since n'=Rot(k;0)n before the premultiplication,
Rn'=Rot(Rk,0)Rn. Similar relationships hold for other vectors ‘as well;

o ‘r'therefore, [Rn’ Ro' Ra.']——Rot(Rk 9)[Rn Ro Ra] and

SR  Rot(Rk,6)=[Rn’ Ro' Ra’][Rn Ro Ra] SO “ (3 13)
'From Equatlon 3 13 Rot(Rk 9) R [n o a.’] no a.] 1R - R Rot(k 9) R— v
| Theorcm 3: Any rotatlon matnx R that satlsﬁes '» ST
kA =R kB S B .»(3;'14)}
) is;.a solution to ‘ o - } | ’» Sana _
| | RRyReBp (18

E where k, A 1s the axes. of rotation of Ry and ky is the axes of rotatlon of RB .
| Proof Let us rewrite Equation 3.15 as , o »d i
. Rot(kpfRy=RyRot(kpf). (3.16)

Substltutlng R into. RX ‘and RkB into ky, the left ‘hand s1de becornes"‘

g Rot(RkB,())R By Lemma 5, this becomes RRot(kg,0)R " 'R —RRot(kB,H) , _'v
-_\_'whlch is the same as the right hand side when Ry is replaced by R EI '

Smce any rotatlonal matrlx R such that kA=RkB 1s a partlcular.j :

: A‘ solutlon, one method to find a partlcular solutnon isa rotatnon about an ax1s: L

| Nperpendlcular to both kB and kA Thus, B o ) .
EE Rgp=Rot(vi), eI

where .-
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Cv=kpdky (318

and

kBXkA

" ‘The aboi'e ‘method will not work vrhen ks an’d: kp ‘are pa_-ravllel :’Vor'
- antiparallel to one another since it will produce a zero vector. H0wever, '
- particular solutions for these two special cases can be found eas1ly by other

" methods. In the first case, the 1dent1ty matrix will be a valid particular. o

'solutlon In the second case, any rotation matrix with its rotation axis
perpendlcular to kA and 1ts angle of rotatlon equal to 7T w1ll be a partlcular

solutlon A

4 Solvmg for ‘a Umque Solutnon Usmg Two Slmultaneousbl
Equa.tlons ' - N - R : :

‘We have seen that the solution’ to a homogeneous transform equatlon of o

v the form AX=XB has two degrees of freedom However,'in our application,

o we- need to find a unique solution for - ﬂTCAM We can ﬁnd a unlque -
s solutlon to thls equatlon if we have two: equatlons of the form

A2X—XB2 o - o . (4 2)v' .

~In order to obtain two such equatlons we need to move the robot tW1ce and BN

use the vision system to find the correspondmg changes in the carnera frame.

B ‘j’It is also de51rable to know when this method will not yield a unlque solutlon_."‘_

: and the physwal lnterpretatlon of this situation.

'A .unique solution to Ry (the rotational part of X- ) can be found by S
_assoclatlng the general solutions of the two equatlons Ry RX'—RXRB and

' ».RARX—RXRB Let Ryp Rot(kA ,ﬁ) and RXP Rot(kAj,[fz) be the generalﬂf k

\ solutlons to the above two equatlons, we then have

Rotlo o ot iR oy

‘ '_'Let the partlcular solutlons be wntten as follows
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o o, 3y pa|
o my oy my om0 o S
.»R_xpi_= {n,, % ay Py i=1,2. o (4.4)
000 0 1] “
| Rearranglng and wntlng it in more condensed form, we have ‘

—ny thynpky, ,(nlxkA,)x Dy, kx;»n2‘kA~_» (_n2XkA._»)x P‘kx?n-2°kA._)+kx.nl'kA.-
—o, H o1 ks (0yxka )y ox—kyopkx (—opxka)| |-k o2k Ky, 01Ky,
—a gk, (a,lxkAl)*: mpkn, (eaxkadelr o
fnyl+kyln1.kA‘ (HIXkA,)y' n, —k n kA (—n2xkA;_))y sin[fllf
—v——oy‘ltl—ky,l;o‘l.kAlf'(olkaAi)y 0 —ky_o2 ky (——ozxkA._,.y cosfy _
fayl+ky‘a1,kA] (arxky )y 'ayﬁ—-kyﬂarkxz (—néxkA__))y" 'Si.nf’)2 ' _ky._,&z-kA.ﬂ'ky,@pkA,
‘ .—.n‘,z_,’tkz]nlx-k}&. (ﬁ1anl)z n,, kz_n2 ky, ("nzxk,&.)_z v
_5°z,+kz-;°1-k4. : (OIXkA!)z 0,,—k, 09.k, (‘f°2XkA.J)z R -—-kzﬂoz..kl_\__)—}—l}cizlol.kAl
—a,tk, aka, (8ka)s 3 kaaka, (capka), | -';-kznaé.k&&kzlnl.k&

(4-5)

Where the nota.tlon (uxv)w denotes the w component of the cross - product
uxv. Equatlon 4.5"is a system of linear equatlons lnvolvmg cos[)’l, sm,ﬁl,

”—k az kA +ky 8y k‘A,
T fk]f-z(»?‘‘l’(Af'l—l’-k}" |ol 'kAl

~k,nyky e my kg

cos/dy ‘and sinf,. Once these values are solved for, we can find /5, and Pe by

B,=atan2(sinf,cosf;) and B,=atan2(sinf,,cosf,). Since we have more.
equations than unknown, from the point of view of linear algebra, we can
have a system of inconsistent equations. However, in an ideal ‘environment
" where there is no noise, the equations must be consistent because they
- originated from physical situations. Since the linear equations are physically-
constrained to be consistent, there are either a unique solution ot an infinite
number -or solutions; there are no -other. possibilitie‘s.l.We' will 'show in-
“Theorem 4 that the solution is unique when ky and k, are neither parallel
or antiparallel to one another and the angles of rotation- of A, and A2 are
neither 0 nor 7. Let us abbreviate Equation 4.5 to CY—D if rank(C) 4, we
can find four linearly independent rows of C to solve for Y uniquely.
However, in real apphcatlons where noise 1s present Wwe can find a least—
square-ﬁt solutlon Y by
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- (cTcy'cTD. = (4 0

~ The translatlonal part of X is’ constralned by Equatlon 3. 3 ‘thus, we‘_j

have Ry Px+Py =RyPp +Px and Ry PX+PA ——RXPB +1>X Comblmng these_ S

two equatlons, we can solve for PX by

(47) e

v‘ ‘L1ke the unlqueness condltlons for the rotatlonal part it w1ll be shown that’-‘
thé translational part will have a ‘unique’ solution if the rotatlon axes of A1 '
- and A, are nelther parallel nor antlparallel to one another and the angles of
rotatlon ‘are neither 0 nor 7. Rewntlng Equatlon 4 'Z as EPX—F a least—

. square ﬁt solutlon can. be calculated by .

Px (ETE)'ETF. (4. 8)" |

o Before we go into- the necessary condltlons for umqueness, we' need to prove

- two more lemmas

Lemma 6: If Ris a 3><3 rotatlonal part of a homogeneous transform‘j '
and its angle of rotation is neither 0 nor m, any row of (R~I) is a llnear"‘
'comblnatlon of the transposes of the two elgenvectors correspondmg to the
‘ 'two non—unlty elgenvalues of R.: : S

Proof;v From Equation 3.‘10, ;W?vha:“'_ei . 7 .
0 0 0 €| -

10 0 1 e3T

® -

.where e, .e;, and ‘e; are the- eigenvectors of R. corresponding - to the . .

, _»‘selgenvalues 1, X and X. Wntmg e, as (e 8, € ) and rearrangmg Equatmn e

S 4, 9 we have

S g "'ebzxeva , N es;ésT ‘, SERPETS .
| | e22e2:T43 - 'e3,eslr, “ e T

Lemﬁm 7. For two rotatlonal matrlces Rl and R2 whose aXes ofb

rotatnon are- nelther parallel nor antlparallel to one another and whose{- W
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angles of rotatlon are. nelther 0 nor T, 1t is 1mp0881ble that the sets of vectors
{ez, e3,f2} and {ez, e3,f3} are both llnearly dependent where ey ‘and e are_'
the elgenvectors of R, correspondlng to the non-unity elgenvalues of Ry, ‘and
£, and f3 are the elgenvectors of R2 correspondmg to the non—yunlty
_elgenvalues of R2 ' e

Proof For any rotatlonal rnatnx R and i,tsv hermltlan RH
vRRH RHR——I hence R is a. normal matrix [27]. Given that the angle of
rotatlon of R is neither 0 nor 7, R must have distinct eigenvalues. From
Key Theorem 9.2 in Noble’s text, a matrix formed by 3 column eigenvectors
of a normal matrix with distinct eigenvalues is hermitian. Hence any
elgenvector matrlx of R is herrmtlan Let e; be the exgenvector of R,
corresponding to the unity eigenvalue. Note that e f2 and e f3 cannot ber :
- Z€ro sunultaneously. If they are sunultaneously zero, we will have a system
of tv‘v'o"‘linearly_ ind‘ependent homogeneous equations which will i‘constrai'n't €
except for a scaling factor. Since the eigenvectors of Rzlare hermitian, f,.fy
‘and f,.f3 are zero. Similarly, this will constraint f; up to a scaling factOr:‘
Thus f; and e; must be scalar product of one another However, this
contradlcts the assumption that the axes of rotation (el and f,) are neither
parallel nor anti-parallel to one another: Therefore, the two dot products :
' cannot be zero sunultaneously To. prove that {e2,e3,f2} lS lmearly‘
' 1ndependent We need to prove that kl—kz——k3—0 1f ' '

Taklng the dot product of both sides of Equatlon 4.11 w1th e, and usmg the

fact that eigenvectors of a normal matrix with distinet - elgenvalues_ are.

orthogonal to each another, we will have k3e1 f,=0. If el.f2¥0, then k3=0.
| Equatlon 4.11 s1mphﬁes to ’ B oo v.
. v kle2+k2e3=0. : ~‘ o N (412)
Since €y are e3v are linearly independent, we have 4k’1=>k2=0.> ,.Therefore-;:.
- {eg,es,f,} are linearly independent if e,.f,70. When e;.f,=0, e,.f; must be K
‘non-zero , from a previous argument in this proof. In this‘case, we ca'n'v use a
81m11ar method to prove that {ey,e3,f3} is hnearly 1ndependent D |
Theorem 4 A consrstent system of two solvable homogeneous transform '
.equatlons of the form A X=XB, and A2X—XB2 has a 1 unique solution if the_
. axes of rotatlon for A; and A, are nelther ‘parallel nor antlparallel to one-‘
another a.nd the angles of rotatlons of A, a.nd A2 are nelther 0 nor 7r |
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Proor'f fo‘rv the fot\ationdl'part We have already seen that the generali“_ :
"solutlon to AX—XB has one ‘degree of rotational freedom when the angle of
rotatlon of A is neither 0 nor 7; any so]utlon revolvmg about ky is stlll a
: solutlon The solution to the system of homogeneous transforrn equatlons ‘
- ‘AIX—XBI and AZX—-XB2 is found by equating the solutlons of the 2
individual equations, as shown in Equation (4.3). Smce Equat:on (4.3) is
7 mdependent of the choices of the partlcular solutions, we can. simplify it by-

‘ choosmg a_particular. solution which lS a solutlon to both.. equatlons, e, -

‘Rxp =Rxp, “‘RXP After replacmg R)CP and Rx]) in Equatlon 4 5 by RXP(,:

' RXP cancels out and we have

| : -"_*.kxl : 0 k’_"2~ ,—1_.. v. 0 1 o ,;k. 9’ —kxllt :
.—kxikyl_.sz'zl"kxzkyé Kzy | kx2ky2_kxlkyl FXPY
5 .:_kxik,zlv,; kY1 kxsz2v "—kyizx" : rcosﬁl- " "'kx2kz2—-kxlkz]l |
. 1—ky12 0 ky22,—-1 0 cosﬁ = kyz—kyl (413) B
- v _kylkzl _kxl kY2kZ2 ’ :kx2 ) SID/B2 ky2kZ2—kY»lkzl - L
>-—kxlkZ‘1" '—'kyl kx2kZ2 ky2 . ki(2kZ2—kX1kZ1 -
—kylkzl kx; kykzy —kxp| -\kyz'kzrky'lkz‘l,

"Let us abbrev1ate Equatlon 4. 13 as C'Y’—D’ With the assumptlon of

v con31stency, a unique solution exist-if and only 1f ‘the rank of Y is 4, in '

B whxch case we can pick 4 hnearly rows to form 4 equations to solve for the
same number of unknowns. Since the rank of C'is the same as the rank of .
= C'TC! and that the later is a 4 by 4 matrix, C’ has a rank of 4 if and only:if

- ¢'TC! has full rank . Thus, ‘we- will have a unique solutxon iff the

"determlnant of C'TC! is not equal to zero. We have used the SMP program'
(19] to express the determmant of C'TC' in symbohc forrn and have s1mphﬁed‘:,
it by maklng the followmg substltutlons - '

':(1)k +k 24k, 2—1, i=1,2. .

(2) kx'lkx2+kyl_kyf+kz]k‘zé%kAl.kA2' “




20

«()—k2k2—k2k2k2k22kkkk 2kkkk_2kkkk

*Kx. Ky,
- =sin’fy,. , _ .
The thlrd substltutlon comes from the fact that kA xkA 1 equals
IkA HkA sm912 The determinant is finally 51mphﬁed to -

det(CTOY)— 4sm2012(sm 6ra—4)(ka Kn +1)(kAI kp. 1) C (414)

The. - determmant is zero when sinfl,=+2, which is 1mp0331ble, when
" sinf,,=0, and when ky-ka=t1. Thus we will have a non-unique solution
only when ky, and ky, are parallel or ant1parallel to one another =

. Proof' for the translational part: Since E is a 6 by 3 matrix, we have 6
- equations and 3 unknowris We know that these equations cannot be
inconsistent since they originated from physical conditions.. Therefore, we
have a unique solutlon for Px if and only if matrix E has a rank of 3, in
| whlch case we can p1ck 3 lmearly 1ndependent rows for E to solve for PX
: From Lemma 6 any row of (RA —I) is a linear combination of the transposes -
of the elgenvectors e2T and e3 correspondmg to the non-unity elgenvalues,
and any row of (R, —1I)'is a linear combination of the transposes of the
eig"énveotOrS'sz’ and f3T corresponding to the non-unity ‘eigenvalues. ‘Since
the rank of»RA] is two (from the proof of Theorem 2), we can pick two lingaf
independent rows from it, both are linear combinations of e, and e;. »We
can _also pick a royv from Ry, , which is a linear ..combin‘ation'ofv;vfg and: f;, -
“and combine it with the two rows from Ry . Since we know that,if‘kl is not
‘aligned with ks, from Lemma 7, at least one of f,1 and f‘3T must be linearly
~independent from e2 and e;l. Say a row from RX is af2 +bf3 . We can
always pick a row where a0 or a row where b0 since rank(RA J=2. Thus,

‘we can always find a row from Ry, and combine it with two rows from Ry,

; to form three lmearly independent rows. We can use the correspondlng three» g ', L "

v equatlons from Equation 4.7 to solve for a umque PX o

: -5 “An Example o
~ We have written a program callmg IMSL routmes (18] to test ourtgﬁ_
. method. A smg}le‘ precision version is used on a VAX 780 machme We will

' solve,‘for'.tvhe sensor position relative to the robot wrist by moving the robot -
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twice -and observing the chauges in the sensor - positious’ 'vThe' two robot
'movements must have distinct axes of rotation and their angles of rotation
must not be 0 or 7 in order to ensure a unique solution. ‘Let A; and Bl be .
the first robot movement and B, be ‘the resulting motion of the sensor, - and‘
let:- A, be'the second robot movement and B, be the resulting sensor motlon |
Two equatlons relatmg the motlons and the sensor-mountlng posntlon wxll‘
result : ' o B

Al X =;X.B1, ey
| rMX X& _L_%m w'wm
B, and B2 are determlned by Al and A2 and the ‘actual sensor mountlng ‘, .
’ posrtlon Let Xact be the actual sensor mounting posmon, then '

| Bl “‘Xact_lAlXact’ | .b . (53)
B2 Xact_1A2Xact o e | (54)

The above two equatlons are only used for s1mulatlons In an actual' robot

‘appllcatlon, B, and By are found by the sensor system, however, Al and Bl,‘ o

band A2 and B2 are still related by Equations 5.3:5:4, B At |

Assume the actual sensor mountlng posmon and two robot motlons are e

.'.as follows _» , » T

- Xac, = Trans(lO mm, 50 mm, 100 mm) Rot([l 0, O]T 0. 2 rad), i (55) sy
: Al = Trans(O mm, 0 mm, 0 mm) Rot([O 0, 1] 3.0 rad) T v, T (56) .

- A,:TEmQ-umnmgommAmmmmrhqm 1,0, 15rad).  (5.7)

’ The above parameters are chosen to match the setup in our laboratory The e
. camera coordinate frame (X,g) is nearly parallel to. the robot wrist frame
'but is. angled sllghtly towards the gripper. The: first robot IIlOthIl (Al) is
approx1mately a rotation of 3 radians: (1727) about the-camera’s- “line of
._ sight, so that ‘the ups1de down camera is still pointing - to the generalu

dlrectlv‘o,n of the object. Notice that we did not choose 180 - because our'

theorems'do not apply to that case. However, we chose a value close to

180° ~ because that minimizes the noise sensitivities. How close ‘to 180 ° we
lshould choose depends on how accurate our system (robot a.nd VlSlOIl system) :
: For example, 1f we know that the system has a max1mum angular error '



S22

of 2°, we must choose the robot motion to be less than 178°. The second

~ motion (A,) is a rotation of 1.5 radians (86 °) about the y-axis of the robot

wrist and the translation is chosen such . that the fixed obJect is stlll in the
-camera’s view.: ‘ _ , '

We can find the nurnerlcal values of the Al, Bl, A,, B2, and Xt usmg
Equatlon 2.2, Equations 5.3 and 5.4. " s

—0.989992 —0.141120 0.000000
0.141120 —0.989992 0.000000
0.000000 0.000000 1.000000
S0 00

-

—0.989992 —0.138307 0.028036 —26.9559
0.138307 —0.911449 0.387470 —96.1332
—0.028036 0:387470 0.921456  19.4872
P o S 0 ’ { . OV\',J 1

0.070737 '0.60100’00 0.997495 —400.000
0.000000 1.000000 0.000000 0.000000
= [|—0.997495 0.000000 0.070737 400.000
0 o o 1

-

| (5.10)

0.070737  0.198172 0.977612 —309.543
 |—0.198172 0.963323 —0.180936 59.0244 | R
B:=|_0.977612 —0.180936 o0.107415 201177 | (511)
00 0 1 |

[ 1.000000 0.000000  0.000000 10 |
[0.000000 0.980067 —0.198669 50
= 0.000000 0.198669 0.980067 100 |
o o0 o1

: (5-,12:)

Now we. can ﬁnd the axis of rotatlons of Apol; A2, and B2 by

'Equatlons23 2628 L . &
kA—[ooooooo 0.000000, 1000000]T o By
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Ky, =[0.000000, 0.198669, 0.980067]7, | o (514)
k ,,=[0.000000, 1.000000, 0.000000]", . (515)
kp,=[0.000000, 0.980067, —0.198669]". IERRE S (5 16)

From the above four axes of rotations and from Equatlon 3 17 3 19, we ca.n"
find Ryp, and RXPZ: which are the particular solutlons to the rotational
parts of Equatlons 5.1 and 5.2, respectively. The numerical _valu_es of _thesre

two rotational matrices are

" [1.000000 0.000000 0.000000 E SR
Ryp = |0.000000 0.980067 —0.198669| -  (517)
~ |0.000000 0.198669 0.980067 | T oo o

1.000000 0.000000 *0.000000° R
Ryxp,= |0.000000 0.980067 —0.198669 |. . ('5'518_')?
' - 10.000000 0.198669 0.980067 .

‘Notlce that the two ‘particular solutlons in this example are the same and' O .

are both equal to the final solution. This is merely a comc1dence -When -
other X, Ay and A, are used, the partlcular solutlons are general]y dlfferent
from the final solution. o TR _

" From ‘Theorem 1, the solution is either Rot(kAl,ffl)Rxpl. or
Rot(k, ,0)Rxp, - We can solve for B, and f3, from Equation 4.5-4.6 and
from f,=atan2(sin )’i,coé[)’i), i=1,2. We found 6, to be 0. The rotational part -
of- X ( Ry ) can be found by computing the numeri_cal- :v:alueys of
Rot(kA ,ﬂl)Rm - ' '

~ [1.000000 0.000000 - 0.000000 e _
Ry=|0.000000 0.980067 —0.198669|  (5.19)

- 10.000000 0.198669 ~0.980067 L R
‘This solutlon is. correct because it is the same as the rotatlonal part of the
actual sensor position (X,)- ) ‘

To find the translational part of the solutlon we use Equatlons 4.7 and

~ 4.8; it is found to be [10.0000, 50.0000, 100. 000]T whlch is the same as that

of the actual sensor posmon ' :
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6; Nonse Sensntwntxes ‘

To measure ‘the ‘noise sensxthty of our cal1brat10n method it is
necessary to compare true measurements of the sensor mounting posxtlonf
with experlmental results us1ng ~ the method dlscussed However, true
measurements are difficult or expensive to obtain. In thls paper, we will
_31mulate the nonse sensnt1V1t1es by perturbmg the robot motions (A, and A2)
and the sensor ‘motions (Bl and B2) and observing the resultlng errors in the
sensor mountmg pos1t10n (X). In the rest of this sectlon, n01se sen31t1v1ty' :
will refer to error, in the solutlon per. un1t perturbat1on, e. g 5 0. 6 mllhmeter
solutlon error per 1 mllhmeter perturbatlon : o

- NOlse sens1t1v1tles are conﬁguratlon dependent We will - use. the set of '
values g1ven in last sectlon s example, wh1ch are chosen reahstlcally for our
laboratory setup ‘Noise sens1t1v1t1es are also dependent on the direction of
perturbatlon Since a homogeneous transform has six degrees of freedoms,
we will perturb the- ‘translations in x, y, and z d1rectlons and the rotatlons
.aboutthex,y,andZaxes SR A BRRERRARE

Flgure 6. 1 shows the translatlonal noise sensntrvrtles due to translatlonal
perturbatlons of " robot motion measurements and ‘sensor motlon.
measurements ‘The translational components of Ay, Bl, A2, B, . are
perturbed by addlng between 1 to 5 millimeters to each of the x, v, and z
components. = The resulting translational errors are then calculated by"
taking‘ the euclidean distance between the actual sensor mounting pos1t10n
(X,t) 2nd the calculated position (X), where the distance:is the magnitude
of the p vector (or translation” vector) of the compound matrix X%, 00
Errors due to perturbations in x, y, and z directions are marked by g, O,
-and A respectively. ' Rotational errors due to translational perturbatlons are

. not plotted because they are always zero. ‘ ‘

» ‘ Figures 6.2 and 6.3 show the translational and rotational noise
sensitivities due to rotational perturbations. The rotatlonal parts of A,, Bl,
,Az and B, are perturbed by rotating them around each of thelr X, ¥, and z

‘axes by 0 to" 5 degrees. Rotational errors are ‘calculated by ‘taking the

minimum angle required to align the perturbed solution X to the actual
rmountmg position X, (angle of rotation of the compound matrlx X Xact)

"»Errors ‘due’to rotational perturbatlons about the X, y, and 2 axes are marked o

| 'by 0, O ‘and A respectlvely

‘ Notlce that noise sensitivities vary greatly, dependlng on: the dlrectlon
of perturbatlon It may be useful to “use this mformatlon for plannlng'
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sensor-mount callbratlon if the error characterlstrcs of the robot and the
- sensor are known

7. Conclusxons V

We have descrlbed a method to ﬁnd the pos1t10n of a wrlst mounted‘
' sensor relatlve to a robot wrist, wnthout usmg direct measurements This
will be useful for callbratlng v131on systems, range sensing systems and
tactlle sensmg systems The process can be automated and does not requlre
'any rneasurlng equlpment ‘ '

Our method requires the solutlon to a homogeneous transform equation
of the form AX—XB where the a.ngle of rotation of A is neither 0 nor TT. We.
" found that the solution is not unique; it has one degree of rotatlonal freedom‘ :
and one degree of translatlonal freedom.  We" propose that we use two
- simultaneous equations of the form AIX—-XBI and A, X=XB,. Physically, this
‘means that ‘we move the robot twice and observe the changes in the sensor
frame twice. The necessary condition for a unique solution i is that the axes
of rotation of A1 and A, are nelther parallel nor antiparallel to one another
* and that the angles of rotation are neither 0 nor 7. A computer program is
‘written for .the proposed method We ‘have generated several test. cases in
which the conditions. for unlqueness are satisfied; all the computed solutions
‘are found to, be correct. Another program is wrltten to test the noise.
sen51t1v1ty of the method The matrices Ay, B,, Ay, and By are. perturbed
v and the errors’ in the resultlng solutlons are plotted. |
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F1gure 1. 1 F1nd1ng the mountlng posmon of a camera by solving ‘a v
“homogeneous transform equation of the form AX-—XB where A

" is the robot motlon, B is the resultlng camera motlon, and X is -

the camera mounting posxtlon '
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Figure 1.2. . Finding the mounting position of a robdt”‘ha._hd»equ‘ippéd with .5
' ' ‘tactile sensors, by solving a ho'mOgehébus'vtransform éqiié,ti,on‘ of
the form AX=XB, where A is the "robot? motion,~B is the
resulting motion of the hand coOrdi_Iiavte"frame, and X is the

mounting position of the hand.
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initial robot position

robot position
-after motion

If the robot is mo»védvfrom position Tg to Ts, ahd* the -poiSitionf, AR

of the fixed object relative to the camera fréme is found to Be’

_OBJI and OBJ,, respectively, then the following equatlon is

obtained: Tg X OBJ; = Ty, X OBJ, , Where X is the unknown

- .transform representmg the camera mountlng posmon relatlve :

to the robot wrist frame.
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 base frame ~—_| .. .. ‘base frame'

| VV: Ry frame with respect to v‘ \ Z ' : Rx frame with respect tov Qe
v the base frame - ' the base frame , :
A ~ AN
e R, frame rotated about LN J f. Rx frame rotated about

i V' B _b’fs‘_e ky by an angle @ R kg by an’ angle 6

Figure 3.1.» " Rotating Rx about base k, by 9 is equivalent to rotating R, about R"k by
~ the same angle. k, is the axis of rotation of A and kg is the axis of rotation
of B in the homogeneous transform equation AX = XB '
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| AX=XB

Flgure 3.2. The rotational and translatlonal degrees of freedom of the solutlon to AX =
_XB. The frame i in the ﬁgure can. rotate about base o, and slide along the axis
- as shown ' '
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